from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier import joblib import mlflow import numpy as np # Load dataset data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) input_example = np.array([X_test[0]]) # Train the model model = RandomForestClassifier(n_estimators=100) model.fit(X_train, y_train) accuracy = model.score(X_test, y_test) mlflow.start_run() mlflow.log_metric("accuracy", accuracy) mlflow.sklearn.log_model(model, "model", input_example=input_example) mlflow.end_run() <<<<<<< HEAD #this is pushed to github ======= >>>>>>> 7406396a4ff708543244d85f087a3cc86f1fc22a # Save the model joblib.dump(model, "model/model.pkl")