import torch import gradio as gr from PIL import Image import qrcode from pathlib import Path from multiprocessing import cpu_count import requests import io import os from PIL import Image from diffusers import ( StableDiffusionPipeline, StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler, EulerDiscreteScheduler, ) qrcode_generator = qrcode.QRCode( version=1, error_correction=qrcode.ERROR_CORRECT_H, box_size=10, border=4, ) controlnet = ControlNetModel.from_pretrained( "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16, ).to("cuda") pipe.enable_xformers_memory_efficient_attention() def resize_for_condition_image(input_image: Image.Image, resolution: int): input_image = input_image.convert("RGB") W, H = input_image.size k = float(resolution) / min(H, W) H *= k W *= k H = int(round(H / 64.0)) * 64 W = int(round(W / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) return img SAMPLER_MAP = { "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True), "Heun": lambda config: HeunDiscreteScheduler.from_config(config), "Euler": lambda config: EulerDiscreteScheduler.from_config(config), "DDIM": lambda config: DDIMScheduler.from_config(config), "DEIS": lambda config: DEISMultistepScheduler.from_config(config), } def inference( first_name: str = "John", last_name: str = "Doe", telephone_number: str = "+60123456789", email_address: str = "john.doe@example.com", url: str = "https://example.com", prompt: str = "Sky view of highly aesthetic, ancient greek thermal baths in beautiful nature", negative_prompt: str = "ugly, disfigured, low quality, blurry, nsfw", ): guidance_scale = 7.5 controlnet_conditioning_scale = 1.5 strength = 0.9 seed = -1 sampler = "DPM++ Karras SDE" qrcode_image = None qr_code_content = f"MECARD:N:{last_name},{first_name};TEL:{telephone_number};EMAIL:{email_address};URL:{url};" if prompt is None or prompt == "": raise gr.Error("Prompt is required") if qr_code_content == "": raise gr.Error("Content is required") pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config) generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() if qr_code_content != "" or qrcode_image.size == (1, 1): print("Generating QR Code from content") qr = qrcode.QRCode( version=1, error_correction=qrcode.constants.ERROR_CORRECT_H, box_size=10, border=4, ) qr.add_data(qr_code_content) qr.make(fit=True) qrcode_image = qr.make_image(fill_color="black", back_color="white") qrcode_image = resize_for_condition_image(qrcode_image, 768) else: print("Using QR Code Image") qrcode_image = resize_for_condition_image(qrcode_image, 768) out = pipe( prompt=prompt, negative_prompt=negative_prompt, image=qrcode_image, control_image=qrcode_image, # type: ignore width=768, # type: ignore height=768, # type: ignore guidance_scale=float(guidance_scale), controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore generator=generator, strength=float(strength), num_inference_steps=40, ) return out.images[0] # type: ignore # MECARD:N:Aqlan Nor Azman;TEL:60173063421;EMAIL:aqlanhadi.norazman@maybank.com; generator = gr.Interface( fn=inference, inputs=[ gr.Textbox( label="First Name", value="John", ), gr.Textbox( label="Last Name", value="Doe", ), gr.Textbox( label="Telephone Number", value="+60123456789", ), gr.Textbox( label="Email Address", value="john.doe@example.com" ), gr.Textbox( label="URL", value="https://example.com", ), gr.Textbox( label="Prompt", value="Sky view of highly aesthetic, ancient greek thermal baths in beautiful nature", ), gr.Textbox( label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw", ) ], outputs="image" ) if __name__ == "__main__": generator.queue(concurrency_count=1, max_size=20) generator.launch()