import os import cv2 import numpy as np from PIL import Image import gradio as gr import json import matplotlib.pyplot as plt import subprocess repo_url = "https://github.com/CASIA-IVA-Lab/FastSAM.git" target_directory = "./FastSAM" subprocess.run(['git', 'clone', repo_url, target_directory]) os.chdir('./FastSAM') from fastsam import FastSAM, FastSAMPrompt import ast import torch from PIL import Image from utils.tools import convert_box_xywh_to_xyxy def gradio_fn(pil_input_img): # load model model = FastSAM('./weights/FastSAM.pt') args_point_prompt = ast.literal_eval("[[0,0]]") args_box_prompt = convert_box_xywh_to_xyxy(ast.literal_eval("[[0,0,0,0]]")) args_point_label = ast.literal_eval("[0]") args_text_prompt = None input = pil_input_img input = input.convert("RGB") everything_results = model( input, device="cpu", retina_masks=True, imgsz=1024, conf=0.4, iou=0.9 ) bboxes = None points = None point_label = None prompt_process = FastSAMPrompt(input, everything_results, device="cpu") if args_box_prompt[0][2] != 0 and args_box_prompt[0][3] != 0: ann = prompt_process.box_prompt(bboxes=args_box_prompt) bboxes = args_box_prompt elif args_text_prompt != None: ann = prompt_process.text_prompt(text=args_text_prompt) elif args_point_prompt[0] != [0, 0]: ann = prompt_process.point_prompt( points=args_point_prompt, pointlabel=args_point_label ) points = args_point_prompt point_label = args_point_label else: ann = prompt_process.everything_prompt() prompt_process.plot( annotations=ann, output_path="./output.jpg", bboxes = bboxes, points = points, point_label = point_label, withContours=False, better_quality=False, ) pil_image_output = Image.open('./output.jpg') np_img_array = np.array(pil_image_output) return np_img_array demo = gr.Interface(fn=gradio_fn, inputs=gr.Image(type="pil"), outputs="image", title="FAST-SAM Segment Everything", description="- **FastSAM** model that returns segmented RGB image of given input image. \ - **Credits** : \ - https://huggingface.co/An-619 \ - https://github.com/CASIA-IVA-Lab/FastSAM")