import os import streamlit as st from embedchain import App os.environ["HF_HOME"] = "./models" #! PROVIDE HUGGINGFACE TOKEN IF RUNNING OFFLINE @st.cache_resource def conversational_ai(): return App.from_config(config_path="./config_main.yaml") st.title('Demo of "AI Chatbot in Law"') st.caption( "🚀 A demo of conversation AI for Dhirubhai Ambani Centre for Technology and Law (DA-CTL) made by **Anurag Shukla**, **Tanaz Pathan** under guidance of **Prof. Prasenjit Majumder**" ) if "messages" not in st.session_state: st.session_state.messages = [ { "role": "assistant", "content": """ Hi! I'm a conversational AI specializing in Indian Legal System. How may I assist you today? """, } ] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Disclaimer: I am still a product in developement"): app = conversational_ai() # app.reset() # print(len(app.db.get()["metadatas"])) # print(len(app.get_data_sources())) # quit() with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("assistant"): msg_placeholder = st.empty() msg_placeholder.markdown("Thinking...") print("Querying the Agent.\n") cntxt = app.search(prompt) relevant_c = [i["context"] for i in cntxt if i["metadata"]["score"] <= 1.2] print( "\n===================\n", *relevant_c, sep="\n===================\n", ) if len(relevant_c) != 0: full_response = app.llm.query( input_query=prompt, contexts=relevant_c, ) full_response = full_response.rpartition("Answer:")[-1].strip() else: full_response = ( "Sorry but I don't have relevant knowledge to asnwer that query." ) print(f"\n#ANSWER\n\n{full_response}") msg_placeholder.markdown(full_response) st.session_state.messages.append( {"role": "assistant", "content": full_response} )