Spaces:
Runtime error
Runtime error
Update streamlit_app.py
Browse files- streamlit_app.py +447 -156
streamlit_app.py
CHANGED
|
@@ -1,13 +1,15 @@
|
|
| 1 |
-
import io
|
| 2 |
import os
|
| 3 |
from datetime import datetime, date
|
| 4 |
from typing import Dict, List, Optional, Tuple
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
import pandas as pd
|
| 7 |
import plotly.express as px
|
| 8 |
import streamlit as st
|
| 9 |
|
| 10 |
-
|
| 11 |
# -----------------------------
|
| 12 |
# App Configuration
|
| 13 |
# -----------------------------
|
|
@@ -18,7 +20,6 @@ st.set_page_config(
|
|
| 18 |
initial_sidebar_state="expanded",
|
| 19 |
)
|
| 20 |
|
| 21 |
-
|
| 22 |
# -----------------------------
|
| 23 |
# Utilities
|
| 24 |
# -----------------------------
|
|
@@ -66,6 +67,7 @@ def find_column(df: pd.DataFrame, candidates: List[str]) -> Optional[str]:
|
|
| 66 |
return norm_to_col[n]
|
| 67 |
return None
|
| 68 |
|
|
|
|
| 69 |
def infer_pandas_types(df: pd.DataFrame) -> Dict[str, str]:
|
| 70 |
"""Return a mapping of column -> inferred logical type: 'categorical' | 'numeric' | 'date' | 'text'."""
|
| 71 |
type_map: Dict[str, str] = {}
|
|
@@ -166,11 +168,94 @@ def chart_card(title: str, fig):
|
|
| 166 |
|
| 167 |
|
| 168 |
def inject_base_css():
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
css = f.read()
|
| 171 |
st.markdown(f"<style>{css}</style>", unsafe_allow_html=True)
|
| 172 |
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
def set_theme_variables(mode: str):
|
| 175 |
# Adjust CSS variables for light/dark for cards and text; Plotly handled via template
|
| 176 |
palette = {
|
|
@@ -230,8 +315,16 @@ def sidebar_controls() -> Tuple[Optional[pd.DataFrame], Dict[str, str], str, Dic
|
|
| 230 |
# Ensure unique column names
|
| 231 |
if pd.Index(df.columns).has_duplicates:
|
| 232 |
df.columns = make_unique_columns(list(df.columns))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
except Exception as e:
|
| 234 |
st.sidebar.error(f"Erreur de lecture du fichier: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
logical_types: Dict[str, str] = {}
|
| 237 |
coercions: Dict[str, str] = {}
|
|
@@ -306,31 +399,22 @@ def sidebar_controls() -> Tuple[Optional[pd.DataFrame], Dict[str, str], str, Dic
|
|
| 306 |
unique_keys = st.sidebar.multiselect(
|
| 307 |
"Champs d'unicité (sélection multiple)", options=list(df.columns), default=suggested, help="Sélectionnez les champs qui identifient de façon unique une personne."
|
| 308 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
return df, logical_types, theme_mode, coercions, unique_keys
|
| 311 |
|
| 312 |
|
| 313 |
# -----------------------------
|
| 314 |
-
#
|
| 315 |
# -----------------------------
|
| 316 |
-
def
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
col_logo, col_title, col_right = st.columns([1, 3, 1])
|
| 321 |
-
with col_logo:
|
| 322 |
-
logo_path = os.path.join("assets", "logo.png")
|
| 323 |
-
if os.path.exists(logo_path):
|
| 324 |
-
st.image(logo_path, width=72)
|
| 325 |
-
with col_title:
|
| 326 |
-
st.markdown("<h1 style='text-align:center; margin-top: 0;'>Tableau de bord des inscriptions</h1>", unsafe_allow_html=True)
|
| 327 |
-
with col_right:
|
| 328 |
-
st.write("")
|
| 329 |
-
|
| 330 |
-
df, type_map, theme_mode, _, unique_keys = sidebar_controls()
|
| 331 |
-
plotly_template = get_plotly_template(theme_mode)
|
| 332 |
-
|
| 333 |
-
if df is None or df.empty:
|
| 334 |
st.markdown(
|
| 335 |
"""
|
| 336 |
<div class="card">
|
|
@@ -346,14 +430,18 @@ def main():
|
|
| 346 |
)
|
| 347 |
return
|
| 348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
# Filters (dynamic for all columns)
|
| 350 |
st.sidebar.markdown("---")
|
| 351 |
filtered_df = dynamic_filters(df, type_map)
|
| 352 |
|
| 353 |
# Optional unique-person filtering using selected keys
|
| 354 |
st.sidebar.markdown("### 👤 Filtrer par personne unique")
|
| 355 |
-
if 'unique_keys' not in locals():
|
| 356 |
-
unique_keys = []
|
| 357 |
if unique_keys:
|
| 358 |
person_filter = st.sidebar.checkbox("Activer le filtre d'unicité (drop_duplicates)", value=False, key="unique_filter_toggle")
|
| 359 |
keep_strategy = st.sidebar.selectbox("Conserver", options=["first", "last"], index=0, key="unique_filter_keep")
|
|
@@ -363,6 +451,9 @@ def main():
|
|
| 363 |
except Exception:
|
| 364 |
st.sidebar.warning("Impossible d'appliquer le filtre d'unicité. Vérifiez les champs choisis.")
|
| 365 |
|
|
|
|
|
|
|
|
|
|
| 366 |
# KPIs
|
| 367 |
total_count = len(filtered_df)
|
| 368 |
total_columns = filtered_df.shape[1]
|
|
@@ -441,7 +532,7 @@ def main():
|
|
| 441 |
chart_card("Répartition (dimension 2)", fig_country)
|
| 442 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 443 |
|
| 444 |
-
# Charts row 2: Status distribution
|
| 445 |
charts_row_2 = st.columns(2)
|
| 446 |
if cat_cols_all and not filtered_df.empty:
|
| 447 |
dim3 = st.selectbox("Dimension 3", options=cat_cols_all, key="rep_dim3")
|
|
@@ -459,15 +550,50 @@ def main():
|
|
| 459 |
with charts_row_2[0]:
|
| 460 |
chart_card("Répartition (dimension 3)", fig_status)
|
| 461 |
|
| 462 |
-
#
|
| 463 |
-
|
|
|
|
|
|
|
| 464 |
|
| 465 |
-
#
|
| 466 |
-
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
# Ad-hoc analysis builder
|
| 470 |
-
st.markdown("<div class=\"card\"><div class=\"card-title\">Zone d
|
| 471 |
cat_cols = [c for c in filtered_df.columns if type_map.get(c) in ("categorical", "text")]
|
| 472 |
if cat_cols:
|
| 473 |
ac1, ac2, ac3 = st.columns([2,1,1])
|
|
@@ -486,45 +612,112 @@ def main():
|
|
| 486 |
st.plotly_chart(fig, use_container_width=True, theme=None)
|
| 487 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 488 |
|
| 489 |
-
|
| 490 |
# Drilldown option (simple): filtrer sur une dimension/valeur
|
|
|
|
| 491 |
dd_cols = cat_cols
|
| 492 |
dd1, dd2 = st.columns([1,2])
|
| 493 |
with dd1:
|
| 494 |
dd_dim = st.selectbox("Drilldown - dimension", options=[None] + dd_cols)
|
|
|
|
|
|
|
| 495 |
if dd_dim:
|
| 496 |
values = [x for x in filtered_df[dd_dim].dropna().astype(str).unique()]
|
| 497 |
with dd2:
|
| 498 |
dd_val = st.selectbox("Valeur", options=[None] + values)
|
| 499 |
if dd_val:
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
search_query = st.text_input("Recherche globale")
|
| 503 |
-
df_searched = apply_search(
|
| 504 |
st.dataframe(df_searched, use_container_width=True, hide_index=True)
|
|
|
|
| 505 |
|
| 506 |
-
#
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 527 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
# Universal Chart Builder
|
| 529 |
st.markdown("<div class=\"card\"><div class=\"card-title\">Constructeur de graphiques</div>", unsafe_allow_html=True)
|
| 530 |
chart_types = [
|
|
@@ -624,112 +817,210 @@ def main():
|
|
| 624 |
st.plotly_chart(fig, use_container_width=True, theme=None)
|
| 625 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 626 |
|
| 627 |
-
# Decision Maker View (field-aware, optional)
|
| 628 |
-
st.markdown("<div class=\"card\"><div class=\"card-title\">Vue Décideur (si champs disponibles)</div>", unsafe_allow_html=True)
|
| 629 |
-
# Candidate fields based on provided list
|
| 630 |
-
col_email = find_column(filtered_df, ["Email"]) or find_column(filtered_df, ["E-mail"])
|
| 631 |
-
col_gender = find_column(filtered_df, ["Genre", "Autre genre (Veuillez préciser) : "])
|
| 632 |
-
col_nat = find_column(filtered_df, ["Nationalité"])
|
| 633 |
-
col_country = find_column(filtered_df, ["Pays de résidence"]) or find_column(filtered_df, ["D’où préférez-vous participer à l'événement ?"])
|
| 634 |
-
col_role = find_column(filtered_df, ["Votre profession / statut", "Autre profession (veuillez préciser)"])
|
| 635 |
-
col_aff = find_column(filtered_df, ["Affiliation", "Autre affiliation (Veuillez préciser) : "])
|
| 636 |
-
col_particip = find_column(filtered_df, ["Avez-vous déjà participé à un événement Indaba X Togo ?"])
|
| 637 |
-
col_mode_formation = find_column(filtered_df, ["Comment voulez-vous participer aux formations ?"])
|
| 638 |
-
col_what_do = find_column(filtered_df, ["Que voulez-vous faire ?"])
|
| 639 |
-
col_skills = {
|
| 640 |
-
"Python": find_column(filtered_df, ["Quel est votre niveau en [Python]", "Quel est votre niveau en [Python]"]),
|
| 641 |
-
"Numpy": find_column(filtered_df, ["Quel est votre niveau en [Numpy]", "Quel est votre niveau en [Numpy]"]),
|
| 642 |
-
"Pandas": find_column(filtered_df, ["Quel est votre niveau en [Pandas]", "Quel est votre niveau en [Pandas]"]),
|
| 643 |
-
"Scikit Learn": find_column(filtered_df, ["Quel est votre niveau en [Scikit Learn]", "Quel est votre niveau en [Scikit Learn]"]),
|
| 644 |
-
"Pytorch": find_column(filtered_df, ["Quel est votre niveau en [Pytorch]", "Quel est votre niveau en [Pytorch]"]),
|
| 645 |
-
"Deep Learning": find_column(filtered_df, ["Quel est votre niveau en [Deep Learning]", "Quel est votre niveau en [Deep Learning]"]),
|
| 646 |
-
}
|
| 647 |
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
with
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 668 |
|
| 669 |
-
#
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
fig_c = px.bar(ccounts, x=col_country, y="count", template=get_plotly_template(theme_mode))
|
| 679 |
-
with dm1[1]:
|
| 680 |
-
chart_card("Top 15 pays de résidence", fig_c)
|
| 681 |
|
| 682 |
-
#
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
|
| 695 |
-
#
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
)
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
sm.append(d)
|
| 724 |
-
if sm:
|
| 725 |
-
skill_df = pd.concat(sm, ignore_index=True)
|
| 726 |
-
fig_skill = px.bar(skill_df, x="skill", y="count", color="niveau", barmode="group", template=get_plotly_template(theme_mode))
|
| 727 |
-
chart_card("Niveaux par compétence", fig_skill)
|
| 728 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 730 |
|
| 731 |
|
| 732 |
-
|
| 733 |
-
|
|
|
|
|
|
|
|
|
|
| 734 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 735 |
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
import os
|
| 3 |
from datetime import datetime, date
|
| 4 |
from typing import Dict, List, Optional, Tuple
|
| 5 |
+
import smtplib
|
| 6 |
+
import ssl
|
| 7 |
+
from email.message import EmailMessage
|
| 8 |
|
| 9 |
import pandas as pd
|
| 10 |
import plotly.express as px
|
| 11 |
import streamlit as st
|
| 12 |
|
|
|
|
| 13 |
# -----------------------------
|
| 14 |
# App Configuration
|
| 15 |
# -----------------------------
|
|
|
|
| 20 |
initial_sidebar_state="expanded",
|
| 21 |
)
|
| 22 |
|
|
|
|
| 23 |
# -----------------------------
|
| 24 |
# Utilities
|
| 25 |
# -----------------------------
|
|
|
|
| 67 |
return norm_to_col[n]
|
| 68 |
return None
|
| 69 |
|
| 70 |
+
|
| 71 |
def infer_pandas_types(df: pd.DataFrame) -> Dict[str, str]:
|
| 72 |
"""Return a mapping of column -> inferred logical type: 'categorical' | 'numeric' | 'date' | 'text'."""
|
| 73 |
type_map: Dict[str, str] = {}
|
|
|
|
| 168 |
|
| 169 |
|
| 170 |
def inject_base_css():
|
| 171 |
+
# Créer le dossier assets s'il n'existe pas
|
| 172 |
+
if not os.path.exists("assets"):
|
| 173 |
+
os.makedirs("assets")
|
| 174 |
+
|
| 175 |
+
# Créer le fichier CSS s'il n'existe pas
|
| 176 |
+
css_file = os.path.join("assets", "styles.css")
|
| 177 |
+
if not os.path.exists(css_file):
|
| 178 |
+
with open(css_file, "w", encoding="utf-8") as f:
|
| 179 |
+
f.write("""
|
| 180 |
+
.card {
|
| 181 |
+
background-color: var(--card);
|
| 182 |
+
border-radius: 0.5rem;
|
| 183 |
+
padding: 1rem;
|
| 184 |
+
margin-bottom: 1rem;
|
| 185 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.12), 0 1px 2px rgba(0,0,0,0.24);
|
| 186 |
+
}
|
| 187 |
+
.card-title {
|
| 188 |
+
font-weight: bold;
|
| 189 |
+
font-size: 1.2rem;
|
| 190 |
+
margin-bottom: 0.5rem;
|
| 191 |
+
color: var(--primary);
|
| 192 |
+
}
|
| 193 |
+
.kpi {
|
| 194 |
+
text-align: center;
|
| 195 |
+
padding: 1rem;
|
| 196 |
+
}
|
| 197 |
+
.card-label {
|
| 198 |
+
font-size: 1rem;
|
| 199 |
+
color: var(--muted);
|
| 200 |
+
}
|
| 201 |
+
.card-value {
|
| 202 |
+
font-size: 2rem;
|
| 203 |
+
font-weight: bold;
|
| 204 |
+
color: var(--primary);
|
| 205 |
+
}
|
| 206 |
+
""")
|
| 207 |
+
|
| 208 |
+
# Lire et injecter le CSS
|
| 209 |
+
with open(css_file, "r", encoding="utf-8") as f:
|
| 210 |
css = f.read()
|
| 211 |
st.markdown(f"<style>{css}</style>", unsafe_allow_html=True)
|
| 212 |
|
| 213 |
|
| 214 |
+
def safe_format_template(template: str, row: Dict[str, object]) -> str:
|
| 215 |
+
class SafeDict(dict):
|
| 216 |
+
def __missing__(self, key):
|
| 217 |
+
return ""
|
| 218 |
+
|
| 219 |
+
flat = {str(k): ("" if v is None else str(v)) for k, v in row.items()}
|
| 220 |
+
try:
|
| 221 |
+
return template.format_map(SafeDict(flat))
|
| 222 |
+
except Exception:
|
| 223 |
+
return template
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def send_email_smtp(
|
| 227 |
+
smtp_host: str,
|
| 228 |
+
smtp_port: int,
|
| 229 |
+
sender_email: str,
|
| 230 |
+
sender_password: str,
|
| 231 |
+
use_tls: bool,
|
| 232 |
+
to_email: str,
|
| 233 |
+
subject: str,
|
| 234 |
+
body_text: str,
|
| 235 |
+
reply_to: Optional[str] = None,
|
| 236 |
+
) -> None:
|
| 237 |
+
message = EmailMessage()
|
| 238 |
+
message["From"] = sender_email
|
| 239 |
+
message["To"] = to_email
|
| 240 |
+
message["Subject"] = subject
|
| 241 |
+
if reply_to:
|
| 242 |
+
message["Reply-To"] = reply_to
|
| 243 |
+
message.set_content(body_text)
|
| 244 |
+
|
| 245 |
+
if use_tls:
|
| 246 |
+
context = ssl.create_default_context()
|
| 247 |
+
with smtplib.SMTP(smtp_host, smtp_port) as server:
|
| 248 |
+
server.starttls(context=context)
|
| 249 |
+
if sender_password:
|
| 250 |
+
server.login(sender_email, sender_password)
|
| 251 |
+
server.send_message(message)
|
| 252 |
+
else:
|
| 253 |
+
with smtplib.SMTP_SSL(smtp_host, smtp_port) as server:
|
| 254 |
+
if sender_password:
|
| 255 |
+
server.login(sender_email, sender_password)
|
| 256 |
+
server.send_message(message)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
def set_theme_variables(mode: str):
|
| 260 |
# Adjust CSS variables for light/dark for cards and text; Plotly handled via template
|
| 261 |
palette = {
|
|
|
|
| 315 |
# Ensure unique column names
|
| 316 |
if pd.Index(df.columns).has_duplicates:
|
| 317 |
df.columns = make_unique_columns(list(df.columns))
|
| 318 |
+
|
| 319 |
+
# Stocker dans session state pour les autres onglets
|
| 320 |
+
st.session_state['df'] = df
|
| 321 |
+
st.session_state['filtered_df'] = df.copy()
|
| 322 |
except Exception as e:
|
| 323 |
st.sidebar.error(f"Erreur de lecture du fichier: {e}")
|
| 324 |
+
else:
|
| 325 |
+
# Récupérer les données du session state si disponible
|
| 326 |
+
if 'df' in st.session_state:
|
| 327 |
+
df = st.session_state['df']
|
| 328 |
|
| 329 |
logical_types: Dict[str, str] = {}
|
| 330 |
coercions: Dict[str, str] = {}
|
|
|
|
| 399 |
unique_keys = st.sidebar.multiselect(
|
| 400 |
"Champs d'unicité (sélection multiple)", options=list(df.columns), default=suggested, help="Sélectionnez les champs qui identifient de façon unique une personne."
|
| 401 |
)
|
| 402 |
+
|
| 403 |
+
# Stocker les types et clés dans session state
|
| 404 |
+
st.session_state['logical_types'] = logical_types
|
| 405 |
+
st.session_state['unique_keys'] = unique_keys
|
| 406 |
+
st.session_state['filtered_df'] = df.copy()
|
| 407 |
|
| 408 |
return df, logical_types, theme_mode, coercions, unique_keys
|
| 409 |
|
| 410 |
|
| 411 |
# -----------------------------
|
| 412 |
+
# Page: Tableau de bord
|
| 413 |
# -----------------------------
|
| 414 |
+
def page_tableau_de_bord():
|
| 415 |
+
st.markdown("<h2>📊 Tableau de bord</h2>", unsafe_allow_html=True)
|
| 416 |
+
|
| 417 |
+
if 'df' not in st.session_state or st.session_state['df'] is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
st.markdown(
|
| 419 |
"""
|
| 420 |
<div class="card">
|
|
|
|
| 430 |
)
|
| 431 |
return
|
| 432 |
|
| 433 |
+
df = st.session_state['df']
|
| 434 |
+
type_map = st.session_state.get('logical_types', {})
|
| 435 |
+
unique_keys = st.session_state.get('unique_keys', [])
|
| 436 |
+
theme_mode = "dark" if st.session_state.get('theme_mode') == "dark" else "light"
|
| 437 |
+
plotly_template = get_plotly_template(theme_mode)
|
| 438 |
+
|
| 439 |
# Filters (dynamic for all columns)
|
| 440 |
st.sidebar.markdown("---")
|
| 441 |
filtered_df = dynamic_filters(df, type_map)
|
| 442 |
|
| 443 |
# Optional unique-person filtering using selected keys
|
| 444 |
st.sidebar.markdown("### 👤 Filtrer par personne unique")
|
|
|
|
|
|
|
| 445 |
if unique_keys:
|
| 446 |
person_filter = st.sidebar.checkbox("Activer le filtre d'unicité (drop_duplicates)", value=False, key="unique_filter_toggle")
|
| 447 |
keep_strategy = st.sidebar.selectbox("Conserver", options=["first", "last"], index=0, key="unique_filter_keep")
|
|
|
|
| 451 |
except Exception:
|
| 452 |
st.sidebar.warning("Impossible d'appliquer le filtre d'unicité. Vérifiez les champs choisis.")
|
| 453 |
|
| 454 |
+
# Mettre à jour le dataframe filtré dans session state
|
| 455 |
+
st.session_state['filtered_df'] = filtered_df
|
| 456 |
+
|
| 457 |
# KPIs
|
| 458 |
total_count = len(filtered_df)
|
| 459 |
total_columns = filtered_df.shape[1]
|
|
|
|
| 532 |
chart_card("Répartition (dimension 2)", fig_country)
|
| 533 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 534 |
|
| 535 |
+
# Charts row 2: Status distribution
|
| 536 |
charts_row_2 = st.columns(2)
|
| 537 |
if cat_cols_all and not filtered_df.empty:
|
| 538 |
dim3 = st.selectbox("Dimension 3", options=cat_cols_all, key="rep_dim3")
|
|
|
|
| 550 |
with charts_row_2[0]:
|
| 551 |
chart_card("Répartition (dimension 3)", fig_status)
|
| 552 |
|
| 553 |
+
# Affichage des données
|
| 554 |
+
search_query = st.text_input("Recherche globale", key="search_dashboard")
|
| 555 |
+
df_searched = apply_search(filtered_df, search_query)
|
| 556 |
+
st.dataframe(df_searched, use_container_width=True, hide_index=True)
|
| 557 |
|
| 558 |
+
# Downloads
|
| 559 |
+
csv_bytes = df_searched.to_csv(index=False).encode("utf-8-sig")
|
| 560 |
+
xlsx_bytes = to_excel_bytes(df_searched)
|
| 561 |
+
dc1, dc2 = st.columns(2)
|
| 562 |
+
with dc1:
|
| 563 |
+
st.download_button(
|
| 564 |
+
"Télécharger CSV",
|
| 565 |
+
data=csv_bytes,
|
| 566 |
+
file_name="inscriptions_filtrees.csv",
|
| 567 |
+
mime="text/csv",
|
| 568 |
+
use_container_width=True,
|
| 569 |
+
)
|
| 570 |
+
with dc2:
|
| 571 |
+
st.download_button(
|
| 572 |
+
"Télécharger Excel",
|
| 573 |
+
data=xlsx_bytes,
|
| 574 |
+
file_name="inscriptions_filtrees.xlsx",
|
| 575 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 576 |
+
use_container_width=True,
|
| 577 |
+
)
|
| 578 |
|
| 579 |
+
|
| 580 |
+
# -----------------------------
|
| 581 |
+
# Page: Zone d'analyse
|
| 582 |
+
# -----------------------------
|
| 583 |
+
def page_analyses():
|
| 584 |
+
st.markdown("<h2>📋 Analyses avancées</h2>", unsafe_allow_html=True)
|
| 585 |
+
|
| 586 |
+
if 'filtered_df' not in st.session_state or st.session_state['filtered_df'] is None:
|
| 587 |
+
st.warning("Veuillez d'abord importer et configurer des données dans l'onglet Tableau de bord.")
|
| 588 |
+
return
|
| 589 |
+
|
| 590 |
+
filtered_df = st.session_state['filtered_df']
|
| 591 |
+
type_map = st.session_state.get('logical_types', {})
|
| 592 |
+
theme_mode = "dark" if st.session_state.get('theme_mode') == "dark" else "light"
|
| 593 |
+
plotly_template = get_plotly_template(theme_mode)
|
| 594 |
+
|
| 595 |
# Ad-hoc analysis builder
|
| 596 |
+
st.markdown("<div class=\"card\"><div class=\"card-title\">Zone d'analyse</div>", unsafe_allow_html=True)
|
| 597 |
cat_cols = [c for c in filtered_df.columns if type_map.get(c) in ("categorical", "text")]
|
| 598 |
if cat_cols:
|
| 599 |
ac1, ac2, ac3 = st.columns([2,1,1])
|
|
|
|
| 612 |
st.plotly_chart(fig, use_container_width=True, theme=None)
|
| 613 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 614 |
|
|
|
|
| 615 |
# Drilldown option (simple): filtrer sur une dimension/valeur
|
| 616 |
+
st.markdown("<div class=\"card\"><div class=\"card-title\">Drilldown</div>", unsafe_allow_html=True)
|
| 617 |
dd_cols = cat_cols
|
| 618 |
dd1, dd2 = st.columns([1,2])
|
| 619 |
with dd1:
|
| 620 |
dd_dim = st.selectbox("Drilldown - dimension", options=[None] + dd_cols)
|
| 621 |
+
|
| 622 |
+
drill_df = filtered_df.copy()
|
| 623 |
if dd_dim:
|
| 624 |
values = [x for x in filtered_df[dd_dim].dropna().astype(str).unique()]
|
| 625 |
with dd2:
|
| 626 |
dd_val = st.selectbox("Valeur", options=[None] + values)
|
| 627 |
if dd_val:
|
| 628 |
+
drill_df = filtered_df[filtered_df[dd_dim].astype(str) == dd_val]
|
| 629 |
+
|
| 630 |
+
search_query = st.text_input("Recherche globale", key="search_analysis")
|
| 631 |
+
df_searched = apply_search(drill_df, search_query)
|
| 632 |
st.dataframe(df_searched, use_container_width=True, hide_index=True)
|
| 633 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 634 |
|
| 635 |
+
# Decision Maker View (field-aware, optional)
|
| 636 |
+
st.markdown("<div class=\"card\"><div class=\"card-title\">Vue Décideur (si champs disponibles)</div>", unsafe_allow_html=True)
|
| 637 |
+
# Candidate fields based on provided list
|
| 638 |
+
col_email = find_column(filtered_df, ["Email"]) or find_column(filtered_df, ["E-mail"])
|
| 639 |
+
col_gender = find_column(filtered_df, ["Genre", "Autre genre (Veuillez préciser) : "])
|
| 640 |
+
col_nat = find_column(filtered_df, ["Nationalité"])
|
| 641 |
+
col_country = find_column(filtered_df, ["Pays de résidence"]) or find_column(filtered_df, ["D'où préférez-vous participer à l'événement ?"])
|
| 642 |
+
col_role = find_column(filtered_df, ["Votre profession / statut", "Autre profession (veuillez préciser)"])
|
| 643 |
+
col_aff = find_column(filtered_df, ["Affiliation", "Autre affiliation (Veuillez préciser) : "])
|
| 644 |
+
col_particip = find_column(filtered_df, ["Avez-vous déjà participé à un événement Indaba X Togo ?"])
|
| 645 |
+
col_mode_formation = find_column(filtered_df, ["Comment voulez-vous participer aux formations ?"])
|
| 646 |
+
col_what_do = find_column(filtered_df, ["Que voulez-vous faire ?"])
|
| 647 |
+
col_skills = {
|
| 648 |
+
"Python": find_column(filtered_df, ["Quel est votre niveau en [Python]", "Quel est votre niveau en [Python]"]),
|
| 649 |
+
"Numpy": find_column(filtered_df, ["Quel est votre niveau en [Numpy]", "Quel est votre niveau en [Numpy]"]),
|
| 650 |
+
"Pandas": find_column(filtered_df, ["Quel est votre niveau en [Pandas]", "Quel est votre niveau en [Pandas]"]),
|
| 651 |
+
"Scikit Learn": find_column(filtered_df, ["Quel est votre niveau en [Scikit Learn]", "Quel est votre niveau en [Scikit Learn]"]),
|
| 652 |
+
"Pytorch": find_column(filtered_df, ["Quel est votre niveau en [Pytorch]", "Quel est votre niveau en [Pytorch]"]),
|
| 653 |
+
"Deep Learning": find_column(filtered_df, ["Quel est votre niveau en [Deep Learning]", "Quel est votre niveau en [Deep Learning]"]),
|
| 654 |
+
}
|
| 655 |
+
|
| 656 |
+
# KPIs for decision maker
|
| 657 |
+
kcols = st.columns(4)
|
| 658 |
+
with kcols[0]:
|
| 659 |
+
kpi_card("Inscriptions", f"{len(filtered_df):,}")
|
| 660 |
+
with kcols[1]:
|
| 661 |
+
if col_email:
|
| 662 |
+
uniq_people = filtered_df[col_email].astype(str).str.strip().str.lower().dropna().nunique()
|
| 663 |
+
kpi_card("Personnes uniques (email)", f"{uniq_people:,}")
|
| 664 |
+
else:
|
| 665 |
+
kpi_card("Personnes uniques", "-")
|
| 666 |
+
with kcols[2]:
|
| 667 |
+
if col_country and col_country in filtered_df.columns:
|
| 668 |
+
kpi_card("Pays (distincts)", f"{filtered_df[col_country].astype(str).nunique():,}")
|
| 669 |
+
else:
|
| 670 |
+
kpi_card("Pays (distincts)", "-")
|
| 671 |
+
with kcols[3]:
|
| 672 |
+
if col_role and col_role in filtered_df.columns:
|
| 673 |
+
kpi_card("Profils (distincts)", f"{filtered_df[col_role].astype(str).nunique():,}")
|
| 674 |
+
else:
|
| 675 |
+
kpi_card("Profils (distincts)", "-")
|
| 676 |
+
|
| 677 |
+
# Row 1 charts: Gender, Country
|
| 678 |
+
dm1 = st.columns(2)
|
| 679 |
+
if col_gender and col_gender in filtered_df.columns and not filtered_df.empty:
|
| 680 |
+
gcounts = filtered_df.groupby(col_gender).size().reset_index(name="count").sort_values("count", ascending=False)
|
| 681 |
+
fig_g = px.pie(gcounts, names=col_gender, values="count", template=get_plotly_template(theme_mode), hole=0.35)
|
| 682 |
+
with dm1[0]:
|
| 683 |
+
chart_card("Répartition par genre", fig_g)
|
| 684 |
+
if col_country and col_country in filtered_df.columns and not filtered_df.empty:
|
| 685 |
+
ccounts = filtered_df.groupby(col_country).size().reset_index(name="count").sort_values("count", ascending=False).head(15)
|
| 686 |
+
fig_c = px.bar(ccounts, x=col_country, y="count", template=get_plotly_template(theme_mode))
|
| 687 |
+
with dm1[1]:
|
| 688 |
+
chart_card("Top 15 pays de résidence", fig_c)
|
| 689 |
+
|
| 690 |
+
# Row 2: Participation history and roles
|
| 691 |
+
dm2 = st.columns(2)
|
| 692 |
+
if col_particip and col_particip in filtered_df.columns and not filtered_df.empty:
|
| 693 |
+
pcounts = filtered_df.groupby(col_particip).size().reset_index(name="count")
|
| 694 |
+
fig_p = px.bar(pcounts, x=col_particip, y="count", template=get_plotly_template(theme_mode))
|
| 695 |
+
with dm2[0]:
|
| 696 |
+
chart_card("A déjà participé ?", fig_p)
|
| 697 |
+
if col_role and col_role in filtered_df.columns and not filtered_df.empty:
|
| 698 |
+
rcounts = filtered_df.groupby(col_role).size().reset_index(name="count").sort_values("count", ascending=False).head(15)
|
| 699 |
+
fig_r = px.bar(rcounts, x=col_role, y="count", template=get_plotly_template(theme_mode))
|
| 700 |
+
with dm2[1]:
|
| 701 |
+
chart_card("Professions / Statuts (Top 15)", fig_r)
|
| 702 |
+
|
| 703 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 704 |
|
| 705 |
+
|
| 706 |
+
# -----------------------------
|
| 707 |
+
# Page: Constructeur de graphiques
|
| 708 |
+
# -----------------------------
|
| 709 |
+
def page_constructeur_graphiques():
|
| 710 |
+
st.markdown("<h2>📈 Constructeur de graphiques</h2>", unsafe_allow_html=True)
|
| 711 |
+
|
| 712 |
+
if 'filtered_df' not in st.session_state or st.session_state['filtered_df'] is None:
|
| 713 |
+
st.warning("Veuillez d'abord importer et configurer des données dans l'onglet Tableau de bord.")
|
| 714 |
+
return
|
| 715 |
+
|
| 716 |
+
filtered_df = st.session_state['filtered_df']
|
| 717 |
+
type_map = st.session_state.get('logical_types', {})
|
| 718 |
+
theme_mode = "dark" if st.session_state.get('theme_mode') == "dark" else "light"
|
| 719 |
+
plotly_template = get_plotly_template(theme_mode)
|
| 720 |
+
|
| 721 |
# Universal Chart Builder
|
| 722 |
st.markdown("<div class=\"card\"><div class=\"card-title\">Constructeur de graphiques</div>", unsafe_allow_html=True)
|
| 723 |
chart_types = [
|
|
|
|
| 817 |
st.plotly_chart(fig, use_container_width=True, theme=None)
|
| 818 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 819 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 820 |
|
| 821 |
+
# -----------------------------
|
| 822 |
+
# Page: Envoi d'emails
|
| 823 |
+
# -----------------------------
|
| 824 |
+
def page_emails():
|
| 825 |
+
st.markdown("<h2>✉️ Envoi d'emails</h2>", unsafe_allow_html=True)
|
| 826 |
+
|
| 827 |
+
if 'filtered_df' not in st.session_state or st.session_state['filtered_df'] is None:
|
| 828 |
+
st.warning("Veuillez d'abord importer et configurer des données dans l'onglet Tableau de bord.")
|
| 829 |
+
return
|
| 830 |
+
|
| 831 |
+
filtered_df = st.session_state['filtered_df']
|
| 832 |
+
|
| 833 |
+
# Email Sender Section
|
| 834 |
+
st.markdown("<div class=\"card\"><div class=\"card-title\">✉️ Envoi d'emails (CSV ou données filtrées)</div>", unsafe_allow_html=True)
|
| 835 |
+
ecols1 = st.columns([1, 1])
|
| 836 |
+
with ecols1[0]:
|
| 837 |
+
st.caption("Source des destinataires")
|
| 838 |
+
use_current = st.radio(
|
| 839 |
+
"Choisir la source",
|
| 840 |
+
options=["Données filtrées actuelles", "Importer un CSV/XLSX"],
|
| 841 |
+
horizontal=False,
|
| 842 |
+
index=0,
|
| 843 |
+
key="email_source_choice",
|
| 844 |
+
)
|
| 845 |
+
with ecols1[1]:
|
| 846 |
+
st.caption("Fichier (si import)")
|
| 847 |
+
upload_mail = st.file_uploader("Importer un fichier", type=["csv", "xlsx"], key="email_upload_file")
|
| 848 |
+
|
| 849 |
+
recipients_df: Optional[pd.DataFrame] = None
|
| 850 |
+
if use_current == "Données filtrées actuelles":
|
| 851 |
+
recipients_df = filtered_df.copy()
|
| 852 |
+
else:
|
| 853 |
+
if upload_mail is not None:
|
| 854 |
+
try:
|
| 855 |
+
if upload_mail.name.lower().endswith(".csv"):
|
| 856 |
+
recipients_df = pd.read_csv(upload_mail)
|
| 857 |
+
else:
|
| 858 |
+
recipients_df = pd.read_excel(upload_mail)
|
| 859 |
+
recipients_df.columns = [str(c).strip() for c in recipients_df.columns]
|
| 860 |
+
except Exception as e:
|
| 861 |
+
st.error(f"Erreur de lecture du fichier: {e}")
|
| 862 |
+
|
| 863 |
+
if recipients_df is None or recipients_df.empty:
|
| 864 |
+
st.info("Importez un fichier ou utilisez les données filtrées pour continuer.")
|
| 865 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 866 |
+
return
|
| 867 |
|
| 868 |
+
# Mapping email column
|
| 869 |
+
email_col_guess = find_column(recipients_df, ["email", "e-mail", "mail"]) or ("Email" if "Email" in recipients_df.columns else None)
|
| 870 |
+
email_col = st.selectbox(
|
| 871 |
+
"Colonne email",
|
| 872 |
+
options=list(recipients_df.columns),
|
| 873 |
+
index=(list(recipients_df.columns).index(email_col_guess) if email_col_guess in recipients_df.columns else 0),
|
| 874 |
+
help="Sélectionnez la colonne contenant les adresses email",
|
| 875 |
+
key="email_col_select",
|
| 876 |
+
)
|
|
|
|
|
|
|
|
|
|
| 877 |
|
| 878 |
+
# SMTP settings
|
| 879 |
+
st.markdown("<div class=\"card\" style=\"margin-top: 0.75rem;\"><div class=\"card-title\">Paramètres SMTP</div>", unsafe_allow_html=True)
|
| 880 |
+
s1, s2, s3, s4 = st.columns([1.2, 0.8, 1, 1])
|
| 881 |
+
with s1:
|
| 882 |
+
smtp_host = st.text_input("Hôte SMTP", value=os.environ.get("SMTP_HOST", "smtp.gmail.com"))
|
| 883 |
+
with s2:
|
| 884 |
+
smtp_port = st.number_input("Port", min_value=1, max_value=65535, value=int(os.environ.get("SMTP_PORT", 587)))
|
| 885 |
+
with s3:
|
| 886 |
+
use_tls = st.selectbox("Sécurité", options=["STARTTLS", "SSL"], index=0) == "STARTTLS"
|
| 887 |
+
with s4:
|
| 888 |
+
reply_to = st.text_input("Reply-To (optionnel)", value=os.environ.get("SMTP_REPLY_TO", ""))
|
| 889 |
+
s5, s6 = st.columns([1, 1])
|
| 890 |
+
with s5:
|
| 891 |
+
sender_email = st.text_input("Adresse expéditrice", value=os.environ.get("SMTP_SENDER", ""))
|
| 892 |
+
with s6:
|
| 893 |
+
sender_password = st.text_input("Mot de passe/clé appli", type="password", value=os.environ.get("SMTP_PASSWORD", ""))
|
| 894 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 895 |
|
| 896 |
+
# Composition
|
| 897 |
+
st.markdown("<div class=\"card\" style=\"margin-top: 0.75rem;\"><div class=\"card-title\">Composer le message</div>", unsafe_allow_html=True)
|
| 898 |
+
placeholders = ", ".join([f"{{{c}}}" for c in recipients_df.columns])
|
| 899 |
+
subj = st.text_input("Objet", placeholder="Objet de l'email. Vous pouvez utiliser des variables comme {Nom}")
|
| 900 |
+
body = st.text_area(
|
| 901 |
+
"Corps (texte)",
|
| 902 |
+
height=180,
|
| 903 |
+
placeholder="Bonjour {Prenom} {Nom},\n\nVotre statut: {Statut}\n...",
|
| 904 |
+
help=f"Variables disponibles: {placeholders}",
|
| 905 |
+
)
|
| 906 |
+
st.caption("Astuce: utilisez {NomColonne} pour insérer des champs du CSV.")
|
| 907 |
+
|
| 908 |
+
# Preview first recipient
|
| 909 |
+
pv1, pv2 = st.columns([1, 1])
|
| 910 |
+
with pv1:
|
| 911 |
+
st.subheader("Aperçu des données (5)")
|
| 912 |
+
st.dataframe(recipients_df.head(5), use_container_width=True, hide_index=True)
|
| 913 |
+
with pv2:
|
| 914 |
+
st.subheader("Aperçu email (1er destinataire)")
|
| 915 |
+
try:
|
| 916 |
+
if not recipients_df.empty:
|
| 917 |
+
row0 = recipients_df.iloc[0].to_dict()
|
| 918 |
+
st.write("À:", recipients_df[email_col].iloc[0])
|
| 919 |
+
st.write("Objet:", safe_format_template(subj, row0))
|
| 920 |
+
st.code(safe_format_template(body, row0))
|
| 921 |
+
except Exception:
|
| 922 |
+
st.caption("Impossible de générer l'aperçu.")
|
| 923 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 924 |
|
| 925 |
+
# Sending controls
|
| 926 |
+
st.markdown("<div class=\"card\" style=\"margin-top: 0.75rem;\"><div class=\"card-title\">Envoi</div>", unsafe_allow_html=True)
|
| 927 |
+
c_left, c_mid, c_right = st.columns([1, 1, 1])
|
| 928 |
+
with c_left:
|
| 929 |
+
limit_send = st.number_input("Limiter (0 = tout)", min_value=0, value=0, help="Pour tester, limiter le nombre d'emails envoyés")
|
| 930 |
+
with c_mid:
|
| 931 |
+
start_at = st.number_input("Début à l'index", min_value=0, value=0)
|
| 932 |
+
with c_right:
|
| 933 |
+
confirm = st.checkbox("Je confirme vouloir envoyer ces emails", value=False)
|
| 934 |
+
|
| 935 |
+
do_send = st.button("Envoyer", type="primary", use_container_width=True, disabled=not confirm)
|
| 936 |
+
|
| 937 |
+
if do_send:
|
| 938 |
+
if not sender_email or not smtp_host or not subj or not body:
|
| 939 |
+
st.error("Veuillez remplir l'hôte SMTP, l'adresse expéditrice, l'objet et le corps.")
|
| 940 |
+
else:
|
| 941 |
+
total = len(recipients_df)
|
| 942 |
+
indices = list(range(start_at, total))
|
| 943 |
+
if limit_send and limit_send > 0:
|
| 944 |
+
indices = indices[: int(limit_send)]
|
| 945 |
+
progress = st.progress(0)
|
| 946 |
+
sent_ok = 0
|
| 947 |
+
log_container = st.container()
|
| 948 |
+
for idx_i, i in enumerate(indices, start=1):
|
| 949 |
+
try:
|
| 950 |
+
row = recipients_df.iloc[i]
|
| 951 |
+
to_addr = str(row[email_col]).strip()
|
| 952 |
+
if not to_addr or "@" not in to_addr:
|
| 953 |
+
raise ValueError("Adresse email invalide")
|
| 954 |
+
row_dict = row.to_dict()
|
| 955 |
+
subject_i = safe_format_template(subj, row_dict)
|
| 956 |
+
body_i = safe_format_template(body, row_dict)
|
| 957 |
+
send_email_smtp(
|
| 958 |
+
smtp_host=smtp_host,
|
| 959 |
+
smtp_port=int(smtp_port),
|
| 960 |
+
sender_email=sender_email,
|
| 961 |
+
sender_password=sender_password,
|
| 962 |
+
use_tls=use_tls,
|
| 963 |
+
to_email=to_addr,
|
| 964 |
+
subject=subject_i,
|
| 965 |
+
body_text=body_i,
|
| 966 |
+
reply_to=(reply_to or None),
|
| 967 |
+
)
|
| 968 |
+
sent_ok += 1
|
| 969 |
+
log_container.success(f"Envoyé à {to_addr}")
|
| 970 |
+
except Exception as e:
|
| 971 |
+
log_container.error(f"Échec pour index {i}: {e}")
|
| 972 |
+
progress.progress(int(idx_i * 100 / max(1, len(indices))))
|
| 973 |
+
st.info(f"Terminé. Succès: {sent_ok}/{len(indices)}")
|
| 974 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 975 |
|
| 976 |
|
| 977 |
+
# -----------------------------
|
| 978 |
+
# Main App
|
| 979 |
+
# -----------------------------
|
| 980 |
+
def main():
|
| 981 |
+
inject_base_css()
|
| 982 |
|
| 983 |
+
# Header
|
| 984 |
+
col_logo, col_title, col_right = st.columns([1, 3, 1])
|
| 985 |
+
with col_logo:
|
| 986 |
+
logo_path = os.path.join("assets", "logo.png")
|
| 987 |
+
if os.path.exists(logo_path):
|
| 988 |
+
st.image(logo_path, width=72)
|
| 989 |
+
with col_title:
|
| 990 |
+
st.markdown("<h1 style='text-align:center; margin-top: 0;'>Tableau de bord des inscriptions</h1>", unsafe_allow_html=True)
|
| 991 |
+
with col_right:
|
| 992 |
+
st.write("")
|
| 993 |
+
|
| 994 |
+
# Charger les contrôles de la barre latérale
|
| 995 |
+
# (ces contrôles sont partagés entre tous les onglets)
|
| 996 |
+
df, type_map, theme_mode, _, unique_keys = sidebar_controls()
|
| 997 |
+
|
| 998 |
+
# Stocker les types dans session_state pour les autres onglets
|
| 999 |
+
if df is not None:
|
| 1000 |
+
st.session_state['logical_types'] = type_map
|
| 1001 |
+
st.session_state['unique_keys'] = unique_keys
|
| 1002 |
+
st.session_state['theme_mode'] = theme_mode
|
| 1003 |
+
|
| 1004 |
+
# Onglets de l'application
|
| 1005 |
+
tab1, tab2, tab3, tab4 = st.tabs([
|
| 1006 |
+
"📊 Tableau de bord",
|
| 1007 |
+
"📋 Analyses avancées",
|
| 1008 |
+
"📈 Constructeur graphiques",
|
| 1009 |
+
"✉️ Envoi emails"
|
| 1010 |
+
])
|
| 1011 |
+
|
| 1012 |
+
with tab1:
|
| 1013 |
+
page_tableau_de_bord()
|
| 1014 |
+
|
| 1015 |
+
with tab2:
|
| 1016 |
+
page_analyses()
|
| 1017 |
+
|
| 1018 |
+
with tab3:
|
| 1019 |
+
page_constructeur_graphiques()
|
| 1020 |
+
|
| 1021 |
+
with tab4:
|
| 1022 |
+
page_emails()
|
| 1023 |
|
| 1024 |
+
|
| 1025 |
+
if __name__ == "__main__":
|
| 1026 |
+
main()
|