import os import tempfile import gradio as gr from langchain_community.vectorstores import FAISS from langchain_groq import ChatGroq from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_core.runnables import RunnablePassthrough from langchain.document_loaders import PyPDFLoader from langchain import hub # Set API key (Replace with your actual key) os.environ["GROQ_API_KEY"] = "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" # Initialize LLM and Embeddings llm = ChatGroq(model="llama3-8b-8192") model_name = "BAAI/bge-small-en" hf_embeddings = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True} ) # Function to process PDF def process_pdf(file): if file is None: return "Please upload a PDF file." # Save PDF temporarily with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: temp_file.write(file) temp_file_path = temp_file.name # Load and process PDF loader = PyPDFLoader(temp_file_path) docs = loader.load() # Split text text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) # Create FAISS vector store vectorstore = FAISS.from_documents(documents=splits, embedding=hf_embeddings) retriever = vectorstore.as_retriever() # Load RAG prompt prompt = hub.pull("rlm/rag-prompt") def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) # RAG Chain global rag_chain rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm ) return "PDF processed successfully! Now ask questions." # Function to answer queries def ask_question(query): if "rag_chain" not in globals(): return "Please upload and process a PDF first." response = rag_chain.invoke(query).content return response # Gradio UI with gr.Blocks() as demo: gr.Markdown("# 📄 PDF Chatbot with RAG") gr.Markdown("Upload a PDF and ask questions!") pdf_input = gr.File(label="Upload PDF", type="binary") process_button = gr.Button("Process PDF") output_message = gr.Textbox(label="Status", interactive=False) query_input = gr.Textbox(label="Ask a Question") submit_button = gr.Button("Submit") response_output = gr.Textbox(label="AI Response") process_button.click(process_pdf, inputs=pdf_input, outputs=output_message) submit_button.click(ask_question, inputs=query_input, outputs=response_output) demo.launch()