import gradio as gr from transformers import AutoTokenizer, AutoModel from openai import OpenAI import os import numpy as np from sklearn.metrics.pairwise import cosine_similarity from docx import Document import io import tempfile from astroquery.nasa_ads import ADS import pyvo as vo # Load the NASA-specific bi-encoder model and tokenizer bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2" bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name) bi_model = AutoModel.from_pretrained(bi_encoder_model_name) # Set up OpenAI client api_key = os.getenv('OPENAI_API_KEY') client = OpenAI(api_key=api_key) # Set up NASA ADS token ADS.TOKEN = os.getenv('ADS_API_KEY') # Ensure your ADS API key is stored in environment variables # Define system message with instructions system_message = """ You are ExosAI, a helpful assistant specializing in Exoplanet research. Your goal is to provide detailed, structured answers by following these guidelines: - The central topic branches out into 3 science objectives. - Each science objective branches out into 2 physical parameters, and each physical parameter branches out into 2 observables. - Include details, provide scientific references, and make recommendations for observation parameters like wavelength, resolution, etc. """ def encode_text(text): inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128) outputs = bi_model(**inputs) return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten() def retrieve_relevant_context(user_input, context_texts): user_embedding = encode_text(user_input).reshape(1, -1) context_embeddings = np.array([encode_text(text) for text in context_texts]) context_embeddings = context_embeddings.reshape(len(context_embeddings), -1) similarities = cosine_similarity(user_embedding, context_embeddings).flatten() most_relevant_idx = np.argmax(similarities) return context_texts[most_relevant_idx] def fetch_nasa_ads_references(prompt): try: # Use the entire prompt for the query simplified_query = prompt # Query NASA ADS for relevant papers papers = ADS.query_simple(simplified_query) if not papers or len(papers) == 0: return [("No results found", "N/A", "N/A")] # Include authors in the references references = [ ( paper['title'][0], ", ".join(paper['author'][:3]) + (" et al." if len(paper['author']) > 3 else ""), paper['bibcode'] ) for paper in papers[:5] # Limit to 5 references ] return references except Exception as e: return [("Error fetching references", str(e), "N/A")] def fetch_exoplanet_data(): # Connect to NASA Exoplanet Archive TAP Service tap_service = vo.dal.TAPService("https://exoplanetarchive.ipac.caltech.edu/TAP") # Query to fetch all columns from the pscomppars table ex_query = """ SELECT TOP 10 pl_name, hostname, sy_snum, sy_pnum, discoverymethod, disc_year, disc_facility, pl_controv_flag, pl_orbper, pl_orbsmax, pl_rade, pl_bmasse, pl_orbeccen, pl_eqt, st_spectype, st_teff, st_rad, st_mass, ra, dec, sy_vmag FROM pscomppars """ # Execute the query qresult = tap_service.search(ex_query) # Convert to a Pandas DataFrame ptable = qresult.to_table() exoplanet_data = ptable.to_pandas() return exoplanet_data def generate_response(user_input, relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0): if relevant_context: combined_input = f"Context: {relevant_context}\nQuestion: {user_input}\nAnswer (please organize the answer in a structured format with topics and subtopics):" else: combined_input = f"Question: {user_input}\nAnswer (please organize the answer in a structured format with topics and subtopics):" response = client.chat.completions.create( model="gpt-4-turbo", messages=[ {"role": "system", "content": system_message}, {"role": "user", "content": combined_input} ], max_tokens=max_tokens, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty ) # Append references to the response if references: response_content = response.choices[0].message.content.strip() references_text = "\n\nADS References:\n" + "\n".join( [f"- {title} by {authors} (Bibcode: {bibcode})" for title, authors, bibcode in references] ) return f"{response_content}\n{references_text}" return response.choices[0].message.content.strip() def generate_data_insights(user_input, exoplanet_data, max_tokens=500, temperature=0.3): """ Generate insights by passing the user's input along with the exoplanet data to GPT-4. """ # Convert the dataframe to a readable format for GPT (e.g., CSV-style text) data_as_text = exoplanet_data.to_csv(index=False) # CSV-style for better readability # Create a prompt with the user query and the data sample insights_prompt = ( f"Analyze the following user query and provide relevant insights based on the provided exoplanet data.\n\n" f"User Query: {user_input}\n\n" f"Exoplanet Data:\n{data_as_text}\n\n" f"Please provide insights that are relevant to the user's query." ) # Call GPT-4 to generate insights based on the data and user input response = client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "You are an expert in analyzing astronomical data and generating insights."}, {"role": "user", "content": insights_prompt} ], max_tokens=max_tokens, temperature=temperature ) # Extract and return GPT-4's insights data_insights = response.choices[0].message.content.strip() return data_insights def export_to_word(response_content): doc = Document() doc.add_heading('AI Generated SCDD', 0) for line in response_content.split('\n'): doc.add_paragraph(line) temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".docx") doc.save(temp_file.name) return temp_file.name def chatbot(user_input, context="", use_encoder=False, max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0): if use_encoder and context: context_texts = context.split("\n") relevant_context = retrieve_relevant_context(user_input, context_texts) else: relevant_context = "" # Fetch NASA ADS references using the full prompt references = fetch_nasa_ads_references(user_input) # Generate response from GPT-4 response = generate_response(user_input, relevant_context, references, max_tokens, temperature, top_p, frequency_penalty, presence_penalty) # Export the response to a Word document word_doc_path = export_to_word(response) # Fetch exoplanet data exoplanet_data = fetch_exoplanet_data() # Generate insights based on the user query and exoplanet data data_insights = generate_data_insights(user_input, exoplanet_data) # Combine the response and the data insights full_response = f"{response}\n\nInsights from Existing Data: {data_insights}" # Embed Miro iframe iframe_html = """ """ mapify_button_html = """ """ return full_response, iframe_html, mapify_button_html, word_doc_path, exoplanet_data iface = gr.Interface( fn=chatbot, inputs=[ gr.Textbox(lines=2, placeholder="Enter your Science Goal here...", label="Prompt ExosAI"), gr.Textbox(lines=5, placeholder="Enter some context here...", label="Context"), gr.Checkbox(label="Use NASA SMD Bi-Encoder for Context"), gr.Slider(50, 1000, value=150, step=10, label="Max Tokens"), gr.Slider(0.0, 1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.0, 1.0, value=0.9, step=0.1, label="Top-p"), gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Frequency Penalty"), gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Presence Penalty") ], outputs=[ gr.Textbox(label="ExosAI finds..."), gr.HTML(label="Miro"), gr.HTML(label="Generate Mind Map on Mapify"), gr.File(label="Download SCDD", type="filepath"), gr.Dataframe(label="Exoplanet Data Table") ], title="ExosAI - NASA SMD SCDD AI Assistant [version-0.5a]", description="ExosAI is an AI-powered assistant for generating and visualising HWO Science Cases", ) iface.launch(share=True)