import streamlit as st import torch from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image # Load the model and processor model_id = "brucewayne0459/paligemma_derm" processor = AutoProcessor.from_pretrained(model_id) model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) model.eval() # Set device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Add Hugging Face logo at the top st.markdown( """ """, unsafe_allow_html=True, ) # Streamlit app title and instructions st.title("VisionDerm") st.write("Upload an image to identify the skin condition.") # Column layout for input and display col1, col2 = st.columns([3, 2]) with col1: # File uploader for image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) prompt = 'Identify the skin condition?' with col2: if uploaded_file: # Open and resize the uploaded image input_image = Image.open(uploaded_file).convert("RGB") resized_image = input_image.resize((300, 300)) st.image(resized_image, caption="Uploaded Image (300x300)", use_container_width=True) # Resize image for processing (512x512 pixels) max_size = (512, 512) processed_image = input_image.resize(max_size) # Predict automatically when the image is uploaded or the prompt changes with st.spinner("Processing..."): try: # Prepare inputs inputs = processor( text=prompt, images=processed_image, return_tensors="pt", padding="longest" ).to(device) # Generate output default_max_tokens = 50 # Set a default value for max tokens with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=default_max_tokens) # Decode output and remove the prompt text from the response decoded_output = processor.decode(outputs[0], skip_special_tokens=True) # Remove the prompt text from the model output if present if prompt in decoded_output: decoded_output = decoded_output.replace(prompt, "").strip() # Capitalize the first letter of each word decoded_output = decoded_output.title() # Display result st.success("Analysis Complete!") st.write("**Model Output:**", decoded_output) except Exception as e: st.error(f"Error: {str(e)}")