import copy from anonymous_demo.functional.config.config_manager import ConfigManager from anonymous_demo.core.tad.classic.__bert__.models import TADBERT _tad_config_template = { "model": TADBERT, "optimizer": "adamw", "learning_rate": 0.00002, "patience": 99999, "pretrained_bert": "microsoft/mdeberta-v3-base", "cache_dataset": True, "warmup_step": -1, "show_metric": False, "max_seq_len": 80, "dropout": 0, "l2reg": 0.000001, "num_epoch": 10, "batch_size": 16, "initializer": "xavier_uniform_", "seed": 52, "polarities_dim": 3, "log_step": 10, "evaluate_begin": 0, "cross_validate_fold": -1, "use_amp": False, # split train and test datasets into 5 folds and repeat 3 training } _tad_config_base = { "model": TADBERT, "optimizer": "adamw", "learning_rate": 0.00002, "pretrained_bert": "microsoft/deberta-v3-base", "cache_dataset": True, "warmup_step": -1, "show_metric": False, "max_seq_len": 80, "patience": 99999, "dropout": 0, "l2reg": 0.000001, "num_epoch": 10, "batch_size": 16, "initializer": "xavier_uniform_", "seed": 52, "polarities_dim": 3, "log_step": 10, "evaluate_begin": 0, "cross_validate_fold": -1 # split train and test datasets into 5 folds and repeat 3 training } _tad_config_english = { "model": TADBERT, "optimizer": "adamw", "learning_rate": 0.00002, "patience": 99999, "pretrained_bert": "microsoft/deberta-v3-base", "cache_dataset": True, "warmup_step": -1, "show_metric": False, "max_seq_len": 80, "dropout": 0, "l2reg": 0.000001, "num_epoch": 10, "batch_size": 16, "initializer": "xavier_uniform_", "seed": 52, "polarities_dim": 3, "log_step": 10, "evaluate_begin": 0, "cross_validate_fold": -1 # split train and test datasets into 5 folds and repeat 3 training } _tad_config_multilingual = { "model": TADBERT, "optimizer": "adamw", "learning_rate": 0.00002, "patience": 99999, "pretrained_bert": "microsoft/mdeberta-v3-base", "cache_dataset": True, "warmup_step": -1, "show_metric": False, "max_seq_len": 80, "dropout": 0, "l2reg": 0.000001, "num_epoch": 10, "batch_size": 16, "initializer": "xavier_uniform_", "seed": 52, "polarities_dim": 3, "log_step": 10, "evaluate_begin": 0, "cross_validate_fold": -1 # split train and test datasets into 5 folds and repeat 3 training } _tad_config_chinese = { "model": TADBERT, "optimizer": "adamw", "learning_rate": 0.00002, "patience": 99999, "cache_dataset": True, "warmup_step": -1, "show_metric": False, "pretrained_bert": "bert-base-chinese", "max_seq_len": 80, "dropout": 0, "l2reg": 0.000001, "num_epoch": 10, "batch_size": 16, "initializer": "xavier_uniform_", "seed": 52, "polarities_dim": 3, "log_step": 10, "evaluate_begin": 0, "cross_validate_fold": -1 # split train and test datasets into 5 folds and repeat 3 training } class TADConfigManager(ConfigManager): def __init__(self, args, **kwargs): """ Available Params: {'model': BERT, 'optimizer': "adamw", 'learning_rate': 0.00002, 'pretrained_bert': "roberta-base", 'cache_dataset': True, 'warmup_step': -1, 'show_metric': False, 'max_seq_len': 80, 'patience': 99999, 'dropout': 0, 'l2reg': 0.000001, 'num_epoch': 10, 'batch_size': 16, 'initializer': 'xavier_uniform_', 'seed': {52, 25} 'embed_dim': 768, 'hidden_dim': 768, 'polarities_dim': 3, 'log_step': 10, 'evaluate_begin': 0, 'cross_validate_fold': -1 # split train and test datasets into 5 folds and repeat 3 training } :param args: :param kwargs: """ super().__init__(args, **kwargs) @staticmethod def set_tad_config(configType: str, newitem: dict): if isinstance(newitem, dict): if configType == "template": _tad_config_template.update(newitem) elif configType == "base": _tad_config_base.update(newitem) elif configType == "english": _tad_config_english.update(newitem) elif configType == "chinese": _tad_config_chinese.update(newitem) elif configType == "multilingual": _tad_config_multilingual.update(newitem) elif configType == "glove": _tad_config_glove.update(newitem) else: raise ValueError( "Wrong value of config type supplied, please use one from following type: template, base, english, chinese, multilingual, glove" ) else: raise TypeError( "Wrong type of new config item supplied, please use dict e.g.{'NewConfig': NewValue}" ) @staticmethod def set_tad_config_template(newitem): TADConfigManager.set_tad_config("template", newitem) @staticmethod def set_tad_config_base(newitem): TADConfigManager.set_tad_config("base", newitem) @staticmethod def set_tad_config_english(newitem): TADConfigManager.set_tad_config("english", newitem) @staticmethod def set_tad_config_chinese(newitem): TADConfigManager.set_tad_config("chinese", newitem) @staticmethod def set_tad_config_multilingual(newitem): TADConfigManager.set_tad_config("multilingual", newitem) @staticmethod def set_tad_config_glove(newitem): TADConfigManager.set_tad_config("glove", newitem) @staticmethod def get_tad_config_template() -> ConfigManager: _tad_config_template.update(_tad_config_template) return TADConfigManager(copy.deepcopy(_tad_config_template)) @staticmethod def get_tad_config_base() -> ConfigManager: _tad_config_template.update(_tad_config_base) return TADConfigManager(copy.deepcopy(_tad_config_template)) @staticmethod def get_tad_config_english() -> ConfigManager: _tad_config_template.update(_tad_config_english) return TADConfigManager(copy.deepcopy(_tad_config_template)) @staticmethod def get_tad_config_chinese() -> ConfigManager: _tad_config_template.update(_tad_config_chinese) return TADConfigManager(copy.deepcopy(_tad_config_template)) @staticmethod def get_tad_config_multilingual() -> ConfigManager: _tad_config_template.update(_tad_config_multilingual) return TADConfigManager(copy.deepcopy(_tad_config_template)) @staticmethod def get_tad_config_glove() -> ConfigManager: _tad_config_template.update(_tad_config_glove) return TADConfigManager(copy.deepcopy(_tad_config_template))