import streamlit as st from keras.models import load_model from PIL import Image, ImageOps import numpy as np # Disable scientific notation for clarity np.set_printoptions(suppress=True) # Load the model model = load_model("keras_model.h5", compile=False) # Load the labels class_names = open("labels.txt", "r").readlines() class_names = [name.strip() for name in class_names] # Strip newline characters # Function to preprocess the image def preprocess_image(image): # resizing the image to be at least 224x224 and then cropping from the center size = (224, 224) image = ImageOps.fit(image, size, Image.Resampling.LANCZOS) # turn the image into a numpy array image_array = np.asarray(image) # Normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 # Create array of the right shape to feed into the model data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) data[0] = normalized_image_array return data # Streamlit app def main(): st.title("Image Classifier") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) data = preprocess_image(image) prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index] confidence_score = prediction[0][index] st.write("Class:", class_name) st.write("Confidence Score:", confidence_score) if __name__ == "__main__": main()