# import all the fastai stuff. from fastai.vision.all import * # load our model. learn = load_learner('model.pkl') # define a prediction function, not sure what this means. labels = learn.dls.vocab def predict(img): img = PILImage.create(img) # this returns # predicted category # index # probabilities of each category pred,pred_idx,probs = learn.predict(img) # we return a weird dictionary or JSON? return {labels[i]: float(probs[i]) for i in range(len(labels))} import gradio as gr gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)