import os import math import shutil from fastapi import APIRouter from src.core.utils import logger from fastapi.responses import JSONResponse from fastapi import APIRouter, UploadFile, File, HTTPException, Form from src.app.pipelines.modules import DataQualityAssessmentWorkflow data_quality_router = APIRouter() def delete_dir_contents(directory: str)->None: for filename in os.listdir(directory): file_path = os.path.join(directory, filename) if os.path.isfile(file_path): os.remove(file_path) def sanitize_for_json(data): if isinstance(data, dict): return {k: sanitize_for_json(v) for k, v in data.items()} elif isinstance(data, list): return [sanitize_for_json(v) for v in data] elif isinstance(data, float): if math.isinf(data) or math.isnan(data): return None return data return data @data_quality_router.post('/') async def main(file: UploadFile = File(...), ml_task: str = Form(None)): ''' ## This endpoint accepts a CSV file upload to initiate the Data Quality Workflow. ### Parameters: ----------- - file : CSV File for the dataset ### Returns: -------- - dict: Markdown Report ''' if not file.filename.endswith('.csv'): raise HTTPException(status_code=400, detail="Only CSV files are allowed.") '''Clears the /downloads folder and stores the recieved file under 'dataset.csv' ''' downloads_path = "src/core/cache/downloads" # os.makedirs(downloads_path, exist_ok=True) delete_dir_contents(downloads_path) destination_path = os.path.join(downloads_path, "dataset.csv") with open(destination_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) logger.info(f"CSV file saved to {destination_path}", log_type='eda-engine/data_quality', console=True) '''Runs the data quality assessment workflow''' try: ds_wf = DataQualityAssessmentWorkflow(data_source=f'{downloads_path}/dataset.csv', llm_choice="gpt-4o-mini", ml_task=ml_task) results = ds_wf.run(verbose=True) sanitized_data = sanitize_for_json(results) return JSONResponse(content=sanitized_data) except Exception as e: logger.error(f"DataQualityAssessmentWorkflow failed with error: {e}", log_type='eda-engine/data_quality', console=True) return { "status": "Pipeline failed to finish", }