import numpy as np import torch from PIL import Image def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20): '''Adjust bounding boxes to stick to image border if they are within a certain threshold. Args: boxes: (n, 4) image_shape: (height, width) threshold: pixel threshold Returns: adjusted_boxes: adjusted bounding boxes ''' # Image dimensions h, w = image_shape # Adjust boxes boxes[:, 0] = torch.where(boxes[:, 0] < threshold, torch.tensor( 0, dtype=torch.float, device=boxes.device), boxes[:, 0]) # x1 boxes[:, 1] = torch.where(boxes[:, 1] < threshold, torch.tensor( 0, dtype=torch.float, device=boxes.device), boxes[:, 1]) # y1 boxes[:, 2] = torch.where(boxes[:, 2] > w - threshold, torch.tensor( w, dtype=torch.float, device=boxes.device), boxes[:, 2]) # x2 boxes[:, 3] = torch.where(boxes[:, 3] > h - threshold, torch.tensor( h, dtype=torch.float, device=boxes.device), boxes[:, 3]) # y2 return boxes def convert_box_xywh_to_xyxy(box): x1 = box[0] y1 = box[1] x2 = box[0] + box[2] y2 = box[1] + box[3] return [x1, y1, x2, y2] def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False): '''Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes. Args: box1: (4, ) boxes: (n, 4) Returns: high_iou_indices: Indices of boxes with IoU > thres ''' boxes = adjust_bboxes_to_image_border(boxes, image_shape) # obtain coordinates for intersections x1 = torch.max(box1[0], boxes[:, 0]) y1 = torch.max(box1[1], boxes[:, 1]) x2 = torch.min(box1[2], boxes[:, 2]) y2 = torch.min(box1[3], boxes[:, 3]) # compute the area of intersection intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0) # compute the area of both individual boxes box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1]) box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # compute the area of union union = box1_area + box2_area - intersection # compute the IoU iou = intersection / union # Should be shape (n, ) if raw_output: if iou.numel() == 0: return 0 return iou # get indices of boxes with IoU > thres high_iou_indices = torch.nonzero(iou > iou_thres).flatten() return high_iou_indices def image_to_np_ndarray(image): if type(image) is str: return np.array(Image.open(image)) elif issubclass(type(image), Image.Image): return np.array(image) elif type(image) is np.ndarray: return image return None