import os from dotenv import load_dotenv import streamlit as st from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, CSVLoader import tempfile # Load environment variables load_dotenv() api_key = os.getenv("OPENAI_API_KEY") # Custom template to guide LLM model custom_template = """ [INST]You will start the conversation by greeting the user and introducing yourself as an Expert PDF documents analyze and assistant, stating your availability for assistance. Your next step will depend on the user's response. If the user expresses a need for assistance in pdf or document or txt or csv, you will ask them to describe their question. However, if the user asks questions out of context from the knowledge base, you will immediately thank them and say goodbye, ending the conversation. Remember to base your responses on the user's needs, providing accurate and concise information regarding the data within the knowledge base. Your interactions should be professional and focused, ensuring the user's queries are addressed efficiently without deviating from the set flows. CHAT HISTORY: {chat_history} QUESTION: {question} ANSWER: [INST] """ CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template) prompt_template = """[INST] You will answer from the provided files stored in knowledge base CONTEXT: {context} CHAT HISTORY: {chat_history} QUESTION: {question} ANSWER: [INST] """ prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question', 'chat_history']) # Function to extract text from documents def get_document_text(uploaded_files): documents = [] for uploaded_file in uploaded_files: with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_file: temp_file.write(uploaded_file.read()) temp_file_path = temp_file.name # Load document based on its type if uploaded_file.name.endswith(".pdf"): loader = PyPDFLoader(temp_file_path) documents.extend(loader.load()) elif uploaded_file.name.endswith(".docx") or uploaded_file.name.endswith(".doc"): loader = Docx2txtLoader(temp_file_path) documents.extend(loader.load()) elif uploaded_file.name.endswith(".txt"): loader = TextLoader(temp_file_path) documents.extend(loader.load()) elif uploaded_file.name.endswith(".csv"): loader = CSVLoader(temp_file_path) documents.extend(loader.load()) return documents # Split text into chunks def get_chunks(documents): text_splitter = CharacterTextSplitter(separator="\n", chunk_size=600, chunk_overlap=200, length_function=len) chunks = [chunk for doc in documents for chunk in text_splitter.split_text(doc.page_content)] return chunks # Create vectorstore def get_vectorstore(chunks): embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings) return vectorstore # Create a conversational chain def get_conversationchain(vectorstore): llm = ChatOpenAI(temperature=0.1, model_name='gpt-4o-mini') memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(search_type="similarity",search_kwargs={"k": 10}), condense_question_prompt=CUSTOM_QUESTION_PROMPT, memory=memory, combine_docs_chain_kwargs={'prompt': prompt} ) return conversation_chain # Handle user questions and update chat history def handle_question(question): if not st.session_state.conversation: st.warning("Please process your documents first.") return response = st.session_state.conversation({'question': question}) st.session_state.chat_history = response['chat_history'] for i, msg in enumerate(st.session_state.chat_history): if i % 2 == 0: st.markdown(f"**You:** {msg.content}") else: st.markdown(f"**Bot:** {msg.content}") def handle_question(question): if not st.session_state.conversation: st.warning("Please process your documents first.") return # Get the response from the conversation chain response = st.session_state.conversation({'question': question}) # Update chat history st.session_state.chat_history = response['chat_history'] # Display chat history for i, msg in enumerate(st.session_state.chat_history): if i % 2 == 0: st.markdown(f"**You:** {msg.content}") else: st.markdown(f"**Bot:** {msg.content}") # Main Streamlit app def main(): st.set_page_config(page_title="Chat with Documents", page_icon="📚") st.title("📚 Chat with Your Documents") st.sidebar.title("Upload Your Files") if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None # File uploader uploaded_files = st.sidebar.file_uploader("Upload your files (PDF, DOCX, TXT, CSV):", accept_multiple_files=True) # Process button if st.sidebar.button("Process Documents"): if uploaded_files: with st.spinner("Processing documents..."): # Extract text and create conversation chain raw_documents = get_document_text(uploaded_files) text_chunks = get_chunks(raw_documents) vectorstore = get_vectorstore(text_chunks) st.session_state.conversation = get_conversationchain(vectorstore) st.success("Documents processed successfully!") else: st.warning("Please upload at least one document.") # User input question = st.text_input("Ask a question about the uploaded documents:") if question: handle_question(question) if __name__ == '__main__': main()