import numpy import torch import torch.nn as nn class LCF_Pooler(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, lcf_vec): device = hidden_states.device lcf_vec = lcf_vec.detach().cpu().numpy() pooled_output = numpy.zeros( (hidden_states.shape[0], hidden_states.shape[2]), dtype=numpy.float32 ) hidden_states = hidden_states.detach().cpu().numpy() for i, vec in enumerate(lcf_vec): lcf_ids = [j for j in range(len(vec)) if sum(vec[j] - 1.0) == 0] pooled_output[i] = hidden_states[i][lcf_ids[len(lcf_ids) // 2]] pooled_output = torch.Tensor(pooled_output).to(device) pooled_output = self.dense(pooled_output) pooled_output = self.activation(pooled_output) return pooled_output