import json import spaces import gradio as gr import torch from distilabel.llms import LlamaCppLLM from distilabel.steps.tasks.argillalabeller import ArgillaLabeller file_path = os.path.join(os.path.dirname(__file__), "qwen2-0_5b-instruct-fp16.gguf") download_url = "https://huggingface.co/Qwen/Qwen2-0.5B-Instruct-GGUF/resolve/main/qwen2-0_5b-instruct-fp16.gguf?download=true" if not os.path.exists(file_path): import requests import tqdm response = requests.get(download_url, stream=True) total_length = int(response.headers.get("content-length")) with open(file_path, "wb") as f: for chunk in tqdm.tqdm( response.iter_content(chunk_size=1024), total=total_length, unit="KB", unit_scale=True, ): f.write(chunk) llm = LlamaCppLLM( model_path=file_path, n_gpu_layers=-1, n_ctx=1024 * 4, ) task = ArgillaLabeller(llm=llm) task.load() def load_examples(): with open("examples.json", "r") as f: return json.load(f) # Create Gradio examples examples = load_examples() def process_fields(fields): if isinstance(fields, str): fields = json.loads(fields) if isinstance(fields, dict): fields = [fields] return [field if isinstance(field, dict) else json.loads(field) for field in fields] @spaces.GPU def process_records_gradio(records, example_records, fields, question): try: # Convert string inputs to dictionaries records = json.loads(records) example_records = json.loads(example_records) if example_records else None fields = process_fields(fields) if fields else None question = json.loads(question) if question else None print(fields) print(question) print(example_records) if not fields and not question: return "Error: Either fields or question must be provided" runtime_parameters = {"fields": fields, "question": question} if example_records: runtime_parameters["example_records"] = example_records print(runtime_parameters) task.set_runtime_parameters(runtime_parameters) results = [] for record in records: output = next(task.process(inputs=[{"records": record}])) results.append(output[0]["suggestions"]) return json.dumps({"results": results}, indent=2) except Exception as e: return f"Error: {str(e)}" interface = gr.Interface( fn=process_records_gradio, inputs=[ gr.Code(label="Records (JSON)", language="json", lines=5), gr.Code(label="Example Records (JSON, optional)", language="json", lines=5), gr.Code(label="Fields (JSON, optional)", language="json"), gr.Code(label="Question (JSON, optional)", language="json"), ], examples=examples, outputs=gr.Code(label="Suggestions", language="json", lines=10), title="Record Processing Interface", description="Enter JSON data for `rg.Record.to_dict()`, `List[rg.Record.to_dict()]`, `List[Field].serialize()`, or `List[rg.Question.serialize()]` At least one of fields or question must be provided.", ) if __name__ == "__main__": interface.launch()