import gradio as gr import pandas as pd import torch from transformers import pipeline # Load the Zephyr-7B-Beta model pipeline pipe = pipeline( "text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto" ) # Define the initial system message system_message = { "role": "system", "content": "You are an experienced Fashion designer who starts conversation with proper greeting, " "giving valuable and catchy fashion advice and suggestions, stays to the point and precise, " "asks questions only if the user has any concerns over your provided suggestions." } # Function to reset the chat def reset_chat(): return [], "New Chat" # Returns an empty chat history and a new title # Function to handle the questionnaire submission def submit_questionnaire(name, age, location, gender, ethnicity, height, weight, style_preference, color_palette, everyday_style): # Store questionnaire responses in a DataFrame questionnaire_data = { "Name": name, "Age": age, "Location": location, "Gender": gender, "Ethnicity": ethnicity, "Height": height, "Weight": weight, "Style Preference": style_preference, "Color Palette": color_palette, "Everyday Style": everyday_style } df = pd.DataFrame([questionnaire_data]) # Create DataFrame from dictionary # Append to CSV file df.to_csv("questionnaire_responses.csv", mode='a', header=not pd.io.common.file_exists("questionnaire_responses.csv"), index=False) return "Thank you for completing the questionnaire!" # Function to handle chat def chat(user_input, messages): if user_input: # Append user message to the conversation history messages.append({"role": "user", "content": user_input}) # Prepare the input for the model input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) # Generate a response using the pipeline try: response = pipe(input_text, max_new_tokens=256, return_full_text=False) # Extract the assistant's response response_content = response[0]['generated_text'].strip() # Store assistant response in the chat history messages.append({"role": "assistant", "content": response_content}) except Exception as e: response_content = f"Error: {str(e)}" return messages, response_content return messages, "" # Gradio Interface with gr.Blocks() as demo: gr.Markdown("## FRIDAY") # Sidebar for user inputs with gr.Row(): with gr.Column(): name = gr.Textbox(label="Name") age = gr.Number(label="Age", value=25, minimum=1, maximum=100) location = gr.Textbox(label="Location") gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"]) ethnicity = gr.Radio(label="Ethnicity", choices=["Asian", "Black", "Hispanic", "White", "Other"]) height = gr.Number(label="Height (cm)", value=170, minimum=50, maximum=250) weight = gr.Number(label="Weight (kg)", value=70, minimum=20, maximum=200) with gr.Column(): submit_btn = gr.Button("Submit Questionnaire") reset_btn = gr.Button("Reset Chat") # Questionnaire with fashion-related questions style_preference = gr.Radio(label="Which style do you prefer the most?", choices=["Casual", "Formal", "Streetwear", "Athleisure", "Baggy"]) color_palette = gr.Radio(label="What color palette do you wear often?", choices=["Neutrals", "Bright Colors", "Pastels", "Dark Shades"]) everyday_style = gr.Radio(label="How would you describe your everyday style?", choices=["Relaxed", "Trendy", "Elegant", "Bold"]) # Chat functionality chatbox = gr.Chatbot(type='messages') user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") # Connect the buttons to their respective functions output_message = gr.Textbox(label="Output Message") # Define an output component submit_btn.click(submit_questionnaire, inputs=[name, age, location, gender, ethnicity, height, weight, style_preference, color_palette, everyday_style], outputs=output_message) reset_btn.click(reset_chat, outputs=[chatbox, output_message]) # Corrected outputs user_input.submit(chat, inputs=[user_input, chatbox], outputs=[chatbox, user_input]) # Run the app demo.launch()