import logging import posthog import torch from sentence_transformers import SentenceTransformer import chromadb from chromadb.config import Settings logging.info('Intercepting all calls to posthog :)') posthog.capture = lambda *args, **kwargs: None class Collecter(): def __init__(self): pass def add(self, texts: list[str]): pass def get(self, search_strings: list[str], n_results: int) -> list[str]: pass def clear(self): pass class Embedder(): def __init__(self): pass def embed(self, text: str) -> list[torch.Tensor]: pass class ChromaCollector(Collecter): def __init__(self, embedder: Embedder): super().__init__() self.chroma_client = chromadb.Client(Settings(anonymized_telemetry=False)) self.embedder = embedder self.collection = self.chroma_client.create_collection(name="context", embedding_function=embedder.embed) self.ids = [] def add(self, texts: list[str]): self.ids = [f"id{i}" for i in range(len(texts))] self.collection.add(documents=texts, ids=self.ids) def get_documents_and_ids(self, search_strings: list[str], n_results: int): n_results = min(len(self.ids), n_results) result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents']) documents = result['documents'][0] ids = list(map(lambda x: int(x[2:]), result['ids'][0])) return documents, ids # Get chunks by similarity def get(self, search_strings: list[str], n_results: int) -> list[str]: documents, _ = self.get_documents_and_ids(search_strings, n_results) return documents # Get ids by similarity def get_ids(self, search_strings: list[str], n_results: int) -> list[str]: _ , ids = self.get_documents_and_ids(search_strings, n_results) return ids # Get chunks by similarity and then sort by insertion order def get_sorted(self, search_strings: list[str], n_results: int) -> list[str]: documents, ids = self.get_documents_and_ids(search_strings, n_results) return [x for _, x in sorted(zip(ids, documents))] # Get ids by similarity and then sort by insertion order def get_ids_sorted(self, search_strings: list[str], n_results: int) -> list[str]: _ , ids = self.get_documents_and_ids(search_strings, n_results) return sorted(ids) def clear(self): self.collection.delete(ids=self.ids) class SentenceTransformerEmbedder(Embedder): def __init__(self) -> None: self.model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") self.embed = self.model.encode def make_collector(): global embedder return ChromaCollector(embedder) def add_chunks_to_collector(chunks, collector): collector.clear() collector.add(chunks) embedder = SentenceTransformerEmbedder()