import pandas as pd import streamlit as st from pandas.api.types import ( is_categorical_dtype, is_datetime64_any_dtype, is_numeric_dtype, is_object_dtype, ) def calculate_height_to_display(df): # Calculate the height of the DataFrame display area num_rows = df.shape[0] row_height = 25 # Estimate of row height in pixels, adjust based on your layout/theme header_height = 50 # Estimate of header height in pixels padding = 20 # Extra padding in pixels calculated_height = num_rows * row_height + header_height + padding return calculated_height def filter_dataframe(df: pd.DataFrame, target) -> pd.DataFrame: """ Adds a UI on top of a dataframe to let viewers filter columns Args: df (pd.DataFrame): Original dataframe Returns: pd.DataFrame: Filtered dataframe """ if(target == "datasets"): modify = st.checkbox("Enable filters to browse ASR speech data catalog") elif(target == "benchmarks"): modify = st.checkbox("Enable filters to browse ASR benchmarks catalog") else: print("Invalid target") if not modify: return df df = df.copy() # Try to convert datetimes into a standard format (datetime, no timezone) for col in df.columns: if is_object_dtype(df[col]): try: df[col] = pd.to_datetime(df[col]) except Exception: pass if is_datetime64_any_dtype(df[col]): df[col] = df[col].dt.tz_localize(None) modification_container = st.container() with modification_container: to_filter_columns = st.multiselect("Filter dataframe on", df.columns) for column in to_filter_columns: left, right = st.columns((1, 20)) # Treat columns with < 10 unique values as categorical if is_categorical_dtype(df[column]) or df[column].nunique() < 10: user_cat_input = right.multiselect( f"Values for {column}", df[column].unique(), default=list(df[column].unique()), ) df = df[df[column].isin(user_cat_input)] elif is_numeric_dtype(df[column]): _min = float(df[column].min()) _max = float(df[column].max()) step = (_max - _min) / 100 user_num_input = right.slider( f"Values for {column}", min_value=_min, max_value=_max, value=(_min, _max), step=step, ) df = df[df[column].between(*user_num_input)] elif is_datetime64_any_dtype(df[column]): user_date_input = right.date_input( f"Values for {column}", value=( df[column].min(), df[column].max(), ), ) if len(user_date_input) == 2: user_date_input = tuple(map(pd.to_datetime, user_date_input)) start_date, end_date = user_date_input df = df.loc[df[column].between(start_date, end_date)] else: user_text_input = right.text_input( f"Substring or regex in {column}", ) if user_text_input: df = df[df[column].astype(str).str.contains(user_text_input)] return df