import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('export.pkl') categories = ('Lego Ninjago','Lego (non Ninjago)') def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return dict(zip(categories, map(float,probs))) title = "Lego Classifier" description = "Classifies Lego into 'Ninjago' and 'Non Ninjago' with fastai. Created from the fastai demo for Gradio and HuggingFace Spaces." #article = "
" examples = ['ninjago.jpg', 'lego_nn.jpg'] interpretation = 'default' enable_queue = True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=2), title=title, description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()