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Abstract

Sequence-to-sequence neural network models
for generation of conversational responses tend
to generate safe, commonplace responses (e.g.,
I don’t know) regardless of the input. We sug-
gest that the traditional objective function, i.e.,
the likelihood of output (response) given input
(message) is unsuited to response generation
tasks. Instead we propose using Maximum Mu-
tual Information (MMI) as the objective func-
tion in neural models. Experimental results
demonstrate that the proposed MMI models
produce more diverse, interesting, and appro-
priate responses, yielding substantive gains in
BLEU scores on two conversational datasets
and in human evaluations.

1 Introduction

Conversational agents are of growing importance in
facilitating smooth interaction between humans and
their electronic devices, yet conventional dialog sys-
tems continue to face major challenges in the form
of robustness, scalability and domain adaptation. At-
tention has thus turned to learning conversational pat-
terns from data: researchers have begun to explore
data-driven generation of conversational responses
within the framework of statistical machine transla-
tion (SMT), either phrase-based (Ritter et al., 2011),
or using neural networks to rerank, or directly in the
form of sequence-to-sequence (SEQ2SEQ) models
(Sordoni et al., 2015; Vinyals and Le, 2015; Shang
et al., 2015; Serban et al., 2015; Wen et al., 2015).
SEQ2SEQ models offer the promise of scalability and
language-independence, together with the capacity

* The entirety of this work was conducted at Microsoft.

to implicitly learn semantic and syntactic relations
between pairs, and to capture contextual dependen-
cies (Sordoni et al., 2015) in a way not possible with
conventional SMT approaches (Ritter et al., 2011).

An engaging response generation system should
be able to output grammatical, coherent responses
that are diverse and interesting. In practice, how-
ever, neural conversation models tend to generate
trivial or non-committal responses, often involving
high-frequency phrases along the lines of I don’t
know or I’m OK (Sordoni et al., 2015; Serban et al.,
2015; Vinyals and Le, 2015). Table 1 illustrates this
phenomenon, showing top outputs from SEQ2SEQ

models. All the top-ranked responses are generic.
Responses that seem more meaningful or specific
can also be found in the N-best lists, but rank much
lower. In part at least, this behavior can be ascribed
to the relative frequency of generic responses like
I don’t know in conversational datasets, in contrast
with the relative sparsity of more contentful alterna-
tive responses.1 It appears that by optimizing for
the likelihood of outputs given inputs, neural mod-
els assign high probability to “safe” responses. This
objective function, common in related tasks such as
machine translation, may be unsuited to generation
tasks involving intrinsically diverse outputs. Intu-
itively, it seems desirable to take into account not
only the dependency of responses on messages, but
also the inverse, the likelihood that a message will be
provided to a given response.

We propose to capture this intuition by using Max-
imum Mutual Information (MMI), first introduced in

1In our training dataset from the OpenSubtitles database
(OSDb), 0.45% sentences contain the sequence I don’t know, a
high rate considering huge diversity of this dataset.
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Input: What are you doing?
−0.86 I don’t know. −1.09 Get out of here.
−1.03 I don’t know! −1.09 I’m going home.
−1.06 Nothing. −1.09 Oh my god!
−1.09 Get out of the way. −1.10 I’m talking to you.
Input: what is your name?
−0.91 I don’t know. ...
−0.92 I don’t know! −1.55 My name is Robert.
−0.92 I don’t know, sir. −1.58 My name is John.
−0.97 Oh, my god! −1.59 My name’s John.
Input: How old are you?
−0.79 I don’t know. ...
−1.06 I’m fine. −1.64 Twenty-five.
−1.17 I’m all right. −1.66 Five.
−1.17 I’m not sure. −1.71 Eight.

Table 1: Responses generated by a 4-layer SEQ2SEQ
neural model trained on 20 million conversation pairs
take from the OpenSubtitles dataset. Decoding is imple-
mented with beam size set to 200. The top examples are
the responses with the highest average probability log-
likelihoods in the N-best list. Lower-ranked, less-generic
responses were manually chosen.

speech recognition (Bahl et al., 1986; Brown, 1987),
as an optimization objective that measures the mu-
tual dependence between inputs and outputs. Below,
we present practical strategies for neural generation
models that use MMI as an objective function. We
show that use of MMI results in a clear decrease in
the proportion of generic response sequences, gen-
erating correspondingly more varied and interesting
outputs.

2 Related work

The approach we take here is data-driven and end-to-
end. This stands in contrast to conventional dialog
systems, which typically are template- or heuristic-
driven even where there is a statistical component
(Levin et al., 2000; Oh and Rudnicky, 2000; Ratna-
parkhi, 2002; Walker et al., 2003; Pieraccini et al.,
2009; Young et al., 2010; Wang et al., 2011; Banchs
and Li, 2012; Chen et al., 2013; Ameixa et al., 2014;
Nio et al., 2014).

We follow a newer line of investigation, originally
introduced by Ritter et al. (2011), which frames
response generation as a statistical machine trans-
lation (SMT) problem. Recent progress in SMT
stemming from the use of neural language models
(Sutskever et al., 2014; Gao et al., 2014; Bahdanau et

al., 2015; Luong et al., 2015) has inspired attempts
to extend these neural techniques to response gener-
ation. Sordoni et al. (2015) improved upon Ritter
et al. (2011) by rescoring the output of a phrasal
SMT-based conversation system with a SEQ2SEQ

model that incorporates prior context. (Serban et al.,
2015; Shang et al., 2015; Vinyals and Le, 2015; Wen
et al., 2015) apply direct end-to-end SEQ2SEQ mod-
els These SEQ2SEQ models are Long Short-Term
Memory (LSTM) neural networks (Hochreiter and
Schmidhuber, 1997) that can implicitly capture com-
positionality and long-span dependencies. (Wen et
al., 2015) attempt to learn response templates from
crowd-sourced data, whereas we seek to develop
methods that can learn conversational patterns from
naturally-occurring data.

Prior work in generation has sought to increase
diversity, but with different goals and techniques.
Carbonell and Goldstein (1998) and Gimpel (2013)
produce multiple outputs that are mutually diverse,
either non-redundant summary sentences or N-best
lists. Our goal, however, is to produce a single non-
trivial output, and our method does not require iden-
tifying lexical overlap to foster diversity.2

On a somewhat different task, Mao et al. (2015,
Section 6) utilize a mutual information objective in
the retrieval component of image caption retrieval.
Below, we focus on the challenge of using MMI in
response generation, comparing the performance of
MMI models against maximum likelihood.

3 Sequence-to-Sequence Models

Given a sequence of inputs X = {x1, x2, ..., xNx},
an LSTM associates each time step with an input
gate, a memory gate and an output gate, respectively
denoted as ik, fk and ok. We distinguish e and h
where ek denotes the vector for an individual text unit
(for example, a word or sentence) at time step k while
hk denotes the vector computed by LSTM model at
time k by combining ek and hk−1. ck is the cell state
vector at time k, and σ denotes the sigmoid function.
Then, the vector representation hk for each time step

2Augmenting our technique with MMR-based (Carbonell
and Goldstein, 1998) diversity helped increase lexical but not
semantic diversity (e.g., I don’t know vs. I haven’t a clue), and
with no gain in performance.
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k is given by:

ik = σ(Wi · [hk−1, ek]) (1)
fk = σ(Wf · [hk−1, ek]) (2)
ok = σ(Wo · [hk−1, ek]) (3)

lk = tanh(Wl · [hk−1, ek]) (4)
ck = fk · ck−1 + ik · lk (5)

hs
k = ok · tanh(ck) (6)

where Wi, Wf , Wo, Wl ∈ RD×2D. In SEQ2SEQ

generation tasks, each input X is paired with a se-
quence of outputs to predict: Y = {y1, y2, ..., yNy}.
The LSTM defines a distribution over outputs and se-
quentially predicts tokens using a softmax function:

p(Y |X) =
Ny∏
k=1

p(yk|x1, x2, ..., xt, y1, y2, ..., yk−1)

=
Ny∏
k=1

exp(f(hk−1, eyk
))∑

y′ exp(f(hk−1, ey′))

where f(hk−1, eyk
) denotes the activation function

between hk−1 and eyk
, where hk−1 is the represen-

tation output from the LSTM at time k − 1. Each
sentence concludes with a special end-of-sentence
symbol EOS. Commonly, input and output use differ-
ent LSTMs with separate compositional parameters
to capture different compositional patterns.

During decoding, the algorithm terminates when
an EOS token is predicted. At each time step, either
a greedy approach or beam search can be adopted for
word prediction. Greedy search selects the token with
the largest conditional probability, the embedding of
which is then combined with preceding output to
predict the token at the next step.

4 MMI Models

4.1 Notation
In the response generation task, let S denote an in-
put message sequence (source) S = {s1, s2, ..., sNs}
where Ns denotes the number of words in S. Let
T (target) denote a sequence in response to source
sequence S, where T = {t1, t2, ..., tNt , EOS}, Nt

is the length of the response (terminated by an EOS
token) and t denotes a word token that is associated
with a D dimensional distinct word embedding et. V
denotes vocabulary size.

4.2 MMI Criterion
The standard objective function for sequence-to-
sequence models is the log-likelihood of target T
given source S, which at test time yields the statisti-
cal decision problem:

T̂ = arg max
T

{
log p(T |S)

}
(7)

As discussed in the introduction, we surmise that this
formulation leads to generic responses being gener-
ated, since it only selects for targets given sources,
not the converse. To remedy this, we replace it with
Maximum Mutual Information (MMI) as the objec-
tive function. In MMI, parameters are chosen to
maximize (pairwise) mutual information between the
source S and the target T :

log
p(S, T )
p(S)p(T )

(8)

This avoids favoring responses that unconditionally
enjoy high probability, and instead biases towards
those responses that are specific to the given input.
The MMI objective can written as follows:3

T̂ = arg max
T

{
log p(T |S)− log p(T )

}
We use a generalization of the MMI objective which
introduces a hyperparameter λ that controls how
much to penalize generic responses:

T̂ = arg max
T

{
log p(T |S)− λ log p(T )

}
(9)

An alternate formulation of the MMI objective
uses Bayes’ theorem:

log p(T ) = log p(T |S) + log p(S)− log p(S|T )

which lets us rewrite Equation 9 as follows:

T̂ = arg max
T

{
(1− λ) log p(T |S)

+ λ log p(S|T )− λ log p(S)
}

= arg max
T

{
(1− λ) log p(T |S) + λ log p(S|T )

}
(10)

This weighted MMI objective function can thus be
viewed as representing a tradeoff between sources

3Note: log p(S,T )
p(S)p(T )

= log p(T |S)
p(T )

= log p(T |S)−log p(T )
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given targets (i.e., p(S|T )) and targets given sources
(i.e., p(T |S)).

Although the MMI optimization criterion has been
comprehensively studied for other tasks, such as
acoustic modeling in speech recognition (Huang et
al., 2001), adapting MMI to SEQ2SEQ training is
empirically nontrivial. Moreover, we would like to
be able to adjust the value λ in Equation 9 with-
out repeatedly training neural network models from
scratch, which would otherwise be extremely time-
consuming. Accordingly, we did not train a joint
model (log p(T |S)− λ log p(T )), but instead trained
maximum likelihood models, and used the MMI cri-
terion only during testing.

4.3 Practical Considerations

Responses can be generated either from Equation 9,
i.e., log p(T |S) − λ log p(T ) or Equation 10, i.e.,
(1− λ) log p(T |S) + λ log p(S|T ). We will refer to
these formulations as MMI-antiLM and MMI-bidi,
respectively. However, these strategies are difficult
to apply directly to decoding since they can lead
to ungrammatical responses (with MMI-antiLM) or
make decoding intractable (with MMI-bidi). In the
rest of this section, we will discuss these issues and
explain how we resolve them in practice.

4.3.1 MMI-antiLM
The second term of log p(T |S)− λ log p(T ) func-

tions as an anti-language model. It penalizes not
only high-frequency, generic responses, but also flu-
ent ones and thus can lead to ungrammatical outputs.
In theory, this issue should not arise when λ is less
than 1, since ungrammatical sentences should always
be more severely penalized by the first term of the
equation, i.e., log p(T |S). In practice, however, we
found that the model tends to select ungrammatical
outputs that escaped being penalized by p(T |S).

Solution Again, let Nt be the length of target T .
p(T ) in Equation 9 can be written as:

p(T ) =
Nt∏

k=1

p(tk|t1, t2, ..., tk−1) (11)

We replace the language model p(T ) with U(T ),
which adapts the standard language model by multi-
plying by a weight g(k) that is decremented mono-

tonically as the index of the current token k increases:

U(T ) =
Nt∏
i=1

p(tk|t1, t2, ..., tk−1) · g(k) (12)

The underlying intuition here is as follows. First, neu-
ral decoding combines the previously built represen-
tation with the word predicted at the current step. As
decoding proceeds, the influence of the initial input
on decoding (i.e., the source sentence representation)
diminishes as additional previously-predicted words
are encoded in the vector representations.4 In other
words, the first words to be predicted significantly
determine the remainder of the sentence. Penalizing
words predicted early on by the language model con-
tributes more to the diversity of the sentence than it
does to words predicted later. Second, as the influ-
ence of the input on decoding declines, the influence
of the language model comes to dominate. We have
observed that ungrammatical segments tend to appear
in the later parts of the sentences, especially in long
sentences.

We adopt the most straightforward form of g(k)
by setting up a threshold (γ) by penalizing the first γ
words where5

g(k) =

{
1 if k ≤ γ
0 if k > γ

(13)

The objective in Equation 9 can thus be rewritten as:

log p(T |S)− λ logU(T ) (14)

where direct decoding is tractable.

4.3.2 MMI-bidi
Direct decoding from (1 − λ) log p(T |S) +

λ log p(S|T ) is intractable, as the second part (i.e.,
p(S|T )) requires completion of target generation be-
fore p(S|T ) can be effectively computed. Due to the
enormous search space for target T , exploring all
possibilities is infeasible.

For practical reasons, then, we turn to an approxi-
mation approach that involves first generating N-best
lists given the first part of objective function, i.e.,

4Attention models (Xu et al., 2015) may offer some promise
of addressing this issue.

5We experimented with a smooth decay in g(k) rather than a
stepwise function, but this did not yield better performance.
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standard SEQ2SEQ model p(T |S). Then we rerank
the N-best lists using the second term of the ob-
jective function. Since N-best lists produced by
SEQ2SEQ models are generally grammatical, the
final selected options are likely to be well-formed.
Model reranking has obvious drawbacks. It results in
non-globally-optimal solutions by first emphasizing
standard SEQ2SEQ objectives. Moreover, it relies
heavily on the system’s success in generating a suf-
ficiently diverse N-best set, requiring that a long list
of N-best lists be generated for each message.

Nonetheless, these two variants of the MMI crite-
rion work well in practice, significantly improving
both interestingness and diversity.

4.4 Training

Recent research has shown that deep LSTMs work
better than single-layer LSTMs for SEQ2SEQ tasks
(Vinyals et al., 2015; Sutskever et al., 2014). We
adopt a deep structure with four LSTM layers for
encoding and four LSTM layers for decoding, each
of which consists of a different set of parameters.
Each LSTM layer consists of 1,000 hidden neurons,
and the dimensionality of word embeddings is set to
1,000. Other training details are given below, broadly
aligned with Sutskever et al. (2014).
• LSTM parameters and embeddings are initial-

ized from a uniform distribution in [−0.08,
0.08].
• Stochastic gradient decent is implemented using

a fixed learning rate of 0.1.
• Batch size is set to 256.
• Gradient clipping is adopted by scaling gradi-

ents when the norm exceeded a threshold of 1.
Our implementation on a single GPU processes at a
speed of approximately 600-1200 tokens per second
on a Tesla K40.

The p(S|T ) model described in Section 4.3.1 was
trained using the same model as that of p(T |S), with
messages (S) and responses (T ) interchanged.

4.5 Decoding

4.5.1 MMI-antiLM
As described in Section 4.3.1, decoding using

log p(T |S) − λU(T ) can be readily implemented
by predicting tokens at each time-step. In addition,
we found in our experiments that it is also important
to take into account the length of responses in decod-

ing. We thus linearly combine the loss function with
length penalization, leading to an ultimate score for
a given target T as follows:

Score(T ) = p(T |S)− λU(T ) + γNt (15)

where Nt denotes the length of the target and γ de-
notes associated weight. We optimize γ and λ using
MERT (Och, 2003) on N-best lists of response can-
didates. The N-best lists are generated using the de-
coder with beam size B = 200. We set a maximum
length of 20 for generated candidates. At each time
step of decoding, we are presented withB×B candi-
dates. We first add all hypotheses with an EOS token
being generated at current time step to the N-best list.
Next we preserve the top B unfinished hypotheses
and move to next time step. We therefore maintain
beam size of 200 constant when some hypotheses
are completed and taken down by adding in more
unfinished hypotheses. This will lead the size of final
N-best list for each input much larger than the beam
size.

4.5.2 MMI-bidi
We generate N-best lists based on P (T |S) and

then rerank the list by linearly combining p(T |S),
λp(S|T ), and γNt. We use MERT to tune the
weights λ and γ on the development set.6

5 Experiments

5.1 Datasets
Twitter Conversation Triple Dataset We used an
extension of the dataset described in Sordoni et
al. (2015), which consists of 23 million conversa-
tional snippets randomly selected from a collection
of 129M context-message-response triples extracted
from the Twitter Firehose over the 3-month period
from June through August 2012. For the purposes
of our experiments, we limited context to the turn in
the conversation immediately preceding the message.
In our LSTM models, we used a simple input model
in which contexts and messages are concatenated to
form the source input.

6As with MMI-antiLM, we could have used grid search in-
stead of MERT, since there are only 3 features and 2 free param-
eters. In either case, the search attempts to find the best tradeoff
between p(T |S) and p(S|T ) according to BLEU (which tends
to weight the two models relatively equally) and ensures that
generated responses are of reasonable length.

114



Model # of training instances BLEU distinct-1 distinct-2
SEQ2SEQ (baseline) 23M 4.31 .023 .107
SEQ2SEQ (greedy) 23M 4.51 .032 .148
MMI-antiLM: log p(T |S)− λU(T ) 23M 4.86 .033 .175
MMI-bidi: (1− λ) log p(T |S) + λ log p(S|T ) 23M 5.22 .051 .270
SMT (Ritter et al., 2011) 50M 3.60 .098 .351
SMT+neural reranking (Sordoni et al., 2015) 50M 4.44 .101 .358

Table 2: Performance on the Twitter dataset of 4-layer SEQ2SEQ models and MMI models. distinct-1 and distinct-2 are
respectively the number of distinct unigrams and bigrams divided by total number of generated words.

For tuning and evaluation, we used the develop-
ment dataset (2118 conversations) and the test dataset
(2114 examples), augmented using information re-
trieval methods to create a multi-reference set, as
described by Sordoni et al. (2015). The selection
criteria for these two datasets included a component
of relevance/interestingness, with the result that dull
responses will tend to be penalized in evaluation.

OpenSubtitles dataset In addition to unscripted
Twitter conversations, we also used the OpenSub-
titles (OSDb) dataset (Tiedemann, 2009), a large,
noisy, open-domain dataset containing roughly 60M-
70M scripted lines spoken by movie characters. This
dataset does not specify which character speaks
each subtitle line, which prevents us from inferring
speaker turns. Following Vinyals et al. (2015), we
make the simplifying assumption that each line of
subtitle constitutes a full speaker turn. Our mod-
els are trained to predict the current turn given the
preceding ones based on the assumption that consec-
utive turns belong to the same conversation. This
introduces a degree of noise, since consecutive lines
may not appear in the same conversation or scene,
and may not even be spoken by the same character.

This limitation potentially renders the OSDb
dataset unreliable for evaluation purposes. For eval-
uation purposes, we therefore used data from the
Internet Movie Script Database (IMSDB),7 which
explicitly identifies which character speaks each line
of the script. This allowed us to identify consecutive
message-response pairs spoken by different charac-
ters. We randomly selected two subsets as develop-
ment and test datasets, each containing 2k pairs, with
source and target length restricted to the range of
[6,18].

7IMSDB (http://www.imsdb.com/) is a relatively
small database of around 0.4 million sentences and thus not
suitable for open domain dialogue training.

Model BLEU distinct-1 distinct-2
SEQ2SEQ 1.28 0.0056 0.0136

MMI-antiLM 1.74 0.0184 0.066
(+35.9%) (+228%) (407%)

MMI-bidi 1.44 0.0103 0.0303
(+28.2%) (+83.9%) (+122%)

Table 3: Performance of the SEQ2SEQ baseline and two
MMI models on the OpenSubtitles dataset.

5.2 Evaluation

For parameter tuning and final evaluation, we used
BLEU (Papineni et al., 2002), which was shown to
correlate reasonably well with human judgment on
the response generation task (Galley et al., 2015).
In the case of the Twitter models, we used multi-
reference BLEU. As the IMSDB data is too limited to
support extraction of multiple references, only single
reference BLEU was used in training and evaluating
the OSDb models.

We did not follow Vinyals et al. (2015) in using
perplexity as evaluation metric. Perplexity is un-
likely to be a useful metric in our scenario, since our
proposed model is designed to steer away from the
standard SEQ2SEQ model in order to diversify the
outputs. We report degree of diversity by calculating
the number of distinct unigrams and bigrams in gen-
erated responses. The value is scaled by total number
of generated tokens to avoid favoring long sentences
(shown as distinct-1 and distinct-2 in Tables 2 and 3).

5.3 Results

Twitter Dataset We first report performance on
Twitter datasets in Table 2, along with results for
different models (i.e., Machine Translation and
MT+neural reranking) reprinted from Sordoni et
al. (2015) on the same dataset. The baseline is the
SEQ2SEQ model with its standard likelihood objec-
tive and a beam size of 200. We compare this base-
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line against greedy-search SEQ2SEQ (Vinyals and
Le, 2015), which can help achieve higher diversity
by increasing search errors.8

Machine Translation is the phrase-based MT sys-
tem described in (Ritter et al., 2011). MT features
include commonly used ones in Moses (Koehn et al.,
2007), e.g., forward and backward maximum like-
lihood “translation” probabilities, word and phrase
penalties, linear distortion, etc. For more details,
refer to Sordoni et al. (2015).

MT+neural reranking is the phrase-based MT sys-
tem, reranked using neural models. N-best lists are
first generated from the MT system. Recurrent neu-
ral models generate scores for N-best list candidates
given the input messages. These generated scores are
re-incorporated to rerank all the candidates. Addi-
tional features to score [1-4]-gram matches between
context and response and between message and con-
text (context and message match CMM features) are
also employed, as in Sordoni et al. (2015).

MT+neural reranking achieves a BLEU score of
4.44, which to the best of our knowledge repre-
sents the previous state-of-the-art performance on
this Twitter dataset. Note that Machine Translation
and MT+neural reranking are trained on a much
larger dataset of roughly 50 million examples. A sig-
nificant performance boost is observed from MMI-
bidi over baseline SEQ2SEQ, both in terms of BLEU

score and diversity.
The beam size of 200 used in our main experiments

is quite conservative, and BLEU scores only slightly
degrade when reducing beam size to 20. For MMI-
bidi, BLEU scores for beam sizes of 200, 50, 20 are
respectively 5.90, 5.86, 5.76. A beam size of 20 still
produces relatively large N-best lists (173 elements
on average) with responses of varying lengths, which
offer enough diversity for the p(S|T ) model to have
a significant effect.

OpenSubtitles Dataset All models achieve signif-
icantly lower BLEU scores on this dataset than on
the Twitter dataset, primarily because the IMSDB
data provides only single references for evaluation.
We note, however, that baseline SEQ2SEQ models

8Another method would have been to sample from the
p(T |S) distribution to increase diversity. While these meth-
ods have merits, we think we ought to find a proper objective
and optimize it exactly, rather than cope with an inadequate one
and add noise to it.

Comparator Gain 95% CI

SMT (Ritter et al., 2011) 0.29 [0.25, 0.32]
SMT+neural reranking 0.28 [0.25, 0.32]

SEQ2SEQ (baseline) 0.11 [0.07, 0.14]
SEQ2SEQ (greedy) 0.08 [0.04, 0.11]

Table 6: MMI-bidi gains over comparator systems, based
on pairwise human judgments.

yield lower levels of unigram diversity (distinct-1)
on the OpenSubtitles dataset than on the Twitter data
(0.0056 vs 0.017), which suggests that other factors
may be in play. It is likely that movie dialogs are
much more concise and information-rich than typical
conversations on Twitter, making it harder to match
gold-standard responses and causing the learned mod-
els to strongly favor safe, conservative responses.

Table 3 shows that the MMI-antiLM model yields
a significant performance boost, with a BLEU score
increase of up to 36% and a more than 200% jump in
unigram diversity. Our interpretation of this huge per-
formance improvement is that the diversity and com-
plexity of input messages lead standard SEQ2SEQ

models to generate very conservative responses,9

which fail to match the more interesting reference
strings typical of this dataset. This interpretation is
also supported by the fact that the MMI-bidi model
does not produce as significant a performance boost
as MMI-antiLM. In the case of MMI-bidi, N-best
lists generated using standard SEQ2SEQ models re-
main conservative and uninteresting, attenuating the
impact of later reranking. An important potential
limitation of MMI-bidi model is thus that its perfor-
mance hinges on the initial generation of a highly
diverse, informative N-best list.

Qualitative Evaluation We employed crowd-
sourced judges to provide evaluations for a random
sample of 1000 items in the Twitter test dataset. Ta-
ble 6 shows the results of human evaluations between
paired systems. Each output pair was ranked by 5
judges, who were asked to decide which of the two
outputs was better. They were instructed to prefer
outputs that were more specific (relevant) to the mes-
sage and preceding context, as opposed to those that

9The strings I don’t know, I don’t know what you are talking
about, I don’t think that is a good idea, and Oh my god constitute
32% percent of all generated responses.
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message SEQ2SEQ MMI P (T |S)− λP (T )

I did not get the report from an mi-6
agent.

I don’t think that’s a good idea. You did the right thing, did you?

You haven’t been given an assignment
in this case.

I don’t know what you are talking about. I’ve been looking all over for you.

I’m losing my grip. I don’t know what you are talking about. I’m the only one in the world.
I am ready to help. Come on, come on I have something we need to talk about.
You programmed me to gather intelli-
gence. That’s all I’ve ever done.

You know that, don’t you? You do have fun, don’t you?

I mean, we’d have to talk to him. I mean, I don’t know. I mean, he’s a good guy.
This has nothing to do with him. You don’t know anything about him, do

you?
I know him as much.

How come you never say it? I don’t know Because I don’t want to hurt you
He is the one behind this scheme to crash
x-net.

I don’t know what you are talking about Yes, he is, isn’t he?

How much time do you have here? I don’t know. Not long enough. Sorry, sir.

Table 4: Responses from the SEQ2SEQ baseline and MMI-antiLM models on the OpenSubtitles dataset.

message SEQ2SEQ MMI-bidi
Ohh I’ve never seen that! How long does
it take you guys to learn the drill?

I don’t even know. Like 2 weeks ago!!

You’ll know when we sign Heskey in 2
weeks

I’ll see what I can do I sure hope so..

I’m waiting!! I have even got biscuits
waiting for you??

I have no idea what you’re talking about I’ll send you a pic when I get home xx

My parents actually had touch too much
played at their wedding.

I have no idea what you’re talking about How old are they??

Say anything you want... I know you
love me and I love you.

I love you so much. I love you too, baby.

I am off all week next week What time you going? What time you going?
How are you doing? I’m good, thanks. I’m good, you?

Table 5: Responses from the SEQ2SEQ baseline and MMI-bidi models on the Twitter dataset.

Input: What are you doing?
1. I’ve been looking for you. 4. I told you to shut up.
2. I want to talk to you. 5. Get out of here.
3. Just making sure you’re OK. 6. I’m looking for a doctor.
Input: What is your name?
1. Blue! 4. Daniel.
2. Peter. 5. My name is John.
3. Tyler. 6. My name is Robert.
Input: How old are you?
1. Twenty-eight. 4. Five.
2. Twenty-four. 5. 15.
3. Long. 6. Eight.

Table 7: Examples generated by the MMI-antiLM model
on the OpenSubtitles dataset.

were more generic. Ties were permitted. Identical
strings were algorithmically assigned the same score.
The mean of differences between outputs is shown as
the gain for MMI-bidi over the competing system. At
a significance level of α = 0.05, we find that MMI-
bidi outperforms both baseline and greedy SEQ2SEQ

systems, as well as the weaker SMT and SMT+RNN
baselines. MMI-bidi outperforms SMT in human
evaluations despite the greater lexical diversity of
MT output.

Separately, judges were also asked to rate overall
quality of MMI-bidi output over the same 1000-item
sample in isolation, each output being evaluated by
7 judges in context using a 5-point scale. The mean
rating was 3.84 (median: 3.85, 1st Qu: 3.57, 3rd Qu:
4.14), suggesting that overall MMI-bidi output does
appear reasonably acceptable to human judges.10

Table 7 presents the N-best candidates generated
using the MMI-bidi model for the inputs of Table 1.

10In the human evaluations, we asked the annotators to prefer
responses that were more specific to the context only when doing
the pairwise evaluations of systems. The absolute evaluation
was conducted separately (on different days) on the best system,
and annotators were asked to evaluate the overall quality of the
response, specifically Provide your impression of overall quality
of the response in this particular conversation.
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We see that MMI generates significantly more inter-
esting outputs than SEQ2SEQ.

In Tables 4 and 5, we present responses generated
by different models. All examples were randomly
sampled (without cherry picking). We see that the
baseline SEQ2SEQ model tends to generate reason-
able responses to simple messages such as How are
you doing? or I love you. As the complexity of the
message increases, however, the outputs switch to
more conservative, duller forms, such as I don’t know
or I don’t know what you are talking about. An oc-
casional answer of this kind might go unnoticed in a
natural conversation, but a dialog agent that always
produces such responses risks being perceived as un-
cooperative. MMI-bidi models, on the other hand,
produce far more diverse and interesting responses.

6 Conclusions

We investigated an issue encountered when applying
SEQ2SEQ models to conversational response genera-
tion. These models tend to generate safe, common-
place responses (e.g., I don’t know) regardless of the
input. Our analysis suggests that the issue is at least
in part attributable to the use of unidirectional like-
lihood of output (responses) given input (messages).
To remedy this, we have proposed using Maximum
Mutual Information (MMI) as the objective function.
Our results demonstrate that the proposed MMI mod-
els produce more diverse and interesting responses,
while improving quality as measured by BLEU and
human evaluation.

To the best of our knowledge, this paper represents
the first work to address the issue of output diver-
sity in the neural generation framework. We have
focused on the algorithmic dimensions of the prob-
lem. Unquestionably numerous other factors such
as grounding, persona (of both user and agent), and
intent also play a role in generating diverse, conver-
sationally interesting outputs. These must be left
for future investigation. Since the challenge of pro-
ducing interesting outputs also arises in other neural
generation tasks, including image-description gener-
ation, question answering, and potentially any task
where mutual correspondences must be modeled, the
implications of this work extend well beyond conver-
sational response generation.
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