# from fastapi import FastAPI # import joblib # import numpy as np # app = FastAPI() # model = joblib.load("model/model.pkl") # @app.post("/predict/") # def predict(features: list): # prediction = model.predict([np.array(features)]) # return {"prediction": prediction.tolist()} from fastapi import FastAPI from pydantic import BaseModel import joblib import numpy as np app = FastAPI() model = joblib.load("model/model.pkl") print("Classes:", model.classes_) # new comment from github 2 class InputData(BaseModel): features: list[float] # Ensures 'features' is a required list of floats #changes @app.post("/predict/") def predict(data: InputData): prediction = model.predict([np.array(data.features)]) return {"prediction": prediction.tolist()}