import json import os import streamlit as st from gdown import download_folder from llama_index import ServiceContext from llama_index import SimpleDirectoryReader from llama_index import VectorStoreIndex from llama_index import set_global_service_context from llama_index.embeddings import OpenAIEmbedding from llama_index.llms import AzureOpenAI # Initialize message history st.header("Chat with André's research 💬 📚") if "messages" not in st.session_state.keys(): # Initialize the chat message history st.session_state.messages = [{"role": "assistant", "content": "Ask me a question about André's research!"}] # Load config values with open(r"config.json") as config_file: config_details = json.load(config_file) def download_test_data(): url = "https://drive.google.com/drive/folders/1uDSAWtLvp1YPzfXUsK_v6DeWta16pq6y" with st.spinner(text="Downloading test data. Might take a few seconds."): download_folder(url, quiet=True, use_cookies=False, output="./data/") @st.cache_resource(show_spinner=False) def load_data(): with st.spinner(text="Loading and indexing the provided dataset – hang tight! This may take a few seconds."): documents = SimpleDirectoryReader(input_dir="./data", recursive=True).load_data() llm = AzureOpenAI( model="gpt-3.5-turbo", engine=config_details["ENGINE"], temperature=0.5, api_key=os.getenv("OPENAI_API_KEY"), api_base=config_details["OPENAI_API_BASE"], api_type="azure", api_version=config_details["OPENAI_API_VERSION"], system_prompt="You are an expert on André's research and your job is to answer" "technical questions. Assume that all questions are related to" "André's research. Keep your answers technical and based on facts" " – do not hallucinate features.", ) # You need to deploy your own embedding model as well as your own chat completion model embed_model = OpenAIEmbedding( model="text-embedding-ada-002", deployment_name=config_details["ENGINE_EMBEDDING"], api_key=os.getenv("OPENAI_API_KEY"), api_base=config_details["OPENAI_API_BASE"], api_type="azure", api_version=config_details["OPENAI_API_VERSION"], ) service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) set_global_service_context(service_context) index = VectorStoreIndex.from_documents(documents) # , service_context=service_context) return index def main(): download_test_data() index = load_data() chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True) if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history st.session_state.messages.append({"role": "user", "content": prompt}) for message in st.session_state.messages: # Display the prior chat messages with st.chat_message(message["role"]): st.write(message["content"]) # If last message is not from assistant, generate a new response if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = chat_engine.chat(prompt) st.write(response.response) message = {"role": "assistant", "content": response.response} st.session_state.messages.append(message) # Add response to message history if __name__ == "__main__": main()