import streamlit as st import torch from normflows import nflow import numpy as np import seaborn as sns import pandas as pd uploaded_file = st.file_uploader("Choose original dataset") col1,col2,col3 = st.columns(3) bw = col1.number_input('Scale',value=3.05) wd = col2.number_input('Weight Decay',value=0.0002) iters = col3.number_input('Iterations',value=400) def compute(dim): api = nflow(dim=dim,latent=16,dataset=uploaded_file) api.compile(optim=torch.optim.ASGD,bw=bw,lr=0.0001,wd=wd) my_bar = st.progress(0) for idx in api.train(iters=iters): my_bar.progress(idx[0]/iters) my_bar.progress(100) samples = np.delete(np.array(api.model.sample(torch.tensor(api.scaled).float()).detach()),np.argmin(np.array(api.model.sample(torch.tensor(api.scaled).float()).detach()),axis=0),0) # samples = np.delete(samples,np.argmax(samples,axis=0),0) # fig, ax = plt.subplots() g = sns.jointplot(x=samples[:, 0], y=samples[:, 1], kind='kde',cmap=sns.color_palette("Blues", as_cmap=True),fill=True,label='Gaussian KDE',levels=1000) w = sns.scatterplot(x=api.scaled[:,0],y=api.scaled[:,1],ax=g.ax_joint,c='orange',marker='+',s=100,label='Real') st.pyplot(w.get_figure()) def random_normal_samples(n, dim=3): return torch.zeros(n, dim).normal_(mean=0, std=1) samples = np.array(api.model.sample(torch.tensor(random_normal_samples(1000,api.scaled.shape[-1])).float()).detach()) return api.scaler.inverse_transform(samples) with st.form('login_form'): st.write('Token for generation:') token = st.text_input('Token') submit = st.form_submit_button('Submit') if token in st.secrets['tokens'] and submit: if uploaded_file is not None: dims = len(uploaded_file.getvalue().decode("utf-8").split('\n')[0].split(','))-1 samples=compute(dims) st.download_button('Download generated CSV', pd.DataFrame(samples).to_csv(), 'text/csv') elif not uploaded_file: st.write('Upload your file') else: st.markdown('## :red[You dont have access]') st.markdown('Buy tokens here: [@advprop](https://adprop.t.me)')