import streamlit as st import numpy as np import torch from babel.numbers import format_currency from bert.tokenize import get_tokenizer from bert.model import CamembertRegressor from bert.performance import predict MODEL_STATE_DICT_PATH = './bert/trained_model/model_epoch_5.pt' # ENVRIONMENT SET UP if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") # MODEL LOADING saved_model_dict = torch.load(MODEL_STATE_DICT_PATH, map_location=device) model = CamembertRegressor() model.load_state_dict(saved_model_dict['model_state_dict']) tokenizer = get_tokenizer() max_len = saved_model_dict['max_input_len'] scaler = saved_model_dict['labels_scaler'] # WEB APP st.title("Text 2 Price - Real Estate") st.markdown("") example_description = "Superbe maison de 500m2 à Pétaouchnok..." description = st.text_area("Décris ton bien immobilier : ", example_description) if (len(description)>0) & (description != example_description): predicted_price = predict([description], tokenizer, scaler, model, device, max_len, 32, return_scaled=False)[0] predicted_price_formatted = format_currency(predicted_price, 'EUR', locale='fr_FR') st.markdown('') st.markdown('') st.markdown('On estime que ton bien immobilier serait annoncé à :') st.markdown("