import time import spaces import gradio as gr import torch import diffusers from utils import patch_attention_proc import math import numpy as np from PIL import Image pipe = diffusers.StableDiffusionPipeline.from_pretrained("Lykon/DreamShaper").to("cuda", torch.float16) pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.safety_checker = None @spaces.GPU def generate(prompt, seed, steps, height_width, negative_prompt, guidance_scale, method): downsample_factor = 2 ratio = 0.38 merge_method = "downsample" if method == "todo" else "similarity" merge_tokens = "keys/values" if method == "todo" else "all" if height_width == 1024: downsample_factor = 2 ratio = 0.75 downsample_factor_level_2 = 1 ratio_level_2 = 0.0 elif height_width == 1536: downsample_factor = 3 ratio = 0.89 downsample_factor_level_2 = 1 ratio_level_2 = 0.0 elif height_width == 2048: downsample_factor = 4 ratio = 0.9375 downsample_factor_level_2 = 2 ratio_level_2 = 0.75 token_merge_args = {"ratio": ratio, "merge_tokens": merge_tokens, "merge_method": merge_method, "downsample_method": "nearest", "downsample_factor": downsample_factor, "timestep_threshold_switch": 0.0, "timestep_threshold_stop": 0.0, "downsample_factor_level_2": downsample_factor_level_2, "ratio_level_2": ratio_level_2 } l_r = torch.rand(1).item() torch.manual_seed(seed) start_time_base = time.time() base_img = pipe(prompt, num_inference_steps=steps, height=height_width, width=height_width, negative_prompt=negative_prompt, guidance_scale=guidance_scale).images[0] end_time_base = time.time() patch_attention_proc(pipe.unet, token_merge_args=token_merge_args) torch.manual_seed(seed) start_time_merge = time.time() merged_img = pipe(prompt, num_inference_steps=steps, height=height_width, width=height_width, negative_prompt=negative_prompt, guidance_scale=guidance_scale).images[0] end_time_merge = time.time() result = f"Baseline image: {end_time_base-start_time_base:.2f} sec | {'ToDo' if method == 'todo' else 'ToMe'} image: {end_time_merge-start_time_merge:.2f} sec" return base_img, merged_img, result with gr.Blocks() as demo: gr.Label("ToDo: Token Downsampling for Efficient Generation of High-Resolution Images") prompt = gr.Textbox(interactive=True, label="prompt") negative_prompt = gr.Textbox(interactive=True, label="negative_prompt") method = gr.Dropdown(["todo", "tome"], value="todo", label="method", info="Choose Your Desired Method (Default: todo)") height_width = gr.Dropdown([1024, 1536, 2048], value=1024, label="height/width", info="Choose Your Desired Height/Width (Default: 1024)") with gr.Row(): guidance_scale = gr.Number(label="guidance_scale", value=7.5, precision=1) steps = gr.Number(label="steps", value=20, precision=0) seed = gr.Number(label="seed", value=1, precision=0) result = gr.Textbox(label="Result") with gr.Row(): base_image = gr.Image(label=f"baseline_image", type="pil", interactive=False) output_image = gr.Image(label=f"output_image", type="pil", interactive=False) gen = gr.Button("generate") gen.click(generate, inputs=[prompt, seed, steps, height_width, negative_prompt, guidance_scale, method], outputs=[base_image, output_image, result]) demo.launch(share=True)