import random import json import torch from model import NeuralNet from nltk_utils import bag_of_words, tokenize device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') with open('intents.json', 'r') as json_data: intents = json.load(json_data) FILE = 'data.pth' data = torch.load(FILE) input_size = data["input_size"] hidden_size = data["hidden_size"] output_size = data["output_size"] all_words = data["all_words"] tags = data["tags"] model_state = data["model_state"] model = NeuralNet(input_size,hidden_size,output_size).to(device) model.load_state_dict(model_state) model.eval() bot_name = "Anis" # print("Let's chat! (type 'quit' to exit)") # while True: # sentence = input("You: ") # if sentence == "quit": # break # sentence = tokenize(sentence) # X = bag_of_words(sentence, all_words) # X = X.reshape(1, X.shape[0]) # X = torch.from_numpy(X).to(device) # output = model(X) # _, predicted = torch.max(output, dim=1) # tag = tags[predicted.item()] # probs = torch.softmax(output, dim=1) # prob = probs[0][predicted.item()] # if prob.item() > 0.75: # for intent in intents['intents']: # if tag == intent['tag']: # print(f"{bot_name}: { random.choice(intent['responses'])}") # else: # print(f"{bot_name}: I do not understand...") def get_response(msg): sentence = tokenize(msg) X = bag_of_words(sentence, all_words) X = X.reshape(1, X.shape[0]) X = torch.from_numpy(X).to(device) output = model(X) _, predicted = torch.max(output, dim=1) tag = tags[predicted.item()] probs = torch.softmax(output, dim=1) prob = probs[0][predicted.item()] if prob.item() > 0.75: for intent in intents['intents']: if tag == intent["tag"]: return random.choice(intent['responses']) return "I do not understand..." if __name__ == "__main__": print("Let's chat! (type 'quit' to exit)") while True: # sentence = "do you use credit cards?" sentence = input("You: ") if sentence == "quit": break resp = get_response(sentence) print(resp)