|
|
|
|
|
"""Utility functions for training and inference.""" |
|
import inspect |
|
import math |
|
import os |
|
import pickle |
|
import shutil |
|
import sys |
|
from dataclasses import asdict, is_dataclass |
|
from io import BytesIO |
|
from pathlib import Path |
|
from typing import ( |
|
TYPE_CHECKING, |
|
Any, |
|
Dict, |
|
Iterable, |
|
List, |
|
Literal, |
|
Mapping, |
|
Optional, |
|
TypeVar, |
|
Union, |
|
) |
|
|
|
import lightning as L |
|
import torch |
|
import torch.nn as nn |
|
import torch.utils._device |
|
import yaml |
|
from lightning.fabric.loggers import CSVLogger, TensorBoardLogger |
|
from lightning.fabric.strategies import FSDPStrategy |
|
from lightning.fabric.utilities.load import _lazy_load as lazy_load |
|
from lightning.pytorch.loggers import WandbLogger |
|
from lightning.pytorch.cli import instantiate_class |
|
from torch.serialization import normalize_storage_type |
|
from typing_extensions import Self |
|
|
|
if TYPE_CHECKING: |
|
from litgpt import GPT, Config |
|
|
|
|
|
def init_out_dir(out_dir: Path) -> Path: |
|
if not out_dir.is_absolute() and "LIGHTNING_ARTIFACTS_DIR" in os.environ: |
|
return Path(os.getenv("LIGHTNING_ARTIFACTS_DIR")) / out_dir |
|
return out_dir |
|
|
|
|
|
def find_resume_path( |
|
resume: Union[bool, Literal["auto"], Path], out_dir: Path |
|
) -> Optional[Path]: |
|
if not resume or isinstance(resume, Path): |
|
return resume |
|
|
|
resume_path = max( |
|
out_dir.rglob("step-*/*.pth"), |
|
key=(lambda p: int(p.parent.name.split("-")[1])), |
|
default=None, |
|
) |
|
if resume == "auto": |
|
return resume_path |
|
if resume is True and resume_path is None: |
|
raise FileNotFoundError( |
|
f"You passed `--resume=True`, but no checkpont file was found in `--out_dir={out_dir}`." |
|
) |
|
return resume_path |
|
|
|
|
|
def find_multiple(n: int, k: int) -> int: |
|
assert k > 0 |
|
if n % k == 0: |
|
return n |
|
return n + k - (n % k) |
|
|
|
|
|
def num_parameters(module: nn.Module, requires_grad: Optional[bool] = None) -> int: |
|
total = 0 |
|
for p in module.parameters(): |
|
if requires_grad is None or p.requires_grad == requires_grad: |
|
if hasattr(p, "quant_state"): |
|
|
|
total += math.prod(p.quant_state.shape) |
|
else: |
|
total += p.numel() |
|
return total |
|
|
|
|
|
def reset_parameters(module: nn.Module) -> None: |
|
"""Calls `reset_parameters` on the module and all its submodules.""" |
|
for mod in module.modules(): |
|
if callable(getattr(mod, "reset_parameters", None)): |
|
mod.reset_parameters() |
|
|
|
|
|
def check_valid_checkpoint_dir( |
|
checkpoint_dir: Path, |
|
model_filename: str = "lit_model.pth", |
|
verbose: bool = True, |
|
raise_error: bool = False, |
|
) -> None: |
|
files = { |
|
model_filename: (checkpoint_dir / model_filename).is_file(), |
|
"model_config.yaml": (checkpoint_dir / "model_config.yaml").is_file(), |
|
"tokenizer.json OR tokenizer.model": ( |
|
checkpoint_dir / "tokenizer.json" |
|
).is_file() |
|
or (checkpoint_dir / "tokenizer.model").is_file(), |
|
"tokenizer_config.json": (checkpoint_dir / "tokenizer_config.json").is_file(), |
|
} |
|
if checkpoint_dir.is_dir(): |
|
if all(files.values()): |
|
|
|
return |
|
problem = f" is missing the files: {[f for f, exists in files.items() if not exists]!r}" |
|
else: |
|
problem = " is not a checkpoint directory" |
|
|
|
|
|
available = list(Path("checkpoints").glob("*/*")) |
|
if available: |
|
options = "\n".join([""] + [repr(str(p.resolve())) for p in available]) |
|
extra = f"\nYou have downloaded locally:{options}\n" |
|
else: |
|
extra = "" |
|
|
|
if verbose: |
|
error_message = ( |
|
f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}." |
|
"\nFind download instructions at https://github.com/Lightning-AI/litgpt/blob/main/tutorials\n" |
|
f"{extra}\nSee all download options by running:\n litgpt download" |
|
) |
|
print(error_message, file=sys.stderr) |
|
|
|
if raise_error: |
|
raise FileNotFoundError( |
|
f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}." |
|
) |
|
else: |
|
raise SystemExit(1) |
|
|
|
|
|
class SavingProxyForStorage: |
|
def __init__(self, obj, saver, protocol_version=5): |
|
self.protocol_version = protocol_version |
|
self.saver = saver |
|
if not (isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj)): |
|
raise TypeError(f"expected storage, not {type(obj)}") |
|
|
|
|
|
if isinstance(obj, torch.storage.TypedStorage): |
|
|
|
storage = obj._untyped_storage |
|
storage_type_str = obj._pickle_storage_type() |
|
storage_type = getattr(torch, storage_type_str) |
|
storage_numel = obj._size() |
|
else: |
|
storage = obj |
|
storage_type = normalize_storage_type(type(obj)) |
|
storage_numel = storage.nbytes() |
|
|
|
storage_key = saver._write_storage_and_return_key(storage) |
|
location = torch.serialization.location_tag(storage) |
|
|
|
self.storage_info = ( |
|
"storage", |
|
storage_type, |
|
storage_key, |
|
location, |
|
storage_numel, |
|
) |
|
|
|
def __reduce_ex__(self, protocol_version): |
|
assert False, "this should be handled with out of band" |
|
|
|
|
|
class SavingProxyForTensor: |
|
def __init__(self, tensor, saver, protocol_version=5): |
|
self.protocol_version = protocol_version |
|
self.reduce_ret_fn, reduce_args = tensor.__reduce_ex__(protocol_version) |
|
if reduce_args[0] == torch._utils._rebuild_tensor_v2: |
|
|
|
(a0, a1, (storage, *a2_other), *other_reduce_args) = reduce_args |
|
assert isinstance( |
|
storage, torch.storage.TypedStorage |
|
), "Please check for updates" |
|
storage_proxy = SavingProxyForStorage( |
|
storage, saver, protocol_version=protocol_version |
|
) |
|
self.reduce_args = (a0, a1, (storage_proxy, *a2_other), *other_reduce_args) |
|
else: |
|
(storage, *other_reduce_args) = reduce_args |
|
assert isinstance( |
|
storage, torch.storage.TypedStorage |
|
), "Please check for updates" |
|
storage_proxy = SavingProxyForStorage( |
|
storage, saver, protocol_version=protocol_version |
|
) |
|
self.reduce_args = (storage_proxy, *other_reduce_args) |
|
|
|
def __reduce_ex__(self, protocol_version): |
|
if protocol_version != self.protocol_version: |
|
raise RuntimeError( |
|
f"Unexpected protocol version: expected {self.protocol_version}, got {protocol_version}" |
|
) |
|
return self.reduce_ret_fn, self.reduce_args |
|
|
|
|
|
class IncrementalPyTorchPickler(pickle.Pickler): |
|
def __init__(self, saver, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.storage_dtypes = {} |
|
self.saver = saver |
|
self.id_map = {} |
|
|
|
|
|
def persistent_id(self, obj): |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(obj, SavingProxyForStorage): |
|
return obj.storage_info |
|
|
|
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj): |
|
if isinstance(obj, torch.storage.TypedStorage): |
|
|
|
|
|
storage = obj._untyped_storage |
|
storage_dtype = obj.dtype |
|
storage_type_str = obj._pickle_storage_type() |
|
storage_type = getattr(torch, storage_type_str) |
|
storage_numel = obj._size() |
|
|
|
else: |
|
storage = obj |
|
storage_dtype = torch.uint8 |
|
storage_type = normalize_storage_type(type(obj)) |
|
storage_numel = storage.nbytes() |
|
|
|
|
|
|
|
|
|
if storage.data_ptr() != 0: |
|
if storage.data_ptr() in self.storage_dtypes: |
|
if storage_dtype != self.storage_dtypes[storage.data_ptr()]: |
|
raise RuntimeError( |
|
"Cannot save multiple tensors or storages that view the same data as different types" |
|
) |
|
else: |
|
self.storage_dtypes[storage.data_ptr()] = storage_dtype |
|
|
|
storage_key = self.id_map.get(storage._cdata) |
|
if storage_key is None: |
|
storage_key = self.saver._write_storage_and_return_key(storage) |
|
self.id_map[storage._cdata] = storage_key |
|
location = torch.serialization.location_tag(storage) |
|
|
|
return ("storage", storage_type, storage_key, location, storage_numel) |
|
|
|
return None |
|
|
|
|
|
class incremental_save: |
|
def __init__(self, name): |
|
self.name = name |
|
self.zipfile = torch._C.PyTorchFileWriter(str(name)) |
|
self.has_saved = False |
|
self.next_key = 0 |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def store_early(self, tensor): |
|
if isinstance(tensor, torch.Tensor): |
|
return SavingProxyForTensor(tensor, self) |
|
raise TypeError(f"can only store tensors early, not {type(tensor)}") |
|
|
|
def save(self, obj): |
|
if self.has_saved: |
|
raise RuntimeError("have already saved") |
|
|
|
data_buf = BytesIO() |
|
pickler = IncrementalPyTorchPickler(self, data_buf, protocol=5) |
|
pickler.dump(obj) |
|
data_value = data_buf.getvalue() |
|
self.zipfile.write_record("data.pkl", data_value, len(data_value)) |
|
self.has_saved = True |
|
|
|
def _write_storage_and_return_key(self, storage): |
|
if self.has_saved: |
|
raise RuntimeError("have already saved") |
|
key = self.next_key |
|
self.next_key += 1 |
|
name = f"data/{key}" |
|
if storage.device.type != "cpu": |
|
storage = storage.cpu() |
|
num_bytes = storage.nbytes() |
|
self.zipfile.write_record(name, storage.data_ptr(), num_bytes) |
|
return key |
|
|
|
def __exit__(self, type, value, traceback): |
|
self.zipfile.write_end_of_file() |
|
|
|
|
|
T = TypeVar("T") |
|
|
|
|
|
def chunked_cross_entropy( |
|
logits: Union[torch.Tensor, List[torch.Tensor]], |
|
targets: torch.Tensor, |
|
chunk_size: int = 128, |
|
ignore_index: int = -100, |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(logits, list): |
|
|
|
if chunk_size == 0: |
|
logits = torch.cat(logits, dim=1) |
|
logits = logits.reshape(-1, logits.size(-1)) |
|
targets = targets.reshape(-1) |
|
return torch.nn.functional.cross_entropy( |
|
logits, targets, ignore_index=ignore_index |
|
) |
|
|
|
|
|
logit_chunks = [ |
|
logit_chunk.reshape(-1, logit_chunk.size(-1)) for logit_chunk in logits |
|
] |
|
target_chunks = [ |
|
target_chunk.reshape(-1) |
|
for target_chunk in targets.split(logits[0].size(1), dim=1) |
|
] |
|
loss_chunks = [ |
|
torch.nn.functional.cross_entropy( |
|
logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none" |
|
) |
|
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks) |
|
] |
|
non_masked_elems = (targets != ignore_index).sum() |
|
|
|
return torch.cat(loss_chunks).sum() / non_masked_elems.maximum( |
|
torch.ones_like(non_masked_elems) |
|
) |
|
|
|
|
|
logits = logits.reshape(-1, logits.size(-1)) |
|
targets = targets.reshape(-1) |
|
if chunk_size == 0: |
|
return torch.nn.functional.cross_entropy( |
|
logits, targets, ignore_index=ignore_index |
|
) |
|
|
|
|
|
logit_chunks = logits.split(chunk_size) |
|
target_chunks = targets.split(chunk_size) |
|
loss_chunks = [ |
|
torch.nn.functional.cross_entropy( |
|
logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none" |
|
) |
|
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks) |
|
] |
|
non_masked_elems = (targets != ignore_index).sum() |
|
|
|
|
|
|
|
|
|
return torch.cat(loss_chunks).sum() / non_masked_elems.maximum( |
|
torch.ones_like(non_masked_elems) |
|
) |
|
|
|
|
|
def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str) -> Dict: |
|
for checkpoint_name, attribute_name in mapping.items(): |
|
full_checkpoint_name = prefix + checkpoint_name |
|
if full_checkpoint_name in state_dict: |
|
full_attribute_name = prefix + attribute_name |
|
state_dict[full_attribute_name] = state_dict.pop(full_checkpoint_name) |
|
return state_dict |
|
|
|
|
|
def get_default_supported_precision(training: bool) -> str: |
|
"""Return default precision that is supported by the hardware: either `bf16` or `16`. |
|
|
|
Args: |
|
training: `-mixed` or `-true` version of the precision to use |
|
|
|
Returns: |
|
default precision that is suitable for the task and is supported by the hardware |
|
""" |
|
from lightning.fabric.accelerators import MPSAccelerator |
|
|
|
if MPSAccelerator.is_available() or ( |
|
torch.cuda.is_available() and not torch.cuda.is_bf16_supported() |
|
): |
|
return "16-mixed" if training else "16-true" |
|
return "bf16-mixed" if training else "bf16-true" |
|
|
|
|
|
def load_checkpoint( |
|
fabric: L.Fabric, model: nn.Module, checkpoint_path: Path, strict: bool = True |
|
) -> None: |
|
if isinstance(fabric.strategy, FSDPStrategy): |
|
fabric.load_raw(checkpoint_path, model, strict=strict) |
|
else: |
|
state_dict = lazy_load(checkpoint_path) |
|
state_dict = state_dict.get("model", state_dict) |
|
model.load_state_dict(state_dict, strict=strict) |
|
|
|
|
|
def flops_per_param( |
|
max_seq_length: int, n_layer: int, n_embd: int, n_params: int |
|
) -> int: |
|
flops_per_token = ( |
|
2 * n_params |
|
) |
|
|
|
|
|
flops_per_seq = flops_per_token * max_seq_length |
|
attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2)) |
|
return flops_per_seq + attn_flops_per_seq |
|
|
|
|
|
def estimate_flops(model: "GPT", training: bool) -> int: |
|
"""Measures estimated FLOPs for MFU. |
|
|
|
Refs: |
|
* https://ar5iv.labs.arxiv.org/html/2205.05198#A1 |
|
* https://ar5iv.labs.arxiv.org/html/2204.02311#A2 |
|
""" |
|
|
|
|
|
|
|
|
|
n_trainable_params = num_parameters(model, requires_grad=True) |
|
trainable_flops = flops_per_param( |
|
model.max_seq_length, |
|
model.config.n_layer, |
|
model.config.n_embd, |
|
n_trainable_params, |
|
) |
|
|
|
ops_per_step = 3 if training else 1 |
|
n_frozen_params = num_parameters(model, requires_grad=False) |
|
frozen_flops = flops_per_param( |
|
model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params |
|
) |
|
|
|
frozen_ops_per_step = 2 if training else 1 |
|
return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops |
|
|
|
|
|
class CycleIterator: |
|
"""An iterator that cycles through an iterable indefinitely. |
|
|
|
Example: |
|
>>> iterator = CycleIterator([1, 2, 3]) |
|
>>> [next(iterator) for _ in range(5)] |
|
[1, 2, 3, 1, 2] |
|
|
|
Note: |
|
Unlike ``itertools.cycle``, this iterator does not cache the values of the iterable. |
|
""" |
|
|
|
def __init__(self, iterable: Iterable) -> None: |
|
self.iterable = iterable |
|
self.epoch = 0 |
|
self._iterator = None |
|
|
|
def __next__(self) -> Any: |
|
if self._iterator is None: |
|
self._iterator = iter(self.iterable) |
|
try: |
|
return next(self._iterator) |
|
except StopIteration: |
|
self._iterator = iter(self.iterable) |
|
self.epoch += 1 |
|
return next(self._iterator) |
|
|
|
def __iter__(self) -> Self: |
|
return self |
|
|
|
|
|
def copy_config_files(source_dir: Path, out_dir: Path) -> None: |
|
"""Copies the specified configuration and tokenizer files into the output directory.""" |
|
|
|
config_files = ["config.json", "generation_config.json", "model_config.yaml"] |
|
tokenizer_files = ["tokenizer.json", "tokenizer.model", "tokenizer_config.json"] |
|
|
|
for file_name in config_files + tokenizer_files: |
|
src_path = source_dir / file_name |
|
if src_path.exists(): |
|
shutil.copy(src_path, out_dir) |
|
|
|
|
|
def CLI(*args: Any, **kwargs: Any) -> Any: |
|
from jsonargparse import CLI, set_config_read_mode, set_docstring_parse_options |
|
|
|
set_docstring_parse_options(attribute_docstrings=True) |
|
set_config_read_mode(urls_enabled=True) |
|
|
|
return CLI(*args, **kwargs) |
|
|
|
|
|
def capture_hparams() -> Dict[str, Any]: |
|
"""Captures the local variables ('hyperparameters') from where this function gets called.""" |
|
caller_frame = inspect.currentframe().f_back |
|
locals_of_caller = caller_frame.f_locals |
|
hparams = {} |
|
for name, value in locals_of_caller.items(): |
|
if value is None or isinstance(value, (int, float, str, bool, Path)): |
|
hparams[name] = value |
|
elif is_dataclass(value): |
|
hparams[name] = asdict(value) |
|
else: |
|
hparams[name] = str(value) |
|
return hparams |
|
|
|
|
|
def save_hyperparameters(function: callable, checkpoint_dir: Path) -> None: |
|
"""Captures the CLI parameters passed to `function` without running `function` and saves them to the checkpoint.""" |
|
from jsonargparse import capture_parser |
|
|
|
|
|
|
|
|
|
known_commands = [ |
|
("finetune_full",), |
|
("finetune_lora",), |
|
("finetune_adapter",), |
|
("finetune_adapter_v2",), |
|
("finetune",), |
|
("pretrain",), |
|
] |
|
for known_command in known_commands: |
|
unwanted = slice(1, 1 + len(known_command)) |
|
if tuple(sys.argv[unwanted]) == known_command: |
|
sys.argv[unwanted] = [] |
|
|
|
parser = capture_parser(lambda: CLI(function)) |
|
config = parser.parse_args() |
|
parser.save(config, checkpoint_dir / "hyperparameters.yaml", overwrite=True) |
|
|
|
|
|
def save_config(config: "Config", checkpoint_dir: Path) -> None: |
|
config_dict = asdict(config) |
|
with open(checkpoint_dir / "model_config.yaml", "w", encoding="utf-8") as fp: |
|
yaml.dump(config_dict, fp) |
|
|
|
|
|
def parse_devices(devices: Union[str, int]) -> int: |
|
if devices in (-1, "auto"): |
|
return torch.cuda.device_count() or 1 |
|
if isinstance(devices, int) and devices > 0: |
|
return devices |
|
raise ValueError(f"Devices must be 'auto' or a positive integer, got: {devices!r}") |
|
|
|
|
|
def choose_logger( |
|
logger_name: Literal["csv", "tensorboard", "wandb"], |
|
out_dir: Path, |
|
name: str, |
|
log_interval: int = 1, |
|
resume: Optional[bool] = None, |
|
**kwargs: Any, |
|
): |
|
if logger_name == "csv": |
|
return CSVLogger( |
|
root_dir=(out_dir / "logs"), |
|
name="csv", |
|
flush_logs_every_n_steps=log_interval, |
|
**kwargs, |
|
) |
|
if logger_name == "tensorboard": |
|
return TensorBoardLogger( |
|
root_dir=(out_dir / "logs"), name="tensorboard", **kwargs |
|
) |
|
if logger_name == "wandb": |
|
return WandbLogger(project=name, resume=resume, **kwargs) |
|
raise ValueError( |
|
f"`--logger_name={logger_name}` is not a valid option. Choose from 'csv', 'tensorboard', 'wandb'." |
|
) |
|
|
|
|
|
def get_argument_names(cls): |
|
sig = inspect.signature(cls.__init__) |
|
return { |
|
name |
|
for name, param in sig.parameters.items() |
|
if param.kind |
|
in [inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY] |
|
} |
|
|
|
|
|
def instantiate_bnb_optimizer(optimizer, model_parameters): |
|
if (isinstance(optimizer, str) and "AdamW" not in optimizer) or ( |
|
isinstance(optimizer, dict) and "AdamW" not in optimizer.get("class_path", "") |
|
): |
|
raise ValueError( |
|
"The chosen quantization format only supports the AdamW optimizer." |
|
) |
|
|
|
import bitsandbytes as bnb |
|
|
|
if isinstance(optimizer, str): |
|
optimizer = bnb.optim.PagedAdamW(model_parameters) |
|
else: |
|
optim_args = get_argument_names(bnb.optim.PagedAdamW) |
|
allowed_kwargs = { |
|
key: optimizer["init_args"][key] |
|
for key in optim_args & optimizer["init_args"].keys() |
|
} |
|
optimizer = bnb.optim.PagedAdamW(model_parameters, **allowed_kwargs) |
|
return optimizer |
|
|
|
|
|
def instantiate_torch_optimizer(optimizer, model_parameters, **kwargs): |
|
if isinstance(optimizer, str): |
|
optimizer_cls = getattr(torch.optim, optimizer) |
|
optimizer = optimizer_cls(model_parameters, **kwargs) |
|
else: |
|
optimizer = dict(optimizer) |
|
optimizer["init_args"].update(kwargs) |
|
optimizer = instantiate_class(model_parameters, optimizer) |
|
return optimizer |
|
|
|
|
|
def extend_checkpoint_dir(checkpoint_dir: Path) -> Path: |
|
new_checkpoint_dir = "checkpoints" / checkpoint_dir |
|
should_return_new_dir = ( |
|
not checkpoint_dir.is_dir() |
|
and checkpoint_dir.parts[0] != "checkpoints" |
|
and not checkpoint_dir.is_absolute() |
|
and new_checkpoint_dir.exists() |
|
) |
|
return new_checkpoint_dir if should_return_new_dir else checkpoint_dir |
|
|