import datetime import os import random import time import plotly.figure_factory as ff import json import pandas as pd from compiled_jss.CPEnv import CompiledJssEnvCP from stable_baselines3.common.vec_env import VecEnvWrapper from torch.distributions import Categorical import torch import numpy as np from MyDummyVecEnv import MyDummyVecEnv import gradio as gr class VecPyTorch(VecEnvWrapper): def __init__(self, venv, device): super(VecPyTorch, self).__init__(venv) self.device = device def reset(self): return self.venv.reset() def step_async(self, actions): self.venv.step_async(actions) def step_wait(self): return self.venv.step_wait() def make_env(seed, instance): def thunk(): _env = CompiledJssEnvCP(instance) return _env return thunk def solve(file, num_workers, seed): seed = int(abs(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) with torch.inference_mode(): device = torch.device('cpu') actor = torch.jit.load('actor.pt', map_location=device) actor.eval() start_time = time.time() fn_env = [make_env(0, file.name) for _ in range(num_workers)] async_envs = MyDummyVecEnv(fn_env, device) envs = VecPyTorch(async_envs, device) current_solution_cost = float('inf') current_solution = '' obs = envs.reset() total_episode = 0 while total_episode < envs.num_envs: logits = actor(obs['interval_rep'], obs['attention_interval_mask'], obs['job_resource_mask'], obs['action_mask'], obs['index_interval'], obs['start_end_tokens']) # temperature vector if num_workers >= 4: temperature = torch.arange(0.5, 2.0, step=(1.5 / num_workers), device=device) else: temperature = torch.ones(num_workers, device=device) logits = logits / temperature[:, None] probs = Categorical(logits=logits).probs # random sample based on logits actions = torch.multinomial(probs, probs.shape[1]).cpu().numpy() obs, reward, done, infos = envs.step(actions) total_episode += done.sum() # total_actions += 1 # print(f'Episode {total_episode} / {envs.num_envs} - Actions {total_actions}', end='\r') for env_idx, info in enumerate(infos): if 'makespan' in info and int(info['makespan']) < current_solution_cost: current_solution_cost = int(info['makespan']) current_solution = json.loads(info['solution']) total_time = time.time() - start_time pretty_output = "" for job_id in range(len(current_solution)): pretty_output += f"Job {job_id}: {current_solution[job_id]}\n" jobs_data = [] file.seek(0) line_str: str = file.readline() line_cnt: int = 1 jobs_count: int = 0 machines_count: int = 0 while line_str: data = [] split_data = line_str.split() if line_cnt == 1: jobs_count, machines_count = int(split_data[0]), int( split_data[1] ) else: i = 0 this_job_op_count = 0 while i < len(split_data): machine, op_time = int(split_data[i]), int(split_data[i + 1]) data.append((machine, op_time)) i += 2 this_job_op_count += 1 jobs_data.append(data) line_str = file.readline() line_cnt += 1 # convert to integer the current_solution current_solution = [[int(x) for x in y] for y in current_solution] df = [] for job_id in range(jobs_count): for task_id in range(len(current_solution[job_id])): dict_op = dict() dict_op["Task"] = "Job {}".format(job_id) start_sec = current_solution[job_id][task_id] finish_sec = start_sec + jobs_data[job_id][task_id][1] dict_op["Start"] = datetime.datetime.fromtimestamp(start_sec) dict_op["Finish"] = datetime.datetime.fromtimestamp(finish_sec) dict_op["Resource"] = "Machine {}".format( jobs_data[job_id][task_id][0] ) df.append(dict_op) i += 1 fig = None colors = [ tuple([random.random() for _ in range(3)]) for _ in range(machines_count) ] if len(df) > 0: df = pd.DataFrame(df) fig = ff.create_gantt( df, index_col="Resource", colors=colors, show_colorbar=True, group_tasks=True, ) fig.update_yaxes( autorange=True ) return current_solution_cost, str(total_time) + " seconds", pretty_output, fig title = "Job-Shop Scheduling CP environment with RL dispatching" description = """A Job-Shop Scheduling Reinforcement Learning based solver using an underlying CP model as an environment.
For fast inference, check out the cached examples below.
Any Job-Shop Scheduling instance following the standard specification is compatible. Check out this website for more instances.
Increasing the number of workers will provide better solutions, but will slow down the solving time. This behavior is different than the one from the paper repository as here agents are run sequentially, whereas we run agents in parallel (technical limitation due to the platform here).

For large instance, we recommend running the approach locally outside the interface, as it causes a lot of overhead and the resource available on this platform are low (1 vCPU and no GPU).
""" article = "

Article Under Review

" # list all non-hidden files in the 'instances' directory examples = [['instances/' + f, 16, 0] for f in os.listdir('instances') if not f.startswith('.')] iface = gr.Interface(fn=solve, inputs=[gr.File(label="Instance File"), gr.Slider(8, 32, value=16, label="Number of Workers", step=1), gr.Number(0, label="Random Seed", precision=0)], outputs=[gr.Text(label="Makespan"), gr.Text(label="Elapsed Time"), gr.Text(label="Solution"), gr.Plot(label="Solution's Gantt Chart")], title=title, description=description, article=article, examples=examples, allow_flagging="never") iface.launch(enable_queue=True)