#!/usr/bin/env python import functools import os import pathlib import cv2 import dlib import gradio as gr import huggingface_hub import numpy as np import pretrainedmodels import torch import torch.nn as nn import torch.nn.functional as F DESCRIPTION = '# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)' print("Current directory:", os.getcwd()) print("Files in the current directory:", os.listdir('.')) ssd_net = cv2.dnn.readNetFromCaffe('deploy.prototxt', 'res10_300x300_ssd_iter_140000.caffemodel') def get_model(model_name='se_resnext50_32x4d', num_classes=101, pretrained='imagenet'): model = pretrainedmodels.__dict__[model_name](pretrained=pretrained) dim_feats = model.last_linear.in_features model.last_linear = nn.Linear(dim_feats, num_classes) model.avg_pool = nn.AdaptiveAvgPool2d(1) return model def load_model(device): model = get_model(model_name='se_resnext50_32x4d', pretrained=None) path = huggingface_hub.hf_hub_download( 'public-data/yu4u-age-estimation-pytorch', 'pretrained.pth') model.load_state_dict(torch.load(path)) model = model.to(device) model.eval() return model def load_image(path): image = cv2.imread(path) return image def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=0.8, thickness=1): size = cv2.getTextSize(label, font, font_scale, thickness)[0] x, y = point cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED) cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA) def detect_faces_ssd(image): (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) ssd_net.setInput(blob) detections = ssd_net.forward() faces = [] # Loop over the detections for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.5: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) faces.append(box.astype("int")) return faces @torch.inference_mode() def predict(image_path, model, device, margin=0.4, input_size=224): image = cv2.imread(image_path) image_h, image_w = image.shape[:2] # Detect faces using SSD detector faces_boxes = detect_faces_ssd(image) age_data = [] if len(faces_boxes) > 0: for i, (startX, startY, endX, endY) in enumerate(faces_boxes): # Compute face region dimensions w = endX - startX h = endY - startY xw1 = max(int(startX - margin * w), 0) yw1 = max(int(startY - margin * h), 0) xw2 = min(int(endX + margin * w), image_w - 1) yw2 = min(int(endY + margin * h), image_h - 1) # Crop and resize face region face = cv2.resize(image[yw1:yw2 + 1, xw1:xw2 + 1], (input_size, input_size)) # predict ages input_blob = torch.from_numpy(np.transpose(face.astype(np.float32), (2, 0, 1))).unsqueeze(0).to(device) output = F.softmax(model(input_blob), dim=-1).cpu().numpy() ages = np.arange(0, 101) predicted_age = (output * ages).sum(axis=-1).item() # Convert to native Python datatype # draw results age_text = f'{int(predicted_age)}' age_data.append({ 'age': int(predicted_age), # Ensure this is a native Python int, not numpy int64 'text': age_text, 'face_coordinates': (int(startX), int(startY)) # Convert to native Python datatype }) # Optionally, draw bounding boxes and age labels on the image # cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2) # cv2.putText(image, age_text, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2) return age_data def main(): device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = load_model(device) fn = functools.partial(predict, model=model, device=device) image_dir = pathlib.Path('sample_images') examples = [path.as_posix() for path in sorted(image_dir.glob('*.jpg'))] demo = gr.Interface( fn=fn, inputs=gr.inputs.Image(type="filepath"), outputs="json", examples=examples, title="Age Estimation", description=DESCRIPTION, cache_examples=os.getenv('CACHE_EXAMPLES') == '1' ) demo.launch() if __name__ == '__main__': main()