import torch import torch.nn.functional as F class KernelPredictor(torch.nn.Module): """Kernel predictor for the location-variable convolutions""" def __init__( # pylint: disable=dangerous-default-value self, cond_channels, conv_in_channels, conv_out_channels, conv_layers, conv_kernel_size=3, kpnet_hidden_channels=64, kpnet_conv_size=3, kpnet_dropout=0.0, kpnet_nonlinear_activation="LeakyReLU", kpnet_nonlinear_activation_params={"negative_slope": 0.1}, ): """ Args: cond_channels (int): number of channel for the conditioning sequence, conv_in_channels (int): number of channel for the input sequence, conv_out_channels (int): number of channel for the output sequence, conv_layers (int): kpnet_ """ super().__init__() self.conv_in_channels = conv_in_channels self.conv_out_channels = conv_out_channels self.conv_kernel_size = conv_kernel_size self.conv_layers = conv_layers l_w = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers l_b = conv_out_channels * conv_layers padding = (kpnet_conv_size - 1) // 2 self.input_conv = torch.nn.Sequential( torch.nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=(5 - 1) // 2, bias=True), getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), ) self.residual_conv = torch.nn.Sequential( torch.nn.Dropout(kpnet_dropout), torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), torch.nn.Dropout(kpnet_dropout), torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), torch.nn.Dropout(kpnet_dropout), torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), ) self.kernel_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_w, kpnet_conv_size, padding=padding, bias=True) self.bias_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_b, kpnet_conv_size, padding=padding, bias=True) def forward(self, c): """ Args: c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) Returns: """ batch, _, cond_length = c.shape c = self.input_conv(c) c = c + self.residual_conv(c) k = self.kernel_conv(c) b = self.bias_conv(c) kernels = k.contiguous().view( batch, self.conv_layers, self.conv_in_channels, self.conv_out_channels, self.conv_kernel_size, cond_length ) bias = b.contiguous().view(batch, self.conv_layers, self.conv_out_channels, cond_length) return kernels, bias class LVCBlock(torch.nn.Module): """the location-variable convolutions""" def __init__( self, in_channels, cond_channels, upsample_ratio, conv_layers=4, conv_kernel_size=3, cond_hop_length=256, kpnet_hidden_channels=64, kpnet_conv_size=3, kpnet_dropout=0.0, ): super().__init__() self.cond_hop_length = cond_hop_length self.conv_layers = conv_layers self.conv_kernel_size = conv_kernel_size self.convs = torch.nn.ModuleList() self.upsample = torch.nn.ConvTranspose1d( in_channels, in_channels, kernel_size=upsample_ratio * 2, stride=upsample_ratio, padding=upsample_ratio // 2 + upsample_ratio % 2, output_padding=upsample_ratio % 2, ) self.kernel_predictor = KernelPredictor( cond_channels=cond_channels, conv_in_channels=in_channels, conv_out_channels=2 * in_channels, conv_layers=conv_layers, conv_kernel_size=conv_kernel_size, kpnet_hidden_channels=kpnet_hidden_channels, kpnet_conv_size=kpnet_conv_size, kpnet_dropout=kpnet_dropout, ) for i in range(conv_layers): padding = (3**i) * int((conv_kernel_size - 1) / 2) conv = torch.nn.Conv1d( in_channels, in_channels, kernel_size=conv_kernel_size, padding=padding, dilation=3**i ) self.convs.append(conv) def forward(self, x, c): """forward propagation of the location-variable convolutions. Args: x (Tensor): the input sequence (batch, in_channels, in_length) c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) Returns: Tensor: the output sequence (batch, in_channels, in_length) """ in_channels = x.shape[1] kernels, bias = self.kernel_predictor(c) x = F.leaky_relu(x, 0.2) x = self.upsample(x) for i in range(self.conv_layers): y = F.leaky_relu(x, 0.2) y = self.convs[i](y) y = F.leaky_relu(y, 0.2) k = kernels[:, i, :, :, :, :] b = bias[:, i, :, :] y = self.location_variable_convolution(y, k, b, 1, self.cond_hop_length) x = x + torch.sigmoid(y[:, :in_channels, :]) * torch.tanh(y[:, in_channels:, :]) return x @staticmethod def location_variable_convolution(x, kernel, bias, dilation, hop_size): """perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. Args: x (Tensor): the input sequence (batch, in_channels, in_length). kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) dilation (int): the dilation of convolution. hop_size (int): the hop_size of the conditioning sequence. Returns: (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). """ batch, _, in_length = x.shape batch, _, out_channels, kernel_size, kernel_length = kernel.shape assert in_length == ( kernel_length * hop_size ), f"length of (x, kernel) is not matched, {in_length} vs {kernel_length * hop_size}" padding = dilation * int((kernel_size - 1) / 2) x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) if hop_size < dilation: x = F.pad(x, (0, dilation), "constant", 0) x = x.unfold( 3, dilation, dilation ) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) x = x[:, :, :, :, :hop_size] x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) o = torch.einsum("bildsk,biokl->bolsd", x, kernel) o = o + bias.unsqueeze(-1).unsqueeze(-1) o = o.contiguous().view(batch, out_channels, -1) return o