|
|
|
|
|
"""Full definition of a decoder-only transformer-based language model, all of it in this single file. |
|
|
|
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and |
|
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model. |
|
""" |
|
|
|
import math |
|
from typing import Any, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from typing_extensions import Self |
|
from litgpt.config import Config |
|
|
|
|
|
class GPT(nn.Module): |
|
def __init__(self, config: Config) -> None: |
|
super().__init__() |
|
assert config.padded_vocab_size is not None |
|
self.config = config |
|
if self.config.asr_adapter == "mlp": |
|
print("Using MLP adapter for ASR feature") |
|
self.whisper_adapter = nn.Linear(config.whisper_adapter_dim, config.n_embd) |
|
elif self.config.asr_adapter == "llamamlp": |
|
print("using LLAMA MLP adapter for ASR feature") |
|
self.whisper_adapter = whisperMLP(config=config) |
|
else: |
|
raise ValueError("asr_adapter should be mlp or llamamlp") |
|
self.lm_head = nn.Linear( |
|
config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias |
|
) |
|
if config.post_adapter: |
|
self.transformer = nn.ModuleDict( |
|
dict( |
|
wte=nn.Embedding(config.padded_vocab_size, config.n_embd), |
|
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)), |
|
post_adapter=nn.ModuleList( |
|
Block(config) for _ in range(config.post_adapter_layers) |
|
), |
|
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), |
|
post_adapter_audio_ln=config.norm_class( |
|
config.n_embd, eps=config.norm_eps |
|
), |
|
post_adapter_audio_lm_head=nn.Linear( |
|
config.n_embd, config.cat_audio_vocab_size, bias=config.lm_head_bias |
|
), |
|
) |
|
) |
|
else: |
|
self.transformer = nn.ModuleDict( |
|
dict( |
|
wte=nn.Embedding(config.padded_vocab_size, config.n_embd), |
|
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)), |
|
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), |
|
) |
|
) |
|
self.max_seq_length = self.config.block_size |
|
self.mask_cache: Optional[torch.Tensor] = None |
|
if config.tie_word_embeddings: |
|
self.lm_head.weight = self.transformer.wte.weight |
|
|
|
@property |
|
def max_seq_length(self) -> int: |
|
return self._max_seq_length |
|
|
|
@max_seq_length.setter |
|
def max_seq_length(self, value: int) -> None: |
|
""" |
|
When doing inference, the sequences used might be shorter than the model's context length. |
|
This allows setting a smaller number to avoid allocating unused memory |
|
""" |
|
if value > self.config.block_size: |
|
raise ValueError( |
|
f"Cannot attend to {value}, block size is only {self.config.block_size}" |
|
) |
|
self._max_seq_length = value |
|
if not hasattr(self, "cos"): |
|
|
|
cos, sin = self.rope_cache() |
|
self.register_buffer("cos", cos, persistent=False) |
|
self.register_buffer("sin", sin, persistent=False) |
|
|
|
elif value != self.cos.size(0): |
|
self.cos, self.sin = self.rope_cache(device=self.cos.device) |
|
|
|
|
|
|
|
def reset_parameters(self) -> None: |
|
|
|
self.cos, self.sin = self.rope_cache(device=self.cos.device) |
|
|
|
def _init_weights(self, module: nn.Module) -> None: |
|
"""Meant to be used with `gpt.apply(gpt._init_weights)`.""" |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def concat_whisper_feat(self, audio_feature, input_ids, T, task): |
|
for j in range(len(T)): |
|
if task[j] != "T1T2" and task[j] != "T1A2": |
|
for i in range(7): |
|
input_ids[i][j, 1 : T[j] + 1, :] = audio_feature[j][: T[j]].clone() |
|
else: |
|
continue |
|
return input_ids |
|
|
|
def forward( |
|
self, |
|
audio_features: torch.Tensor, |
|
input_ids: torch.Tensor, |
|
input_pos: Optional[torch.Tensor] = None, |
|
whisper_lens: Optional[list] = None, |
|
task: Optional[str] = None, |
|
) -> torch.Tensor: |
|
|
|
show = False |
|
T = input_ids[0].size(1) |
|
if self.max_seq_length < T: |
|
raise ValueError( |
|
f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}." |
|
) |
|
|
|
if input_pos is not None: |
|
cos = self.cos.index_select(0, input_pos) |
|
sin = self.sin.index_select(0, input_pos) |
|
if self.mask_cache is None: |
|
raise TypeError("You need to call `gpt.set_kv_cache()`") |
|
mask = self.mask_cache.index_select(2, input_pos) |
|
else: |
|
cos = self.cos[:T] |
|
sin = self.sin[:T] |
|
mask = None |
|
|
|
if audio_features is not None: |
|
|
|
x_a = self.whisper_adapter(audio_features) |
|
|
|
x0, x1, x2, x3, x4, x5, x6, x7 = input_ids |
|
|
|
x0 = self.transformer.wte(x0) |
|
x1 = self.transformer.wte(x1) |
|
x2 = self.transformer.wte(x2) |
|
x3 = self.transformer.wte(x3) |
|
x4 = self.transformer.wte(x4) |
|
x5 = self.transformer.wte(x5) |
|
x6 = self.transformer.wte(x6) |
|
x7 = self.transformer.wte(x7) |
|
|
|
|
|
input_emb = self.concat_whisper_feat( |
|
x_a, [x0, x1, x2, x3, x4, x5, x6, x7], whisper_lens, task |
|
) |
|
x0, x1, x2, x3, x4, x5, x6, x7 = input_emb |
|
|
|
else: |
|
x0, x1, x2, x3, x4, x5, x6, x7 = input_ids |
|
|
|
x0 = self.transformer.wte(x0) |
|
x1 = self.transformer.wte(x1) |
|
x2 = self.transformer.wte(x2) |
|
x3 = self.transformer.wte(x3) |
|
x4 = self.transformer.wte(x4) |
|
x5 = self.transformer.wte(x5) |
|
x6 = self.transformer.wte(x6) |
|
x7 = self.transformer.wte(x7) |
|
|
|
x = (x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7) / 8 |
|
|
|
if self.config.scale_embeddings: |
|
x = x * (self.config.n_embd**0.5) |
|
|
|
for block in self.transformer.h: |
|
x = block(x, cos, sin, mask, input_pos) |
|
|
|
|
|
text_vocab_size = self.config.text_vocab_size |
|
audio_vocab_size = self.config.audio_vocab_size |
|
|
|
x_ori = x |
|
x_ori = self.transformer.ln_f(x_ori) |
|
x_ori = self.lm_head(x_ori) |
|
xt = x_ori[..., :text_vocab_size] |
|
|
|
if self.config.post_adapter: |
|
for block in self.transformer.post_adapter: |
|
x = block(x, cos, sin, mask, input_pos) |
|
x = self.transformer.post_adapter_audio_ln(x) |
|
x = self.transformer.post_adapter_audio_lm_head(x) |
|
xa = [] |
|
for i in range(7): |
|
xa.append(x[..., audio_vocab_size * i : audio_vocab_size * (i + 1)]) |
|
else: |
|
xa = [] |
|
for i in range(7): |
|
xa.append(x_ori[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)]) |
|
|
|
return xa, xt |
|
|
|
@classmethod |
|
def from_name(cls, name: str, **kwargs: Any) -> Self: |
|
return cls(Config.from_name(name, **kwargs)) |
|
|
|
def rope_cache( |
|
self, device: Optional[torch.device] = None |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
return build_rope_cache( |
|
seq_len=self.max_seq_length, |
|
n_elem=self.config.rope_n_elem, |
|
device=device, |
|
condense_ratio=self.config.rope_condense_ratio, |
|
base=self.config.rope_base, |
|
) |
|
|
|
def set_kv_cache( |
|
self, |
|
batch_size: int, |
|
rope_cache_length: Optional[int] = None, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> None: |
|
if rope_cache_length is None: |
|
rope_cache_length = self.cos.size(-1) |
|
max_seq_length = self.max_seq_length |
|
|
|
|
|
for block in self.transformer.h: |
|
block.attn.kv_cache = block.attn.build_kv_cache( |
|
batch_size, max_seq_length, rope_cache_length, device, dtype |
|
) |
|
if self.config.post_adapter: |
|
for block in self.transformer.post_adapter: |
|
block.attn.kv_cache = block.attn.build_kv_cache( |
|
batch_size, max_seq_length, rope_cache_length, device, dtype |
|
) |
|
|
|
if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length: |
|
|
|
|
|
self.mask_cache = build_mask_cache(max_seq_length, device) |
|
|
|
def clear_kv_cache(self) -> None: |
|
self.mask_cache = None |
|
for block in self.transformer.h: |
|
block.attn.kv_cache = None |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, config: Config) -> None: |
|
super().__init__() |
|
if not config.parallel_residual and config.shared_attention_norm: |
|
raise NotImplementedError( |
|
"No checkpoint amongst the ones we support uses this configuration" |
|
" (non-parallel residual and shared attention norm)." |
|
) |
|
|
|
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps) |
|
self.attn = CausalSelfAttention(config) |
|
self.norm_2 = ( |
|
None |
|
if config.shared_attention_norm |
|
else config.norm_class(config.n_embd, eps=config.norm_eps) |
|
) |
|
self.mlp = config.mlp_class(config) |
|
|
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
cos: torch.Tensor, |
|
sin: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
input_pos: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Non-parallel residual Parallel residual |
|
┌─ x ┌─ x ────────────┐ Note: if `shared_attention_norm` is True, |
|
│ ↓ │ ↓ ↓ the output from `norm_1` is reused |
|
│ norm_1 │ norm_1 ───► norm_2 |
|
│ ↓ │ ↓ ↓ |
|
│ attn │ attn mlp |
|
│ ↓ │ ↓ │ |
|
┌─ └► + └► + ◄───────────┘ |
|
│ norm_2 |
|
│ ↓ |
|
│ mlp |
|
│ ↓ |
|
└───► + |
|
""" |
|
|
|
x_normed = self.norm_1(x) |
|
attention_output = self.attn(x_normed, cos, sin, mask, input_pos) |
|
|
|
if self.config.parallel_residual: |
|
x_normed = x_normed if self.config.shared_attention_norm else self.norm_2(x) |
|
x = self.mlp(x_normed) + attention_output + x |
|
else: |
|
x = attention_output + x |
|
x = self.mlp(self.norm_2(x)) + x |
|
return x |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config: Config) -> None: |
|
super().__init__() |
|
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size |
|
|
|
self.attn = nn.Linear(config.n_embd, shape, bias=config.add_qkv_bias) |
|
|
|
|
|
self.proj = nn.Linear( |
|
config.head_size * config.n_head, config.n_embd, bias=config.bias |
|
) |
|
|
|
self.kv_cache: Optional[KVCache] = None |
|
|
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
cos: torch.Tensor, |
|
sin: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
input_pos: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
B, T, C = ( |
|
x.size() |
|
) |
|
|
|
qkv = self.attn(x) |
|
|
|
|
|
q_per_kv = self.config.n_head // self.config.n_query_groups |
|
total_qkv = q_per_kv + 2 |
|
qkv = qkv.view( |
|
B, T, self.config.n_query_groups, total_qkv, self.config.head_size |
|
) |
|
qkv = qkv.permute(0, 2, 3, 1, 4) |
|
|
|
|
|
q, k, v = qkv.split((q_per_kv, 1, 1), dim=2) |
|
|
|
|
|
|
|
|
|
if self.config.n_query_groups != self.config.n_head and ( |
|
input_pos is None or self.config.n_query_groups != 1 |
|
): |
|
k = k.expand( |
|
B, self.config.n_query_groups, q_per_kv, T, self.config.head_size |
|
) |
|
v = v.expand( |
|
B, self.config.n_query_groups, q_per_kv, T, self.config.head_size |
|
) |
|
|
|
q = q.reshape(B, -1, T, self.config.head_size) |
|
k = k.reshape(B, -1, T, self.config.head_size) |
|
v = v.reshape(B, -1, T, self.config.head_size) |
|
|
|
q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin) |
|
k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin) |
|
q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1) |
|
k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1) |
|
|
|
if input_pos is not None: |
|
if not isinstance(self.kv_cache, KVCache): |
|
raise TypeError("You need to call `gpt.set_kv_cache()`") |
|
k, v = self.kv_cache(input_pos, k, v) |
|
|
|
y = self.scaled_dot_product_attention(q, k, v, mask) |
|
|
|
y = y.reshape( |
|
B, T, self.config.head_size * self.config.n_head |
|
) |
|
|
|
|
|
return self.proj(y) |
|
|
|
def scaled_dot_product_attention( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
scale = 1.0 / math.sqrt(self.config.head_size) |
|
y = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None |
|
) |
|
return y.transpose(1, 2) |
|
|
|
def build_kv_cache( |
|
self, |
|
batch_size: int, |
|
max_seq_length: int, |
|
rope_cache_length: Optional[int] = None, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> "KVCache": |
|
heads = 1 if self.config.n_query_groups == 1 else self.config.n_head |
|
v_shape = (batch_size, heads, max_seq_length, self.config.head_size) |
|
if rope_cache_length is None: |
|
if self.config.rotary_percentage != 1.0: |
|
raise TypeError( |
|
"Please pass the `rope_cache_length=gpt.cos.size(-1)` value" |
|
) |
|
k_shape = v_shape |
|
else: |
|
k_shape = ( |
|
batch_size, |
|
heads, |
|
max_seq_length, |
|
rope_cache_length + self.config.head_size - self.config.rope_n_elem, |
|
) |
|
return KVCache(k_shape, v_shape, device=device, dtype=dtype) |
|
|
|
|
|
class GptNeoxMLP(nn.Module): |
|
def __init__(self, config: Config) -> None: |
|
super().__init__() |
|
self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) |
|
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) |
|
|
|
self.config = config |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.fc(x) |
|
x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate) |
|
return self.proj(x) |
|
|
|
|
|
class LLaMAMLP(nn.Module): |
|
def __init__(self, config: Config) -> None: |
|
super().__init__() |
|
self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) |
|
self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) |
|
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) |
|
|
|
self.config = config |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x_fc_1 = self.fc_1(x) |
|
x_fc_2 = self.fc_2(x) |
|
x = torch.nn.functional.silu(x_fc_1) * x_fc_2 |
|
return self.proj(x) |
|
|
|
|
|
class whisperMLP(nn.Module): |
|
def __init__(self, config: Config) -> None: |
|
super().__init__() |
|
self.fc_1 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias) |
|
self.fc_2 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias) |
|
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) |
|
|
|
self.config = config |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x_fc_1 = self.fc_1(x) |
|
x_fc_2 = self.fc_2(x) |
|
x = torch.nn.functional.silu(x_fc_1) * x_fc_2 |
|
return self.proj(x) |
|
|
|
|
|
class GemmaMLP(LLaMAMLP): |
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x_fc_1 = self.fc_1(x) |
|
x_fc_2 = self.fc_2(x) |
|
x = ( |
|
torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate) |
|
* x_fc_2 |
|
) |
|
return self.proj(x) |
|
|
|
|
|
class LLaMAMoE(nn.Module): |
|
def __init__(self, config: Config) -> None: |
|
super().__init__() |
|
self.gate = nn.Linear(config.n_embd, config.n_expert, bias=False) |
|
self.experts = nn.ModuleList(LLaMAMLP(config) for _ in range(config.n_expert)) |
|
|
|
self.config = config |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Derived from: https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219 |
|
See also figure 1 in https://arxiv.org/abs/2211.15841 |
|
""" |
|
B, T, C = ( |
|
x.size() |
|
) |
|
x = x.view(-1, C) |
|
router = self.gate(x) |
|
probs, indices = torch.topk( |
|
router, self.config.n_expert_per_token |
|
) |
|
probs = probs.softmax(dim=1, dtype=torch.float).to(dtype=x.dtype) |
|
masks = indices.unsqueeze(-1) == torch.arange( |
|
self.config.n_expert, device=x.device |
|
) |
|
masks = masks.permute(2, 0, 1) |
|
y = torch.zeros_like(x) |
|
for mask, expert in zip(masks, self.experts): |
|
token_idx, expert_idx = torch.where(mask) |
|
y[token_idx] += probs[token_idx, expert_idx, None] * expert(x[token_idx]) |
|
return y.view(B, T, C) |
|
|
|
|
|
def build_rope_cache( |
|
seq_len: int, |
|
n_elem: int, |
|
device: Optional[torch.device] = None, |
|
base: int = 10000, |
|
condense_ratio: int = 1, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Enhanced Transformer with Rotary Position Embedding. |
|
|
|
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ |
|
transformers/rope/__init__.py. MIT License: |
|
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. |
|
""" |
|
|
|
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem)) |
|
|
|
|
|
seq_idx = torch.arange(seq_len, device=device) / condense_ratio |
|
|
|
|
|
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2) |
|
|
|
return torch.cos(idx_theta), torch.sin(idx_theta) |
|
|
|
|
|
def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: |
|
head_size = x.size(-1) |
|
x1 = x[..., : head_size // 2] |
|
x2 = x[..., head_size // 2 :] |
|
rotated = torch.cat((-x2, x1), dim=-1) |
|
roped = (x * cos) + (rotated * sin) |
|
return roped.to(dtype=x.dtype) |
|
|
|
|
|
class KVCache(nn.Module): |
|
def __init__( |
|
self, |
|
k_shape: Tuple[int, int, int, int], |
|
v_shape: Tuple[int, int, int, int], |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> None: |
|
super().__init__() |
|
self.register_buffer( |
|
"k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False |
|
) |
|
self.register_buffer( |
|
"v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False |
|
) |
|
|
|
def forward( |
|
self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
self.k = self.k.to(k.dtype) |
|
self.v = self.v.to(v.dtype) |
|
|
|
k = self.k.index_copy_(2, input_pos, k) |
|
v = self.v.index_copy_(2, input_pos, v) |
|
return k, v |
|
|
|
def reset_parameters(self) -> None: |
|
torch.nn.init.zeros_(self.k) |
|
torch.nn.init.zeros_(self.v) |
|
|
|
|
|
def build_mask_cache( |
|
max_seq_length: int, device: Optional[torch.device] = None |
|
) -> torch.Tensor: |
|
ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool) |
|
return torch.tril(ones).unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
"""Root Mean Square Layer Normalization. |
|
|
|
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: |
|
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE. |
|
""" |
|
|
|
def __init__( |
|
self, size: int, dim: int = -1, eps: float = 1e-6, add_unit_offset: bool = False |
|
) -> None: |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.ones(size)) |
|
self.eps = eps |
|
self.dim = dim |
|
self.add_unit_offset = add_unit_offset |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
dtype = x.dtype |
|
x = x.float() |
|
|
|
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True) |
|
x_normed = x * torch.rsqrt(norm_x + self.eps) |
|
x_normed = x_normed.to(dtype=dtype) |
|
if self.add_unit_offset: |
|
|
|
|
|
return x_normed * (1 + self.weight) |
|
return x_normed * self.weight |
|
|
|
def reset_parameters(self) -> None: |
|
torch.nn.init.ones_(self.weight) |
|
|