##!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2023-06-01 # @Author : ashui(Binghui Chen) from sympy import im from versions import RELEASE_NOTE, VERSION import time import cv2 import gradio as gr import numpy as np import random import math import uuid import torch from torch import autocast from src.util import resize_image, HWC3, call_with_messages, upload_np_2_oss from src.virtualmodel import call_virtualmodel from src.person_detect import call_person_detect from src.background_generation import call_bg_genration import sys, os from PIL import Image, ImageFilter, ImageOps, ImageDraw from segment_anything import SamPredictor, sam_model_registry mobile_sam = sam_model_registry['vit_h'](checkpoint='models/sam_vit_h_4b8939.pth').to("cuda") mobile_sam.eval() mobile_predictor = SamPredictor(mobile_sam) colors = [(255, 0, 0), (0, 255, 0)] markers = [1, 5] # - - - - - examples - - - - - # # 输入图地址, 文本, 背景图地址, index, [] image_examples = [ ["imgs/000.jpg", "一位年轻女性身穿短袖,展示一台手机", None, 0, []], ["imgs/001.jpg", "一位年轻女性身穿短袖,手持杯子", None, 1, []], ["imgs/003.png", "一名女子身穿黑色西服,背景蓝色", "imgs/003_bg.jpg", 2, []], ["imgs/002.png", "一名年轻女性身穿裙子摆拍,背景是蓝色的", "imgs/002_bg.png", 3, []], ["imgs/bg_gen/base_imgs/1cdb9b1e6daea6a1b85236595d3e43d6.png", "水滴飞溅", None, 4, []], ["imgs/bg_gen/base_imgs/1cdb9b1e6daea6a1b85236595d3e43d6.png", "", "imgs/bg_gen/ref_imgs/df9a93ac2bca12696a9166182c4bf02ad9679aa5.jpg", 5, []], ["imgs/bg_gen/base_imgs/IMG_2941.png", "在沙漠地面上", None, 6, []], ["imgs/bg_gen/base_imgs/b2b1ed243364473e49d2e478e4f24413.png","白色地面,白色背景,光线射入,佳能",None,7,[]], ] img = "image_gallery/" files = os.listdir(img) files = sorted(files) showcases = [] for idx, name in enumerate(files): temp = os.path.join(os.path.dirname(__file__), img, name) showcases.append(temp) def process(input_image, original_image, original_mask, selected_points, source_background, prompt, face_prompt): if original_image is None or original_mask is None or len(selected_points)==0: raise gr.Error('请上传输入图片并通过点击鼠标选择需要保留的物体.') # load example image if isinstance(original_image, int): image_name = image_examples[original_image][0] original_image = cv2.imread(image_name) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8) request_id = str(uuid.uuid4()) input_image_url = upload_np_2_oss(original_image, request_id+".png") input_mask_url = upload_np_2_oss(original_mask, request_id+"_mask.png") source_background_url = "" if source_background is None else upload_np_2_oss(source_background, request_id+"_bg.png") # person detect: [[x1,y1,x2,y2,score],] det_res = call_person_detect(input_image_url) res = [] if len(det_res)>0: if len(prompt)==0: raise gr.Error('请输入prompt') res = call_virtualmodel(input_image_url, input_mask_url, source_background_url, prompt, face_prompt) else: ### 这里接入主图背景生成 if len(prompt)==0: prompt=None ref_image_url=None if source_background_url =='' else source_background_url original_mask=original_mask[:,:,:1] base_image=np.concatenate([original_image, original_mask],axis=2) base_image_url=upload_np_2_oss(base_image, request_id+"_base.png") res=call_bg_genration(base_image_url,ref_image_url,prompt,ref_prompt_weight=0.5) return res, request_id, True block = gr.Blocks( css="css/style.css", theme=gr.themes.Soft( radius_size=gr.themes.sizes.radius_none, text_size=gr.themes.sizes.text_md ) ).queue(concurrency_count=3) with block: with gr.Row(): with gr.Column(): gr.HTML(f"""

ReplaceAnything (V{VERSION})



ReplaceAnything as you want: Ultra-high quality content replacement

Project Page

我们发现,在严格保持某个“物体ID”不变的情况下生成新的内容有着很大的市场需求,同时也是具有挑战性的。为此,我们提出了ReplaceAnything框架。它可以用于很多场景,比如人体替换、服装替换、物体替换以及背景替换等等。

如果你认为该项目有所帮助的话,不妨给我们Github点个Star以便获取最新的项目进展.

""") with gr.Tabs(elem_classes=["Tab"]): with gr.TabItem("作品广场"): gr.Gallery(value=showcases, height=800, columns=4, object_fit="scale-down" ) with gr.TabItem("创作图像"): with gr.Accordion(label="🧭 操作指南:", open=True, elem_id="accordion"): with gr.Row(equal_height=True): with gr.Row(elem_id="ShowCase"): gr.Image(value="showcase/ra.gif") gr.Markdown(""" - ⭐️ step1:在“输入图像”中上传or选择Example里面的一张图片 - ⭐️ step2:通过点击鼠标选择图像中希望保留的物体 - ⭐️ step3:输入对应的参数,例如prompt等,点击Run进行生成 - ⭐️ step4 (可选):此外支持换背景操作,上传目标风格背景,执行完step3后点击Run进行生成 """) with gr.Row(): with gr.Column(): with gr.Column(elem_id="Input"): with gr.Row(): with gr.Tabs(elem_classes=["feedback"]): with gr.TabItem("输入图像"): input_image = gr.Image(type="numpy", label="输入图",scale=2) original_image = gr.State(value=None,label="索引") original_mask = gr.State(value=None) selected_points = gr.State([],label="点选坐标") with gr.Row(elem_id="Seg"): radio = gr.Radio(['前景点选', '背景点选'], label='分割点选: ', value='前景点选',scale=2) undo_button = gr.Button('撤销点选至上一步', elem_id="btnSEG",scale=1) prompt = gr.Textbox(label="Prompt (支持中英文)", placeholder="请输入期望的文本描述",value='',lines=1) run_button = gr.Button("生成图像(Run)",elem_id="btn") with gr.Accordion("更多输入参数 (推荐使用)", open=False, elem_id="accordion1"): with gr.Row(elem_id="Image"): with gr.Tabs(elem_classes=["feedback1"]): with gr.TabItem("风格背景图输入(可选项)"): source_background = gr.Image(type="numpy", label="背景图") face_prompt = gr.Textbox(label="人脸 Prompt (支持中英文)", value='good face, beautiful face, best quality') with gr.Column(): with gr.Tabs(elem_classes=["feedback"]): with gr.TabItem("输出结果"): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True) recommend=gr.Button("推荐至作品广场",elem_id="recBut") request_id=gr.State(value="") gallery_flag=gr.State(value=False) with gr.Row(): with gr.Box(): def process_example(input_image, prompt, source_background, original_image, selected_points): return input_image, prompt, source_background, original_image, [] example = gr.Examples( label="输入图示例", examples=image_examples, inputs=[input_image, prompt, source_background, original_image, selected_points], outputs=[input_image, prompt, source_background, original_image, selected_points], fn=process_example, run_on_click=True, examples_per_page=10 ) # once user upload an image, the original image is stored in `original_image` def store_img(img): # 图片太大传输太慢了 if min(img.shape[0], img.shape[1]) > 1024: img = resize_image(img, 1024) return img, img, [], None # when new image is uploaded, `selected_points` should be empty input_image.upload( store_img, [input_image], [input_image, original_image, selected_points, source_background] ) # user click the image to get points, and show the points on the image def segmentation(img, sel_pix): # online show seg mask points = [] labels = [] for p, l in sel_pix: points.append(p) labels.append(l) mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img)) with torch.no_grad(): with autocast("cuda"): masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False) output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255 for i in range(3): output_mask[masks[0] == True, i] = 0.0 mask_all = np.ones((masks.shape[1], masks.shape[2], 3)) color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): mask_all[masks[0] == True, i] = color_mask[i] masked_img = img / 255 * 0.3 + mask_all * 0.7 masked_img = masked_img*255 ## draw points for point, label in sel_pix: cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5) return masked_img, output_mask def get_point(img, sel_pix, point_type, evt: gr.SelectData): if point_type == '前景点选': sel_pix.append((evt.index, 1)) # append the foreground_point elif point_type == '背景点选': sel_pix.append((evt.index, 0)) # append the background_point else: sel_pix.append((evt.index, 1)) # default foreground_point if isinstance(img, int): image_name = image_examples[img][0] img = cv2.imread(image_name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # online show seg mask masked_img, output_mask = segmentation(img, sel_pix) return masked_img.astype(np.uint8), output_mask input_image.select( get_point, [original_image, selected_points, radio], [input_image, original_mask], ) # undo the selected point def undo_points(orig_img, sel_pix): # draw points output_mask = None if len(sel_pix) != 0: if isinstance(orig_img, int): # if orig_img is int, the image if select from examples temp = cv2.imread(image_examples[orig_img][0]) temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB) else: temp = orig_img.copy() sel_pix.pop() # online show seg mask if len(sel_pix) !=0: temp, output_mask = segmentation(temp, sel_pix) return temp.astype(np.uint8), output_mask else: gr.Error("暂无“上一步”可撤销") undo_button.click( undo_points, [original_image, selected_points], [input_image, original_mask] ) def upload_to_img_gallery(img, res, re_id, flag): if flag: if isinstance(img, int): image_name = image_examples[img][0] img = cv2.imread(image_name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) _ = upload_np_2_oss(img, name=re_id+"_ori.jpg", gallery=True) for idx, r in enumerate(res): r = cv2.imread(r['name']) r = cv2.cvtColor(r, cv2.COLOR_BGR2RGB) _ = upload_np_2_oss(r, name=re_id+f"_res_{idx}.jpg", gallery=True) flag=False gr.Info("图片已经被上传完毕,待审核") else: gr.Info("暂无图片可推荐,或者已经推荐过一次了") return flag recommend.click( upload_to_img_gallery, [original_image, result_gallery, request_id, gallery_flag], [gallery_flag] ) ips=[input_image, original_image, original_mask, selected_points, source_background, prompt, face_prompt] run_button.click(fn=process, inputs=ips, outputs=[result_gallery, request_id, gallery_flag]) block.launch(server_name='0.0.0.0', share=False, server_port=7687)