from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation import gradio as gr from PIL import Image import matplotlib.pyplot as plt import torch import cv2 import os os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt") import paddlehub as hub import gradio as gr import torch from PIL import Image, ImageOps import numpy as np import imageio os.mkdir("data") os.rename("best.ckpt", "models/best.ckpt") os.mkdir("dataout") # Load CLIPSeg model processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") clipseg_model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") # Load LAMA model lama_model = hub.Module(name='U2Net') def process_image(image, prompt): # Generate mask with CLIPSeg inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt") with torch.no_grad(): outputs = clipseg_model(**inputs) preds = outputs.logits plt.imsave("mask.png", torch.sigmoid(preds)) mask_image = Image.open("mask.png").convert("RGB") # Convert image to BGR format image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Convert mask to grayscale format mask_image = cv2.cvtColor(np.array(mask_image), cv2.COLOR_RGB2GRAY) # Perform inpainting with LAMA input_dict = {"image": image, "mask": mask_image} inpainted_image = lama_model.inference(data=input_dict)["data"][0] inpainted_image = cv2.cvtColor(inpainted_image, cv2.COLOR_BGR2RGB) inpainted_image = Image.fromarray(inpainted_image) return mask_image, inpainted_image interface = gr.Interface(fn=process_image, inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")], outputs=[gr.Image(type="pil"), gr.Image(type="pil")], title="Interactive demo: zero-shot image segmentation with CLIPSeg and inpainting with LAMA", description="Demo for using CLIPSeg and LAMA to perform zero- and one-shot image segmentation and inpainting. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds.", examples=[["example_image.png", "wood"]]) interface.launch(debug=True)