# modified from https://github.com/LiyuanLucasLiu/RAdam import math import torch from torch.optim.optimizer import Optimizer class RAdam(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if eps < 0.0: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) self.degenerated_to_sgd = degenerated_to_sgd if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): for param in params: if "betas" in param and (param["betas"][0] != betas[0] or param["betas"][1] != betas[1]): param["buffer"] = [[None, None, None] for _ in range(10)] defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)] ) super().__init__(params, defaults) def __setstate__(self, state): # pylint: disable=useless-super-delegation super().__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError("RAdam does not support sparse gradients") p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state["step"] = 0 state["exp_avg"] = torch.zeros_like(p_data_fp32) state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) state["step"] += 1 buffered = group["buffer"][int(state["step"] % 10)] if state["step"] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state["step"] beta2_t = beta2 ** state["step"] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2) ) / (1 - beta1 ** state["step"]) elif self.degenerated_to_sgd: step_size = 1.0 / (1 - beta1 ** state["step"]) else: step_size = -1 buffered[2] = step_size # more conservative since it's an approximated value if N_sma >= 5: if group["weight_decay"] != 0: p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"]) denom = exp_avg_sq.sqrt().add_(group["eps"]) p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size * group["lr"]) p.data.copy_(p_data_fp32) elif step_size > 0: if group["weight_decay"] != 0: p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"]) p_data_fp32.add_(exp_avg, alpha=-step_size * group["lr"]) p.data.copy_(p_data_fp32) return loss