Spaces:
Paused
Paused
import spaces | |
import gradio as gr | |
import torch | |
import torchaudio | |
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor | |
import yt_dlp | |
model = AutoModelForCTC.from_pretrained("anzorq/w2v-bert-2.0-kbd") | |
processor = Wav2Vec2BertProcessor.from_pretrained("anzorq/w2v-bert-2.0-kbd") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def transcribe_speech(audio): | |
# Load the audio file | |
waveform, sr = torchaudio.load(audio) | |
# Resample the audio if needed | |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000) | |
waveform = resampler(waveform) | |
# Convert to mono if needed | |
if waveform.dim() > 1: | |
waveform = torch.mean(waveform, dim=0) | |
# Normalize the audio | |
waveform = waveform / torch.max(torch.abs(waveform)) | |
# Extract input features | |
input_features = processor(waveform.unsqueeze(0), sampling_rate=16000).input_features | |
input_features = torch.from_numpy(input_features).to(device) | |
# Generate logits using the model | |
with torch.no_grad(): | |
logits = model(input_features).logits | |
# Decode the predicted ids to text | |
pred_ids = torch.argmax(logits, dim=-1)[0] | |
pred_text = processor.decode(pred_ids) | |
return pred_text | |
def transcribe_from_youtube(url): | |
# Download audio from YouTube using yt-dlp | |
audio_path = "downloaded_audio.wav" | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'outtmpl': audio_path, | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'wav', | |
'preferredquality': '192', | |
}], | |
'postprocessor_args': ['-ar', '16000'], # Ensure audio is at 16000 Hz | |
'prefer_ffmpeg': True, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([url]) | |
# Transcribe the downloaded audio | |
return transcribe_speech(audio_path) | |
with gr.Blocks() as demo: | |
with gr.Tab("Microphone Input"): | |
gr.Markdown("## Transcribe speech from microphone") | |
mic_audio = gr.Audio(source="microphone", type="filepath", label="Speak into your microphone") | |
transcribe_button = gr.Button("Transcribe") | |
transcription_output = gr.Textbox(label="Transcription") | |
transcribe_button.click(fn=transcribe_speech, inputs=mic_audio, outputs=transcription_output) | |
with gr.Tab("YouTube URL"): | |
gr.Markdown("## Transcribe speech from YouTube video") | |
youtube_url = gr.Textbox(label="Enter YouTube video URL") | |
transcribe_button = gr.Button("Transcribe") | |
transcription_output = gr.Textbox(label="Transcription") | |
transcribe_button.click(fn=transcribe_from_youtube, inputs=youtube_url, outputs=transcription_output) | |
demo.launch() |