import gradio as gr import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms as tfms import torchvision.models as models from PIL import Image import numpy as np from diffusers import LMSDiscreteScheduler, DiffusionPipeline import random import os import subprocess from matplotlib import pyplot as plt from pathlib import Path from torch import autocast from tqdm.auto import tqdm # Set device torch_device = "cuda" if torch.cuda.is_available() else "cpu" # Load a pre-trained VGG model (you can use other models as well) vgg_model = models.vgg16(pretrained=True).features vgg_model = vgg_model.to(torch_device) # Create a new model that extracts features from the chosen layers feature_extractor = nn.Sequential() for name, layer in vgg_model._modules.items(): if name == '0': # Stop at the 0th layer break feature_extractor.add_module(name, layer) feature_extractor = feature_extractor.to(torch_device) pretrained_model_name_or_path = "segmind/tiny-sd" pipe = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path, torch_dtype=torch.float32 ).to(torch_device) # The noise scheduler scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) concept_dict={'anime_bg_v2':('sd-concepts-library/anime-background-style-v2','',31), 'birb':('sd-concepts-library/birb-style','',32), 'depthmap':('sd-concepts-library/depthmap','',33), 'gta5_artwork':('sd-concepts-library/gta5-artwork','',34), 'midjourney':('sd-concepts-library/midjourney-style','',35), 'beetlejuice':('sd-concepts-library/beetlejuice-cartoon-style','',36)} cache_style_list = [] def transform_pattern_image(pattern_image): preprocess = tfms.Compose([ tfms.Resize((320, 320)), tfms.ToTensor(), ]) tfms_pattern_image = preprocess(pattern_image).unsqueeze(0) return tfms_pattern_image def load_required_style(style): for concept, value in concept_dict.items(): if style in concept: concept_key = value[1] concept_seed = value[2] if style not in cache_style_list: pipe.load_textual_inversion(value[0]) cache_style_list.append(style) break return concept_key, concept_seed def pil_to_latent(input_im): # Single image -> single latent in a batch (so size 1, 4, 64, 64) with torch.no_grad(): latent = pipe.vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling return 0.18215 * latent.latent_dist.sample() # [1, 4, 64, 64] def latents_to_pil(latents): # bath of latents -> list of images latents = (1 / 0.18215) * latents with torch.no_grad(): image = pipe.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def perceptual_loss(images, pattern): """ This function calculates the perceptual loss between the output image and the target image. Parameters: """ criterion = nn.MSELoss() mse_loss = criterion(images, pattern) return mse_loss #Generating image with the modified embeddings with pattern loss guidance and saving the images to steps/{concept} folder def generate_with_embs_pattern_loss(prompt, concept_seed, tfm_pattern_image, num_inf_steps): height = 320 # default height of Stable Diffusion width = 320 # default width of Stable Diffusion num_inference_steps = num_inf_steps # Number of denoising steps guidance_scale = 8 # Scale for classifier-free guidance generator = torch.manual_seed(concept_seed) # Seed generator to create the inital latent noise batch_size = 1 pattern_loss_scale = 20 text_input = pipe.tokenizer(prompt, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(torch_device) with torch.no_grad(): text_embeddings = pipe.text_encoder(text_input.input_ids.to(torch_device))[0] max_length = text_input.input_ids.shape[-1] uncond_input = pipe.tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt") with torch.no_grad(): uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler scheduler.set_timesteps(num_inference_steps) # Prep latents latents = torch.randn((batch_size, pipe.unet.in_channels, height // 8, width // 8), generator=generator,) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform CFG (Classifier Free Guidance) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) #### ADDITIONAL GUIDANCE ### if (i%3 == 0): # Requires grad on the latents latents = latents.detach().requires_grad_() # Get the predicted x0: latents_x0 = latents - sigma * noise_pred # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Decode to image space denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculate loss denoised_images_extr = feature_extractor(denoised_images) reference_img_extr = feature_extractor(tfm_pattern_image) loss = perceptual_loss(denoised_images_extr, reference_img_extr) * pattern_loss_scale # Get gradient cond_grad = torch.autograd.grad(loss, latents)[0] # Modify the latents based on this gradient latents = latents.detach() - cond_grad * sigma**2 # Now step with scheduler. compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample return latents def generate_image(prompt, pattern_image, style, num_inf_steps): tfm_pattern_image = transform_pattern_image(pattern_image) # Transform the pattern image to be fed to feature extractor tfm_pattern_image = tfm_pattern_image.to(torch_device) if style == "no-style": concept_seed = 40 main_prompt = str(prompt) else: concept_key, concept_seed = load_required_style(style) main_prompt = f"{str(prompt)} in the style of {concept_key}" latents = generate_with_embs_pattern_loss(main_prompt, concept_seed, tfm_pattern_image, num_inf_steps) generated_image = latents_to_pil(latents)[0] return generated_image def gradio_fn(prompt, pattern_image, style, num_inf_steps): output_pil_image = generate_image(prompt, pattern_image, style, num_inf_steps) return output_pil_image demo = gr.Interface(fn=gradio_fn, inputs=[gr.Textbox(info="Example prompt: 'A toddler gazing at sky'"), gr.Image(type="pil", height=224, width=224, info='Sample image to emulate the pattern'), gr.Radio(["anime","birb","depthmap","gta5","midjourney","beetlejuice","no-style"], label="Style", info="Choose the style in which image to be made"), gr.Slider(50, 200, value=50, label="Num_inference_steps", info="Choose between 50, 10, 150 & 200")], outputs=gr.Image(height=320, width=320), title="ImageAlchemy using Stable Diffusion", description="- Stable Diffusion model that generates single image to fit \ (a) given text prompt (b) given reference image and (c) selected style.") demo.launch(share=True)