Update app.py
Browse files
app.py
CHANGED
|
@@ -1,92 +1,218 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
import random
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
| 8 |
|
| 9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
torch_dtype
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
pipe =
|
| 18 |
-
pipe
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def infer(
|
| 26 |
-
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
-
seed,
|
| 29 |
-
randomize_seed,
|
| 30 |
-
width,
|
| 31 |
-
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
| 34 |
-
progress=gr.Progress(track_tqdm=True),
|
| 35 |
-
):
|
| 36 |
-
if randomize_seed:
|
| 37 |
-
seed = random.randint(0, MAX_SEED)
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
width=width,
|
| 47 |
-
height=height,
|
| 48 |
-
generator=generator,
|
| 49 |
-
).images[0]
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
examples = [
|
| 55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
-
"An astronaut riding a green horse",
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
-
]
|
| 59 |
|
| 60 |
css = """
|
|
|
|
| 61 |
#col-container {
|
| 62 |
margin: 0 auto;
|
| 63 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
}
|
| 65 |
"""
|
| 66 |
|
| 67 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
| 72 |
prompt = gr.Text(
|
| 73 |
label="Prompt",
|
| 74 |
show_label=False,
|
| 75 |
max_lines=1,
|
| 76 |
-
placeholder="Enter your prompt",
|
| 77 |
container=False,
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
-
run_button = gr.Button("Run", scale=0
|
| 81 |
|
| 82 |
result = gr.Image(label="Result", show_label=False)
|
| 83 |
-
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 85 |
negative_prompt = gr.Text(
|
| 86 |
label="Negative prompt",
|
| 87 |
max_lines=1,
|
| 88 |
placeholder="Enter a negative prompt",
|
| 89 |
-
|
| 90 |
)
|
| 91 |
|
| 92 |
seed = gr.Slider(
|
|
@@ -105,7 +231,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 105 |
minimum=256,
|
| 106 |
maximum=MAX_IMAGE_SIZE,
|
| 107 |
step=32,
|
| 108 |
-
value=1024,
|
| 109 |
)
|
| 110 |
|
| 111 |
height = gr.Slider(
|
|
@@ -113,42 +239,30 @@ with gr.Blocks(css=css) as demo:
|
|
| 113 |
minimum=256,
|
| 114 |
maximum=MAX_IMAGE_SIZE,
|
| 115 |
step=32,
|
| 116 |
-
value=1024,
|
| 117 |
)
|
| 118 |
|
| 119 |
with gr.Row():
|
| 120 |
guidance_scale = gr.Slider(
|
| 121 |
label="Guidance scale",
|
| 122 |
minimum=0.0,
|
| 123 |
-
maximum=
|
| 124 |
step=0.1,
|
| 125 |
-
value=
|
| 126 |
)
|
| 127 |
|
| 128 |
num_inference_steps = gr.Slider(
|
| 129 |
label="Number of inference steps",
|
| 130 |
minimum=1,
|
| 131 |
-
maximum=
|
| 132 |
step=1,
|
| 133 |
-
value=
|
| 134 |
)
|
| 135 |
|
| 136 |
-
|
| 137 |
-
gr.on(
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
fn=infer,
|
| 140 |
-
inputs=[
|
| 141 |
-
|
| 142 |
-
negative_prompt,
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
-
],
|
| 150 |
-
outputs=[result, seed],
|
| 151 |
)
|
| 152 |
|
| 153 |
-
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
+
import PIL.Image
|
| 5 |
+
from PIL import Image
|
| 6 |
import random
|
| 7 |
+
from diffusers import StableDiffusionXLPipeline
|
| 8 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
|
|
|
| 9 |
import torch
|
| 10 |
+
from compel import Compel, ReturnedEmbeddingsType
|
| 11 |
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 13 |
|
| 14 |
+
# Make sure to use torch.float16 consistently throughout the pipeline
|
| 15 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 16 |
+
"votepurchase/pornmasterPro_noobV3VAE",
|
| 17 |
+
torch_dtype=torch.float16,
|
| 18 |
+
variant="fp16", # Explicitly use fp16 variant
|
| 19 |
+
use_safetensors=True # Use safetensors if available
|
| 20 |
+
)
|
| 21 |
|
| 22 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 23 |
+
pipe.to(device)
|
| 24 |
|
| 25 |
+
# Force all components to use the same dtype
|
| 26 |
+
pipe.text_encoder.to(torch.float16)
|
| 27 |
+
pipe.text_encoder_2.to(torch.float16)
|
| 28 |
+
pipe.vae.to(torch.float16)
|
| 29 |
+
pipe.unet.to(torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# 追加: Initialize Compel for long prompt processing
|
| 32 |
+
compel = Compel(
|
| 33 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 34 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 35 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 36 |
+
requires_pooled=[False, True],
|
| 37 |
+
truncate_long_prompts=False
|
| 38 |
+
)
|
| 39 |
|
| 40 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 41 |
+
MAX_IMAGE_SIZE = 1216
|
| 42 |
+
|
| 43 |
+
# Default prompt
|
| 44 |
+
DEFAULT_PROMPT = "Detailed illustration, realistic style, portrait of a beautiful Japanese woman, wearing an elegant traditional Japanese uniform, neatly tailored with intricate patterns and subtle textures, serene expression, soft natural lighting, standing gracefully in a traditional Japanese garden with cherry blossom petals gently falling in the background, cinematic quality, ultra-detailed, high-resolution, warm tones"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# 追加: Simple long prompt processing function
|
| 47 |
+
def process_long_prompt(prompt, negative_prompt=""):
|
| 48 |
+
"""Simple long prompt processing using Compel"""
|
| 49 |
+
try:
|
| 50 |
+
conditioning, pooled = compel([prompt, negative_prompt])
|
| 51 |
+
return conditioning, pooled
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Long prompt processing failed: {e}, falling back to standard processing")
|
| 54 |
+
return None, None
|
| 55 |
+
|
| 56 |
+
@spaces.GPU
|
| 57 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 58 |
+
# 変更: Remove the 60-word limit warning and add long prompt check
|
| 59 |
+
use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300
|
| 60 |
+
|
| 61 |
+
if randomize_seed:
|
| 62 |
+
seed = random.randint(0, MAX_SEED)
|
| 63 |
|
| 64 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
# 追加: Try long prompt processing first if prompt is long
|
| 68 |
+
if use_long_prompt:
|
| 69 |
+
print("Using long prompt processing...")
|
| 70 |
+
conditioning, pooled = process_long_prompt(prompt, negative_prompt)
|
| 71 |
+
|
| 72 |
+
if conditioning is not None:
|
| 73 |
+
output_image = pipe(
|
| 74 |
+
prompt_embeds=conditioning[0:1],
|
| 75 |
+
pooled_prompt_embeds=pooled[0:1],
|
| 76 |
+
negative_prompt_embeds=conditioning[1:2],
|
| 77 |
+
negative_pooled_prompt_embeds=pooled[1:2],
|
| 78 |
+
guidance_scale=guidance_scale,
|
| 79 |
+
num_inference_steps=num_inference_steps,
|
| 80 |
+
width=width,
|
| 81 |
+
height=height,
|
| 82 |
+
generator=generator
|
| 83 |
+
).images[0]
|
| 84 |
+
return output_image
|
| 85 |
+
|
| 86 |
+
# Fall back to standard processing
|
| 87 |
+
output_image = pipe(
|
| 88 |
+
prompt=prompt,
|
| 89 |
+
negative_prompt=negative_prompt,
|
| 90 |
+
guidance_scale=guidance_scale,
|
| 91 |
+
num_inference_steps=num_inference_steps,
|
| 92 |
+
width=width,
|
| 93 |
+
height=height,
|
| 94 |
+
generator=generator
|
| 95 |
+
).images[0]
|
| 96 |
+
|
| 97 |
+
return output_image
|
| 98 |
+
except RuntimeError as e:
|
| 99 |
+
print(f"Error during generation: {e}")
|
| 100 |
+
# Return a blank image with error message
|
| 101 |
+
error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
|
| 102 |
+
return error_img
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
css = """
|
| 106 |
+
/* Main container styling */
|
| 107 |
#col-container {
|
| 108 |
margin: 0 auto;
|
| 109 |
+
max-width: 520px;
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
/* Gradient background for the entire app */
|
| 113 |
+
.gradio-container {
|
| 114 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #ffc947 100%);
|
| 115 |
+
min-height: 100vh;
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
/* Main block styling with semi-transparent background */
|
| 119 |
+
.contain {
|
| 120 |
+
background: rgba(255, 255, 255, 0.95);
|
| 121 |
+
border-radius: 20px;
|
| 122 |
+
padding: 20px;
|
| 123 |
+
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
|
| 124 |
+
backdrop-filter: blur(4px);
|
| 125 |
+
border: 1px solid rgba(255, 255, 255, 0.18);
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
/* Input field styling */
|
| 129 |
+
.gr-text-input {
|
| 130 |
+
background: rgba(255, 255, 255, 0.9) !important;
|
| 131 |
+
border: 2px solid rgba(102, 126, 234, 0.3) !important;
|
| 132 |
+
border-radius: 10px !important;
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
/* Button styling */
|
| 136 |
+
.gr-button {
|
| 137 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 138 |
+
border: none !important;
|
| 139 |
+
color: white !important;
|
| 140 |
+
font-weight: bold !important;
|
| 141 |
+
transition: all 0.3s ease !important;
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
.gr-button:hover {
|
| 145 |
+
transform: translateY(-2px);
|
| 146 |
+
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
/* Accordion styling */
|
| 150 |
+
.gr-accordion {
|
| 151 |
+
background: rgba(255, 255, 255, 0.8) !important;
|
| 152 |
+
border-radius: 10px !important;
|
| 153 |
+
margin-top: 10px !important;
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
/* Result image container */
|
| 157 |
+
.gr-image {
|
| 158 |
+
border-radius: 15px !important;
|
| 159 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1) !important;
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
/* Slider styling */
|
| 163 |
+
.gr-slider {
|
| 164 |
+
background: rgba(255, 255, 255, 0.8) !important;
|
| 165 |
}
|
| 166 |
"""
|
| 167 |
|
| 168 |
with gr.Blocks(css=css) as demo:
|
| 169 |
+
|
| 170 |
with gr.Column(elem_id="col-container"):
|
| 171 |
+
gr.Markdown(
|
| 172 |
+
"""
|
| 173 |
+
# 🎨 Stable Diffusion XL Image Generator
|
| 174 |
+
### Create beautiful images with AI
|
| 175 |
+
"""
|
| 176 |
+
)
|
| 177 |
|
| 178 |
+
# Badge section
|
| 179 |
+
gr.HTML(
|
| 180 |
+
"""
|
| 181 |
+
<div style="display: flex; justify-content: center; align-items: center; gap: 20px; margin: 20px 0;">
|
| 182 |
+
<a href="https://huggingface.co/spaces/Heartsync/Wan-2.2-ADULT" target="_blank">
|
| 183 |
+
<img src="https://img.shields.io/static/v1?label=T2I%20%26%20TI2V&message=Wan-2.2-ADULT&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
|
| 184 |
+
</a>
|
| 185 |
+
<a href="https://huggingface.co/spaces/Heartsync/PornHUB" target="_blank">
|
| 186 |
+
<img src="https://img.shields.io/static/v1?label=T2I%20&message=PornHUB&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
|
| 187 |
+
</a>
|
| 188 |
+
<a href="https://huggingface.co/spaces/Heartsync/Hentai-Adult" target="_blank">
|
| 189 |
+
<img src="https://img.shields.io/static/v1?label=T2I%20&message=Hentai-Adult&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
|
| 190 |
+
</a>
|
| 191 |
+
</div>
|
| 192 |
+
"""
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
with gr.Row():
|
| 196 |
prompt = gr.Text(
|
| 197 |
label="Prompt",
|
| 198 |
show_label=False,
|
| 199 |
max_lines=1,
|
| 200 |
+
placeholder="Enter your prompt (long prompts are automatically supported)",
|
| 201 |
container=False,
|
| 202 |
+
value=DEFAULT_PROMPT # Set default prompt
|
| 203 |
)
|
| 204 |
|
| 205 |
+
run_button = gr.Button("Run", scale=0)
|
| 206 |
|
| 207 |
result = gr.Image(label="Result", show_label=False)
|
| 208 |
+
|
| 209 |
with gr.Accordion("Advanced Settings", open=False):
|
| 210 |
+
|
| 211 |
negative_prompt = gr.Text(
|
| 212 |
label="Negative prompt",
|
| 213 |
max_lines=1,
|
| 214 |
placeholder="Enter a negative prompt",
|
| 215 |
+
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
| 216 |
)
|
| 217 |
|
| 218 |
seed = gr.Slider(
|
|
|
|
| 231 |
minimum=256,
|
| 232 |
maximum=MAX_IMAGE_SIZE,
|
| 233 |
step=32,
|
| 234 |
+
value=1024,
|
| 235 |
)
|
| 236 |
|
| 237 |
height = gr.Slider(
|
|
|
|
| 239 |
minimum=256,
|
| 240 |
maximum=MAX_IMAGE_SIZE,
|
| 241 |
step=32,
|
| 242 |
+
value=1024,
|
| 243 |
)
|
| 244 |
|
| 245 |
with gr.Row():
|
| 246 |
guidance_scale = gr.Slider(
|
| 247 |
label="Guidance scale",
|
| 248 |
minimum=0.0,
|
| 249 |
+
maximum=20.0,
|
| 250 |
step=0.1,
|
| 251 |
+
value=7,
|
| 252 |
)
|
| 253 |
|
| 254 |
num_inference_steps = gr.Slider(
|
| 255 |
label="Number of inference steps",
|
| 256 |
minimum=1,
|
| 257 |
+
maximum=28,
|
| 258 |
step=1,
|
| 259 |
+
value=28,
|
| 260 |
)
|
| 261 |
|
| 262 |
+
run_button.click(
|
|
|
|
|
|
|
| 263 |
fn=infer,
|
| 264 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 265 |
+
outputs=[result]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
)
|
| 267 |
|
| 268 |
+
demo.queue().launch()
|
|
|