aquibmoin's picture
Update app.py
7a80c9e verified
raw
history blame
23.6 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from docx import Document
from docx.shared import Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from docx.oxml.ns import nsdecls
from docx.oxml import parse_xml
import io
import tempfile
from astroquery.nasa_ads import ADS
import pyvo as vo
import pandas as pd
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)
# Set up NASA ADS token
ADS.TOKEN = os.getenv('ADS_API_KEY') # Ensure your ADS API key is stored in environment variables
# Define system message with instructions
system_message = """
You are ExosAI, an advanced assistant specializing in Exoplanet and Astrophysics research.
Generate a **detailed and structured** response based on the given **science context and user input**, incorporating key **observables, physical parameters, and technical requirements**. Organize the response into the following sections:
1. **Science Objectives**: Define key scientific objectives related to the science context and user input.
2. **Physical Parameters**: Outline the relevant physical parameters (e.g., mass, temperature, composition).
3. **Observables**: Specify the key observables required to study the science context.
4. **Description of Desired Observations**: Detail the observational techniques, instruments, or approaches necessary to gather relevant data.
5. **Observations Requirements Table**: Generate a table relevant to the Science Objectives, Physical Parameters, Observables and Description of Desired Observations with the following columns and at least 7 rows:
- Wavelength Band: Should only be UV, Visible and Infrared).
- Instrument: Should only be Imager, Spectrograph, Polarimeter and Coronagraph).
- Necessary Values: The necessary values or parameters (wavelength range, spectral resolution where applicable, spatial resolution where applicable, contrast ratio where applicable).
- Desired Values: The desired values or parameters (wavelength range, spectral resolution where applicable, spatial resolution where applicable).
- Justification: Detailed scientific explanation of why these observations are important for the science objectives.
- Comments: Additional notes or remarks regarding each observation.
#### **Table Format**
| Wavelength Band | Instrument | Necessary Values | Desired Values | Justification | Comments |
|----------------------|------------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------------|
#### **Guiding Constraints (Exclusions & Prioritization)**
- **Wavelength Band Restriction:** Only include **UV, Visible, and Infrared** bands.
- **Instrument Restriction:** Only include **Imager, Spectrograph, Polarimeter, and Coronagraph**.
- **Wavelength Limits:** Prioritize wavelengths between **100 nanometers (nm) and 3 micrometers (μm)**.
- **Allowed Instruments:** **Only include** observations from **direct imaging, spectroscopy, and polarimetry.** **Exclude** transit and radial velocity methods.
- **Exclusion of Existing Facilities:** **Do not reference** existing observatories such as JWST, Hubble, or ground-based telescopes. This work pertains to a **new mission**.
- **Spectral Resolution Constraint:** Limit spectral resolution (**R**) to the range **10,000 – 50,000**.
- **Contrast Ratio:** Limit contrast ratio to the range **10^4 - 10^6**.
- **Ensure that all parameters remain scientifically consistent.**
**Use this table format as a guideline, generate a detailed table dynamically based on the input.**. Ensure that all values align with the provided constraints and instructions.
Ensure the response is **structured, clear, and observation requirements table follows this format**. **All included parameters must be scientifically consistent with each other.**
"""
def encode_text(text):
inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
outputs = bi_model(**inputs)
return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()
def get_chunks(text, chunk_size=300):
"""
Split a long piece of text into smaller chunks of approximately 'chunk_size' characters.
"""
if not text.strip():
raise ValueError("The provided context is empty or blank.")
# Split the text into chunks of approximately 'chunk_size' characters
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
return chunks
def retrieve_relevant_context(user_input, context_texts, chunk_size=300, similarity_threshold=0.3):
"""
Split the context text into smaller chunks, find the most relevant chunk
using cosine similarity, and return the most relevant chunk.
If no chunk meets the similarity threshold, return a fallback message.
"""
# Check if the context is empty or just whitespace
if not context_texts.strip():
return "Error: Context is empty or improperly formatted.", None
# Split the long context text into chunks using the chunking function
context_chunks = get_chunks(context_texts, chunk_size)
# Handle single context case
if len(context_chunks) == 1:
return context_chunks[0], 1.0 # Return the single chunk with perfect similarity
# Encode the user input to create a query embedding
user_embedding = encode_text(user_input).reshape(1, -1)
# Encode all context chunks to create embeddings
chunk_embeddings = np.array([encode_text(chunk) for chunk in context_chunks])
# Compute cosine similarity between the user input and each chunk
similarities = cosine_similarity(user_embedding, chunk_embeddings).flatten()
# Check if any similarity scores are above the threshold
if max(similarities) < similarity_threshold:
return "No relevant context found for the user input.", None
# Identify the most relevant chunk based on the highest cosine similarity score
most_relevant_idx = np.argmax(similarities)
most_relevant_chunk = context_chunks[most_relevant_idx]
# Return the most relevant chunk and the similarity score
return most_relevant_chunk
def extract_keywords_with_gpt(user_input, max_tokens=100, temperature=0.3):
# Define a prompt to ask GPT-4 to extract keywords and important terms
keyword_prompt = f"Extract the most important keywords, scientific concepts, and parameters from the following user query:\n\n{user_input}"
# Call GPT-4 to extract keywords based on the user prompt
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert in identifying key scientific terms and concepts."},
{"role": "user", "content": keyword_prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract the content from GPT-4's reply
extracted_keywords = response.choices[0].message.content.strip()
return extracted_keywords
def fetch_nasa_ads_references(prompt):
try:
# Use the entire prompt for the query
simplified_query = prompt
# Query NASA ADS for relevant papers
papers = ADS.query_simple(simplified_query)
if not papers or len(papers) == 0:
return [("No results found", "N/A", "N/A")]
# Include authors in the references
references = [
(
paper['title'][0],
", ".join(paper['author'][:3]) + (" et al." if len(paper['author']) > 3 else ""),
paper['bibcode']
)
for paper in papers[:5] # Limit to 5 references
]
return references
except Exception as e:
return [("Error fetching references", str(e), "N/A")]
def fetch_exoplanet_data():
# Connect to NASA Exoplanet Archive TAP Service
tap_service = vo.dal.TAPService("https://exoplanetarchive.ipac.caltech.edu/TAP")
# Query to fetch all columns from the pscomppars table
ex_query = """
SELECT TOP 10 pl_name, hostname, sy_snum, sy_pnum, discoverymethod, disc_year, disc_facility, pl_controv_flag, pl_orbper, pl_orbsmax, pl_rade, pl_bmasse, pl_orbeccen, pl_eqt, st_spectype, st_teff, st_rad, st_mass, ra, dec, sy_vmag
FROM pscomppars
"""
# Execute the query
qresult = tap_service.search(ex_query)
# Convert to a Pandas DataFrame
ptable = qresult.to_table()
exoplanet_data = ptable.to_pandas()
return exoplanet_data
def generate_response(user_input, science_objectives="", relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
# Case 1: Both relevant context and science objectives are provided
if relevant_context and science_objectives.strip():
combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\nScience Objectives (User Provided): {science_objectives}\n\nPlease generate only the remaining sections as per the defined format."
# Case 2: Only relevant context is provided
elif relevant_context:
combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\n\nPlease generate a full structured response, including Science Objectives."
# Case 3: Neither context nor science objectives are provided
elif science_objectives.strip():
combined_input = f"User Input: {user_input}\nScience Objectives (User Provided): {science_objectives}\n\nPlease generate only the remaining sections as per the defined format."
# Default: No relevant context or science objectives → Generate everything
else:
combined_input = f"User Input: {user_input}\n\nPlease generate a full structured response, including Science Objectives."
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": combined_input}
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
# Append references to the response
if references:
response_content = response.choices[0].message.content.strip()
references_text = "\n\nADS References:\n" + "\n".join(
[f"- {title} by {authors} (Bibcode: {bibcode})" for title, authors, bibcode in references]
)
return f"{response_content}\n{references_text}"
return response.choices[0].message.content.strip()
def generate_data_insights(user_input, exoplanet_data, max_tokens=500, temperature=0.3):
"""
Generate insights by passing the user's input along with the exoplanet data to GPT-4.
"""
# Convert the dataframe to a readable format for GPT (e.g., CSV-style text)
data_as_text = exoplanet_data.to_csv(index=False) # CSV-style for better readability
# Create a prompt with the user query and the data sample
insights_prompt = (
f"Analyze the following user query and provide relevant insights based on the provided exoplanet data.\n\n"
f"User Query: {user_input}\n\n"
f"Exoplanet Data:\n{data_as_text}\n\n"
f"Please provide insights that are relevant to the user's query."
)
# Call GPT-4 to generate insights based on the data and user input
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert in analyzing astronomical data and generating insights."},
{"role": "user", "content": insights_prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract and return GPT-4's insights
data_insights = response.choices[0].message.content.strip()
return data_insights
def export_to_word(response_content, subdomain_definition, science_goal):
doc = Document()
# Add a title (optional, you can remove this if not needed)
doc.add_heading('AI Generated SCDD', 0)
# Insert the Subdomain Definition at the top
doc.add_heading('Subdomain Definition:', level=1)
doc.add_paragraph(subdomain_definition)
# Insert the Science Goal at the top
doc.add_heading('Science Goal:', level=1)
doc.add_paragraph(science_goal)
# Split the response into sections based on ### headings
sections = response_content.split('### ')
for section in sections:
if section.strip():
# Handle the "Observations Requirements Table" separately with proper formatting
if section.startswith('Observations Requirements Table'):
doc.add_heading('Observations Requirements Table', level=1)
# Extract table lines
table_lines = section.split('\n')[2:] # Start after the heading line
# Check if it's an actual table (split lines by '|' symbol)
table_data = [line.split('|')[1:-1] for line in table_lines if '|' in line]
if table_data:
# Add table to the document
table = doc.add_table(rows=len(table_data), cols=len(table_data[0]))
table.style = 'Table Grid'
for i, row in enumerate(table_data):
for j, cell_text in enumerate(row):
cell = table.cell(i, j)
cell.text = cell_text.strip()
# Apply text wrapping for each cell
cell._element.get_or_add_tcPr().append(parse_xml(r'<w:tcW w:w="2500" w:type="pct" ' + nsdecls('w') + '/>'))
# Process any paragraphs that follow the table
paragraph_after_table = '\n'.join([line for line in table_lines if '|' not in line and line.strip()])
if paragraph_after_table:
doc.add_paragraph(paragraph_after_table.strip())
# Handle the "ADS References" section
elif section.startswith('ADS References'):
doc.add_heading('ADS References', level=1)
references = section.split('\n')[1:] # Skip the heading
for reference in references:
if reference.strip():
doc.add_paragraph(reference.strip())
# Add all other sections as plain paragraphs
else:
doc.add_paragraph(section.strip())
# Save the document to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
doc.save(temp_file.name)
return temp_file.name
def extract_table_from_response(gpt_response):
# Split the response into lines
lines = gpt_response.strip().split("\n")
# Find where the table starts and ends (based on the presence of pipes `|` and at least 3 columns)
table_lines = [line for line in lines if '|' in line and len(line.split('|')) > 3]
# If no table is found, return None or an empty string
if not table_lines:
return None
# Find the first and last index of the table lines
first_table_index = lines.index(table_lines[0])
last_table_index = lines.index(table_lines[-1])
# Extract only the table part
table_text = lines[first_table_index:last_table_index + 1]
return table_text
def gpt_response_to_dataframe(gpt_response):
# Extract the table text from the GPT response
table_lines = extract_table_from_response(gpt_response)
# If no table found, return an empty DataFrame
if table_lines is None or len(table_lines) == 0:
return pd.DataFrame()
# Find the header and row separator (assume it's a line with dashes like |---|)
try:
# The separator line (contains dashes separating headers and rows)
sep_line_index = next(i for i, line in enumerate(table_lines) if set(line.strip()) == {'|', '-'})
except StopIteration:
# If no separator line is found, return an empty DataFrame
return pd.DataFrame()
# Extract headers (the line before the separator) and rows (lines after the separator)
headers = [h.strip() for h in table_lines[sep_line_index - 1].split('|')[1:-1]]
# Extract rows (each line after the separator)
rows = [
[cell.strip() for cell in row.split('|')[1:-1]]
for row in table_lines[sep_line_index + 1:]
]
# Create DataFrame
df = pd.DataFrame(rows, columns=headers)
return df
def chatbot(user_input, science_objectives="", context="", subdomain="", use_encoder=False, max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
if use_encoder and context:
context_texts = context
relevant_context = retrieve_relevant_context(user_input, context_texts)
else:
relevant_context = ""
# Fetch NASA ADS references using the full prompt
references = fetch_nasa_ads_references(subdomain)
# Generate response from GPT-4
response = generate_response(
user_input=user_input,
science_objectives=science_objectives, # Pass Science Objectives
relevant_context=relevant_context, # Pass retrieved context (if any)
references=references,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
# Export the response to a Word document
word_doc_path = export_to_word(response, subdomain, user_input)
# Fetch exoplanet data
exoplanet_data = fetch_exoplanet_data()
# Generate insights based on the user query and exoplanet data
data_insights = generate_data_insights(user_input, exoplanet_data)
# Extract and convert the table from the GPT-4 response into a DataFrame
extracted_table_df = gpt_response_to_dataframe(response)
# Combine the response and the data insights
full_response = f"{response}\n\nEnd of Response"
# Embed Miro iframe
iframe_html = """
<iframe width="768" height="432" src="https://miro.com/app/live-embed/uXjVKuVTcF8=/?moveToViewport=-331,-462,5434,3063&embedId=710273023721" frameborder="0" scrolling="no" allow="fullscreen; clipboard-read; clipboard-write" allowfullscreen></iframe>
"""
mapify_button_html = """
<style>
.mapify-button {
background: linear-gradient(135deg, #1E90FF 0%, #87CEFA 100%);
border: none;
color: white;
padding: 15px 35px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
font-weight: bold;
margin: 20px 2px;
cursor: pointer;
border-radius: 25px;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.mapify-button:hover {
background: linear-gradient(135deg, #4682B4 0%, #1E90FF 100%);
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.3);
transform: scale(1.05);
}
</style>
<a href="https://mapify.so/app/new" target="_blank">
<button class="mapify-button">Create Mind Map on Mapify</button>
</a>
"""
return full_response, extracted_table_df, word_doc_path, iframe_html, mapify_button_html
with gr.Blocks() as demo:
gr.Markdown("# ExosAI - NASA SMD SCDD AI Assistant [version-0.91a]")
# User Inputs
user_input = gr.Textbox(lines=5, placeholder="Enter your Science Goal...", label="Science Goal")
context = gr.Textbox(lines=10, placeholder="Enter Context Text...", label="Context")
subdomain = gr.Textbox(lines=2, placeholder="Define your Subdomain...", label="Subdomain Definition")
# Science Objectives Button & Input (Initially Hidden)
science_objectives_button = gr.Button("Manually Enter Science Objectives")
science_objectives_input = gr.Textbox(
lines=5,
placeholder="Enter Science Objectives...",
label="Science Objectives",
visible=False # Initially hidden
)
# Define event inside Blocks (Fix for the Error)
science_objectives_button.click(
fn=lambda: gr.update(visible=True), # Show textbox when clicked
inputs=[],
outputs=[science_objectives_input]
)
# More Inputs
use_encoder = gr.Checkbox(label="Use NASA SMD Bi-Encoder for Context")
max_tokens = gr.Slider(50, 2000, value=150, step=10, label="Max Tokens")
temperature = gr.Slider(0.0, 1.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.1, label="Top-p")
frequency_penalty = gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Frequency Penalty")
presence_penalty = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Presence Penalty")
# Outputs
full_response = gr.Textbox(label="ExosAI finds...")
extracted_table_df = gr.Dataframe(label="SC Requirements Table")
word_doc_path = gr.File(label="Download SCDD", type="filepath")
iframe_html = gr.HTML(label="Miro")
mapify_button_html = gr.HTML(label="Generate Mind Map on Mapify")
# Buttons: Generate + Reset
with gr.Row():
submit_button = gr.Button("Generate SCDD")
clear_button = gr.Button("Reset")
# Define interaction: When "Generate SCDD" is clicked
submit_button.click(
fn=chatbot,
inputs=[
user_input, science_objectives_input, context, subdomain,
use_encoder, max_tokens, temperature, top_p, frequency_penalty, presence_penalty
],
outputs=[full_response, extracted_table_df, word_doc_path, iframe_html, mapify_button_html]
)
# Define Clear Function (Ensuring the correct number of outputs)
def clear_all():
return (
"", # user_input
"", # science_objectives_input
"", # context
"", # subdomain
False, # use_encoder
150, # max_tokens
0.7, # temperature
0.9, # top_p
0.5, # frequency_penalty
0.0, # presence_penalty
"", # full_response (textbox output)
None, # extracted_table_df (DataFrame output)
None, # word_doc_path (File output)
None, # iframe_html (HTML output)
None # mapify_button_html (HTML output)
)
# Bind Clear Button (Ensuring the correct number of outputs)
clear_button.click(
fn=clear_all,
inputs=[],
outputs=[
user_input, science_objectives_input, context, subdomain,
use_encoder, max_tokens, temperature, top_p, frequency_penalty, presence_penalty,
full_response, extracted_table_df, word_doc_path, iframe_html, mapify_button_html
]
)
# Launch the app
demo.launch(share=True)