import torch from typing import Tuple, Callable from diffusers.models.attention_processor import XFormersAttnProcessor, Attention import xformers, xformers.ops from typing import Optional import math import torch.nn.functional as F from diffusers.utils import USE_PEFT_BACKEND from diffusers.utils.import_utils import is_xformers_available if is_xformers_available(): import xformers import xformers.ops xformers_is_available = True else: xformers_is_available = False if hasattr(F, "scaled_dot_product_attention"): torch2_is_available = True else: torch2_is_available = False def init_generator(device: torch.device, fallback: torch.Generator = None): """ Forks the current default random generator given device. """ if device.type == "cpu": return torch.Generator(device="cpu").set_state(torch.get_rng_state()) elif device.type == "cuda": return torch.Generator(device=device).set_state(torch.cuda.get_rng_state()) else: if fallback is None: return init_generator(torch.device("cpu")) else: return fallback def do_nothing(x: torch.Tensor, mode: str = None): return x def mps_gather_workaround(input, dim, index): if input.shape[-1] == 1: return torch.gather( input.unsqueeze(-1), dim - 1 if dim < 0 else dim, index.unsqueeze(-1) ).squeeze(-1) else: return torch.gather(input, dim, index) def up_or_downsample(item, cur_w, cur_h, new_w, new_h, method): batch_size = item.shape[0] item = item.reshape(batch_size, cur_h, cur_w, -1) item = item.permute(0, 3, 1, 2) df = cur_h // new_h if method in "max_pool": item = F.max_pool2d(item, kernel_size=df, stride=df, padding=0) elif method in "avg_pool": item = F.avg_pool2d(item, kernel_size=df, stride=df, padding=0) else: item = F.interpolate(item, size=(new_h, new_w), mode=method) item = item.permute(0, 2, 3, 1) item = item.reshape(batch_size, new_h * new_w, -1) return item def compute_merge(x: torch.Tensor, tome_info): original_h, original_w = tome_info["size"] original_tokens = original_h * original_w downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1]))) dim = x.shape[-1] if dim == 320: cur_level = "level_1" downsample_factor = tome_info['args']['downsample_factor'] ratio = tome_info['args']['ratio'] elif dim == 640: cur_level = "level_2" downsample_factor = tome_info['args']['downsample_factor_level_2'] ratio = tome_info['args']['ratio_level_2'] else: cur_level = "other" downsample_factor = 1 ratio = 0.0 args = tome_info["args"] cur_h, cur_w = original_h // downsample, original_w // downsample new_h, new_w = cur_h // downsample_factor, cur_w // downsample_factor if tome_info['timestep'] / 1000 > tome_info['args']['timestep_threshold_switch']: merge_method = args["merge_method"] else: merge_method = args["secondary_merge_method"] if cur_level != "other" and tome_info['timestep'] / 1000 > tome_info['args']['timestep_threshold_stop']: if merge_method == "downsample" and downsample_factor > 1: m = lambda x: up_or_downsample(x, cur_w, cur_h, new_w, new_h, args["downsample_method"]) u = lambda x: up_or_downsample(x, new_w, new_h, cur_w, cur_h, args["downsample_method"]) elif merge_method == "similarity" and ratio > 0.0: w = int(math.ceil(original_w / downsample)) h = int(math.ceil(original_h / downsample)) r = int(x.shape[1] * ratio) # Re-init the generator if it hasn't already been initialized or device has changed. if args["generator"] is None: args["generator"] = init_generator(x.device) elif args["generator"].device != x.device: args["generator"] = init_generator(x.device, fallback=args["generator"]) # If the batch size is odd, then it's not possible for prompted and unprompted images to be in the same # batch, which causes artifacts with use_rand, so force it to be off. use_rand = False if x.shape[0] % 2 == 1 else args["use_rand"] m, u = bipartite_soft_matching_random2d(x, w, h, args["sx"], args["sy"], r, no_rand=not use_rand, generator=args["generator"]) else: m, u = (do_nothing, do_nothing) else: m, u = (do_nothing, do_nothing) merge_fn, unmerge_fn = (m, u) return merge_fn, unmerge_fn def bipartite_soft_matching_random2d(metric: torch.Tensor, w: int, h: int, sx: int, sy: int, r: int, no_rand: bool = False, generator: torch.Generator = None) -> Tuple[Callable, Callable]: """ Partitions the tokens into src and dst and merges r tokens from src to dst. Dst tokens are partitioned by choosing one randomy in each (sx, sy) region. Args: - metric [B, N, C]: metric to use for similarity - w: image width in tokens - h: image height in tokens - sx: stride in the x dimension for dst, must divide w - sy: stride in the y dimension for dst, must divide h - r: number of tokens to remove (by merging) - no_rand: if true, disable randomness (use top left corner only) - rand_seed: if no_rand is false, and if not None, sets random seed. """ B, N, _ = metric.shape if r <= 0: return do_nothing, do_nothing with torch.no_grad(): hsy, wsx = h // sy, w // sx # For each sy by sx kernel, randomly assign one token to be dst and the rest src if no_rand: rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64) else: rand_idx = torch.randint(sy * sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to( metric.device) # The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead idx_buffer_view = torch.zeros(hsy, wsx, sy * sx, device=metric.device, dtype=torch.int64) idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype)) idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx) # Image is not divisible by sx or sy so we need to move it into a new buffer if (hsy * sy) < h or (wsx * sx) < w: idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64) idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view else: idx_buffer = idx_buffer_view # We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1) # We're finished with these del idx_buffer, idx_buffer_view # rand_idx is currently dst|src, so split them num_dst = hsy * wsx a_idx = rand_idx[:, num_dst:, :] # src b_idx = rand_idx[:, :num_dst, :] # dst def split(x): C = x.shape[-1] src = torch.gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C)) dst = torch.gather(x, dim=1, index=b_idx.expand(B, num_dst, C)) return src, dst # Cosine similarity between A and B metric = metric / metric.norm(dim=-1, keepdim=True) a, b = split(metric) scores = a @ b.transpose(-1, -2) # Can't reduce more than the # tokens in src r = min(a.shape[1], r) # Find the most similar greedily node_max, node_idx = scores.max(dim=-1) edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] unm_idx = edge_idx[..., r:, :] # Unmerged Tokens src_idx = edge_idx[..., :r, :] # Merged Tokens dst_idx = torch.gather(node_idx[..., None], dim=-2, index=src_idx) def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: src, dst = split(x) n, t1, c = src.shape unm = torch.gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c)) src = torch.gather(src, dim=-2, index=src_idx.expand(n, r, c)) dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode) return torch.cat([unm, dst], dim=1) def unmerge(x: torch.Tensor) -> torch.Tensor: unm_len = unm_idx.shape[1] unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] _, _, c = unm.shape src = torch.gather(dst, dim=-2, index=dst_idx.expand(B, r, c)) # Combine back to the original shape out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype) out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst) out.scatter_(dim=-2, index=torch.gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm) out.scatter_(dim=-2, index=torch.gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src) return out return merge, unmerge class TokenMergeAttentionProcessor: def __init__(self): # priortize torch2's flash attention, if not fall back to xformers then regular attention if torch2_is_available: self.attn_method = "torch2" elif xformers_is_available: self.attn_method = "xformers" else: self.attn_method = "regular" def torch2_attention(self, attn, query, key, value, attention_mask, batch_size): inner_dim=key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) return hidden_states def xformers_attention(self, attn, query, key, value, attention_mask, batch_size): query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() if attention_mask is not None: attention_mask = attention_mask.reshape(batch_size * attn.heads, -1, attention_mask.shape[-1]) hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, scale=attn.scale ) hidden_states = attn.batch_to_head_dim(hidden_states) return hidden_states def regular_attention(self, attn, query, key, value, attention_mask, batch_size): query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) if attention_mask is not None: attention_mask = attention_mask.reshape(batch_size * attn.heads, -1, attention_mask.shape[-1]) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) return hidden_states def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, ) -> torch.FloatTensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) args = () if USE_PEFT_BACKEND else (scale,) if self._tome_info['args']['merge_tokens'] == "all": merge_fn, unmerge_fn = compute_merge(hidden_states, self._tome_info) hidden_states = merge_fn(hidden_states) query = attn.to_q(hidden_states, *args) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self._tome_info['args']['merge_tokens'] == "keys/values": merge_fn, _ = compute_merge(encoder_hidden_states, self._tome_info) encoder_hidden_states = merge_fn(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) value = attn.to_v(encoder_hidden_states, *args) if self.attn_method == "torch2": hidden_states = self.torch2_attention(attn, query, key, value, attention_mask, batch_size) elif self.attn_method == "xformers": hidden_states = self.xformers_attention(attn, query, key, value, attention_mask, batch_size) else: hidden_states = self.regular_attention(attn, query, key, value, attention_mask, batch_size) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states, *args) # dropout hidden_states = attn.to_out[1](hidden_states) if self._tome_info['args']['merge_tokens'] == "all": hidden_states = unmerge_fn(hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states