"
],
"text/plain": [
" Number of datasets Total transcribed [hours] \\\n",
"Speech type \n",
"read 25 3362.1 \n",
"conversational 13 1184.0 \n",
"various 4 1134.0 \n",
"public speech 8 275.0 \n",
"no info 3 31.0 \n",
"\n",
" Percent of total \n",
"Speech type \n",
"read 56.17 \n",
"conversational 19.78 \n",
"various 18.94 \n",
"public speech 4.59 \n",
"no info 0.52 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from utils import datasets_count_and_total_size\n",
"col_groupby = ['Speech type']\n",
"df_datasets_per_speech_type = datasets_count_and_total_size(df_cat, col_groupby)\n",
"df_datasets_per_speech_type\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Number of datasets
\n",
"
Total transcribed [hours]
\n",
"
Percent of total
\n",
"
\n",
"
\n",
"
Part of speech annotation
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
no
\n",
"
13
\n",
"
3172
\n",
"
100.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Number of datasets Total transcribed [hours] \\\n",
"Part of speech annotation \n",
"no 13 3172 \n",
"\n",
" Percent of total \n",
"Part of speech annotation \n",
"no 100.0 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_datasets_per_meta_paid = datasets_count_and_total_size(df_cat_available_paid, 'Part of speech annotation')\n",
"df_datasets_per_meta_paid\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Number of datasets Total transcribed [hours] Percent of total\n",
"Gender info \n",
"yes 19 4874.1 81.42\n",
"no info 23 889.0 14.85\n",
"no 11 223.0 3.73\n",
" Number of datasets Total transcribed [hours] Percent of total\n",
"Age info \n",
"no info 33 4043.0 67.54\n",
"yes 8 1581.0 26.41\n",
"no 12 362.1 6.05\n",
" Number of datasets Total transcribed [hours] Percent of total\n",
"Accent info \n",
"no 49 4276.1 71.43\n",
"yes 4 1710.0 28.57\n",
" Number of datasets Total transcribed [hours] Percent of total\n",
"Nativity info \n",
"no 33 3254.0 54.36\n",
"yes 12 2648.1 44.24\n",
"no info 8 84.0 1.40\n",
" Number of datasets Total transcribed [hours] \\\n",
"Time alignement annotation \n",
"no 48 4852.1 \n",
"yes 5 1134.0 \n",
"\n",
" Percent of total \n",
"Time alignement annotation \n",
"no 81.06 \n",
"yes 18.94 \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n",
"/home/michal/Development/hugging-face/michaljunczyk/pl-asr-speech-data-survey-analysis/utils.py:48: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_cat[col_sum] = num_values\n"
]
}
],
"source": [
"from utils import metadata_coverage\n",
"df_meta_all_flat, df_meta_all_pivot = metadata_coverage(df_cat, df_cat_available_free, df_cat_available_paid)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBgAAAHfCAYAAAD6NGvCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1cklEQVR4nO3deVwVZf//8fcBQcEFxF2RJI2TCIr7mguZiprb7a6o5b6WZYW3pbfmnVZ2ZwkuUbmkqWmupJhaepepWVpaWnm7pOK+oBggAvP7ox/n2xFQYNAD8Xo+Hj4enZlrZj4z5+LEeXPNNRbDMAwBAAAAAACY4OToAgAAAAAAQP5HwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwDQCBgAAAAAAYBoBAwAAAAAAMI2AAQAAAAAAmEbAAAAAHO6///2vOnfurMDAQFmtVt24ccPRJd03a9askdVq1ZkzZxxdik1oaKhCQ0NzdZ8HDx5U7969FRQUJKvVqiNHjuTq/vO6+3FNs2Lv3r2yWq3au3fvPduardFqtWrOnDk53h7A308hRxcAAEBecurUKb3//vvatWuXLl68KBcXF/n5+SkkJES9evVSkSJFHF3i3861a9f07LPP6pFHHtHkyZPl6uoqNzc3R5el+fPnq1q1amrdurWjS7HZuHGjrly5okGDBjm6lLu6ffu2nn32Wbm6umrixIkqUqSIKlas6OiykEf873//0+bNm9W1a1d5e3s7upx883MF5AcEDAAA/H87duzQM888I1dXV3Xu3Fl+fn66ffu2vv/+e7355pv63//+p1dffdXRZf7tHDp0SH/88YeeeeYZNWnSxNHl2CxYsEBt27bNUwFDVFSUjh49mutfhD744INc3d+pU6cUExOj6dOnq0ePHrm6b9xd/fr1dfDgQbm4uDi6lEz973//U3h4uBo0aJAnAob79XMFFEQEDAAASDp9+rTGjx+vihUravHixSpbtqxtXb9+/fT7779rx44djivwLhISEvLEX/xz6urVq5Kk4sWLO7iSgsvV1TVX95ed9zQ+Pl7u7u65evyCzMnJSYULF3Z0GQAKKOZgAABA0vvvv6/4+Hj9+9//tgsX0jz00EMaOHCg7XVycrIiIiLUunVrBQQEKDg4WP/5z3+UlJRkazN8+HA9/vjjGR6vV69e6tatm92y9evXq1u3bqpZs6YaNGig8ePH69y5c3ZtQkND1bFjR/3000/q16+fatWqpf/85z+SpG3btmnYsGFq1qyZAgIC1Lp1a0VERCglJSXd8ZctW6bHH39cNWvWVPfu3fXdd99leD92UlKS3n33XT3xxBMKCAhQixYt9MYbb9id591s3rzZdk4NGzbUhAkTdOHCBbvzeemllyRJ3bt3l9VqVVhYWKb7mzNnjqxWq06cOKEJEyaobt26atSokWbPni3DMHTu3DmNHDlSderUUdOmTfXhhx+m20dWzslqtSo+Pl5r166V1Wq1qysmJkb/+te/1LZtW9t5jRs3LsM5FY4ePaoBAwaoZs2aat68uebOnavU1NR07bLy3oWGhmrHjh2KiYmx1RQcHGw7p3feeUfdunVT3bp1FRQUpL59+2rPnj33eots+/7re592H/+mTZs0b948NW/eXIGBgRo4cKB+//33u+4rLCxM/fv3lyQ988wzslqttn2HhYWpdu3aOnXqlIYOHaratWtrwoQJkqTU1FQtWrRIHTp0UGBgoJo0aaLJkyfr+vXr6Y6xc+dO9e3bV0FBQapdu7aGDRumo0eP3vM8Y2Nj9frrr+vJJ59U7dq1VadOHQ0ZMkS//PKLXbvsnv/KlSvVunVru5+nrLJarZo2bZo2bNigtm3bKjAwUN26ddO+ffvs2mW132U2B4OZGpOSkvTaa6+pUaNGql27tkaMGKHz58+na5eVGtesWaNnnnlGkjRgwABbX06rN6ufYydPntTYsWPVtGlTBQYGqnnz5ho/frzi4uLs2t3rc/VuP1eS9NFHH6lDhw6qVauW6tevr27dumnjxo1ZvnZAQcMIBgAAJH355ZeqXLmy6tSpk6X2L7/8stauXau2bdvqqaee0sGDB7VgwQIdO3ZMERERkqSQkBC99NJLOnjwoGrWrGnbNiYmRj/88INefPFF27J58+bpnXfeUUhIiLp3766rV69q6dKl6tevn9atW6cSJUrY2sbGxmro0KHq0KGDOnXqpFKlSkmS1q5dK3d3dz311FNyd3fXnj179O677+rmzZu2L/GS9PHHH2vatGmqV6+eBg0apJiYGI0ePVolSpRQ+fLlbe1SU1M1cuRIff/99+rZs6eqVq2q3377TYsXL9bJkyc1d+7cu16jNWvWaOLEiQoMDNRzzz2nK1euaMmSJdq/f7/tnEaMGCFfX1+tXLlS48aNk7e3t3x8fO55/cePH6+qVavq+eef186dOzVv3jx5enpqxYoVatSokSZMmKCNGzfq9ddfV2BgoOrXr5+tc3rjjTf08ssvq2bNmurZs6ck2eo6dOiQDhw4oA4dOqh8+fKKiYnR8uXLNWDAAH322We20SSXLl3SgAEDlJKSomHDhsnNzU2ffPJJhn9dzsp7N2LECMXFxen8+fOaOHGiJKlo0aKSpJs3b2rVqlXq2LGjevTooT/++EOrV6/WkCFDtGrVKlWvXv2e1zQjkZGRslgsevrpp3Xz5k29//77mjBhglatWpXpNr169VK5cuU0f/58hYaGKjAwUKVLl7atT05O1uDBg1W3bl299NJLtnlNJk+erLVr16pbt24KDQ3VmTNntGzZMh0+fFjLly+3Dflft26dwsLC1KxZM02YMEEJCQlavny5+vbtq7Vr1951yP3p06e1bds2tWvXTt7e3rp8+bJWrlyp/v3767PPPlO5cuWyff6rVq3S5MmTVbt2bQ0cOFCnT5/WyJEj5eHhoQoVKmTpOu/bt0+bNm1SaGioXF1dtXz5ctt75+fnJynr/S4jZmucNGmSNmzYoI4dO6pOnTras2ePhg0blq5dVmqsX7++QkND9dFHH2nEiBF6+OGHJUlVq1aVlLWfhaSkJA0ePFhJSUnq37+/SpcurQsXLmjHjh26ceOGbeRMVj5X7/Zz9cknn2j69Olq27atBgwYoFu3bunXX3/Vjz/+qCeffDJL7y1Q4BgAABRwcXFxhp+fnzFy5MgstT9y5Ijh5+dnTJo0yW75zJkzDT8/P2P37t22/QYEBBgzZ860axcZGWlYrVYjJibGMAzDOHPmjFG9enVj3rx5du1+/fVXw9/f3255//79DT8/P2P58uXp6kpISEi37JVXXjFq1apl3Lp1yzAMw7h165bRoEED4x//+Idx+/ZtW7s1a9YYfn5+Rv/+/W3L1q1bZzz66KPGvn377Pa5fPlyw8/Pz/j+++8zvUZJSUlG48aNjY4dOxqJiYm25V9++aXh5+dnvPPOO7Zln376qeHn52ccPHgw0/2leffddw0/Pz/jlVdesS1LTk42mjdvblitVmPBggW25devXzdq1qxpvPTSSzk6p6CgILtt02R0nQ8cOGD4+fkZa9eutS3797//bfj5+Rk//vijbdmVK1eMunXrGn5+fsbp06fvus873zvDMIxhw4YZrVq1Stc2OTnZrl3a+Tdp0sSYOHFiuvZ36t+/v917v2fPHsPPz88ICQmx2+/ixYsNPz8/49dff73r/tK237x5s93yl156yfDz8zNmzZplt3zfvn2Gn5+fsWHDBrvl//3vf+2W37x506hXr57x8ssv27W7dOmSUbdu3XTL73Tr1i0jJSXFbtnp06eNgIAAIzw8PNvnn9bPO3fubNdu5cqV6X6eMuPn52f4+fkZhw4dsi2LiYkxAgMDjdGjR9uWZbXfpdW+Z8+eXKkx7fPuX//6l93y5557zvDz8zPefffdbNe4efNmuxr/Kis/C4cPH86wf/1Vdj5XM/u5GjlypNGhQ4dMjwEgPW6RAAAUeDdv3pT0f3+1upedO3dKkp566im75U8//bTd+mLFiql58+bavHmzDMOwtdu0aZOCgoJss+pv3bpVqampCgkJ0dWrV23/SpcurYceeijdUGdXV9d0t1dIsnvCxc2bN3X16lXVq1dPCQkJOn78uCTpp59+UmxsrHr27KlChf5vIOOTTz4pDw8Pu/1FR0eratWqevjhh+3qatSokSTd9TF4P/30k65cuaI+ffrY/cW+ZcuWevjhh03PZ9G9e3fbfzs7OysgIECGYdgtL1GihHx9fXX69OlcOac0f73Ot2/f1rVr1+Tj46MSJUro8OHDtnU7d+5UUFCQ3egVLy+vDP/ymZX37m6cnZ1t8yikpqYqNjZWycnJCggIsKspu7p162Y3P0O9evUkye6a5kSfPn3sXkdHR6t48eJq2rSp3ftSo0YNubu7296Xb775Rjdu3FCHDh3s2jk5OalWrVr3fP9cXV3l5PTnr78pKSm6du2a3N3d5evrm+F1utf5p/Xz3r1727Xr2rVrtuYUqV27tgICAmyvK1asqMcff1xff/217daArPa7O5mtMe3z7M7bp/56y1ianNaY2T4y+1koVqyYJOnrr79WQkJChvvJ7udqRkqUKKHz58/r4MGDWaodALdIAABg+2X1jz/+yFL7mJgYOTk5pRvKX6ZMGZUoUUIxMTG2Ze3bt9e2bdt04MAB1alTR6dOndLPP/+sf/7zn7Y2J0+elGEYatOmTYbH+2sQIEnlypXLcFK+o0ePavbs2dqzZ48tNEmTdl/y2bNnJSld7YUKFVKlSpXslv3+++86duyYGjdunGFdV65cyXD5X4/j6+ubbt3DDz+s77//PtNts+LORx4WL15chQsXlpeXV7rlsbGxttdmzilNYmKiFixYoDVr1ujChQt24dFf7/8+e/asatWqlW77jK5JVt67e1m7dq0+/PBDnThxQrdv37YtNzNL/53XOe1WnRs3buR4n4UKFbK7FUf6832Ji4u75/ty8uRJSRl/uZX+72c5M6mpqVqyZIk+/vhjnTlzxu6+fk9Pz3Tt73X+af38oYcesmvn4uKiypUr37WWv7pze0mqUqWKEhISdPXqVZUpUybL/e5OZmvM7PMu7daGv8ppjX+VlZ+FypUr66mnntLChQu1ceNG1atXT8HBwerUqZMtNMnu52pGhg4dqm+++UY9evTQQw89pKZNm6pjx46qW7duls4FKIgIGAAABV6xYsVUtmzZLE0S91cWi+WebVq1aiU3Nzdt3rxZderU0ebNm+Xk5KR27drZ2qSmpspisSgyMlLOzs7p9nHnDPt//Qtfmhs3bqh///4qVqyYxo0bJx8fHxUuXFg///yzZs2aleHEgveSmpoqPz8/233Jd7rzS+KDlPZX6L/K6NpJsvuSkxvn9Oqrr2rNmjUaOHCggoKCVLx4cVksFo0fP97uWFmVG+/d+vXrFRYWptatW2vw4MEqVaqUnJ2dtWDBAlOjDTK6zpJydJ5p/jqKIE1qaqpKlSqlWbNmZbhNWnCUdtw33nhDZcqUSdcusz6QZv78+XrnnXf0j3/8Q88884w8PDzk5OSk1157LcNzuh/nn1O53e/uB7M1ZudnISwsTF27dtX27du1a9cuTZ8+XQsWLNAnn3yi8uXLZ/tzNSNVq1ZVdHS0duzYoa+++kqff/65Pv74Y40ePVrjxo3L3sUBCggCBgAA9GcQsHLlSh04cEC1a9e+a9tKlSopNTVVv//+u21iMkm6fPmybty4YTcSwN3dXS1btlR0dLQmTpyoTZs2qV69enaTyfn4+MgwDHl7e2f41+2s+PbbbxUbG6vw8HDbhIaS0s0wn/YX2VOnTtluC5D+nHgvbRb1v9b1yy+/qHHjxlkKUzI6zokTJ9L9VfrEiRPp/jL8oJg5pzRbtmxRly5d7J52cevWrXR/oa1YsWKGTxw4ceKE3eusvndS5qHWli1bVLlyZYWHh9u1effdd7N2Ug7m4+Oj3bt3q06dOhkGaGnS/uJeqlQpNWnSJNvH2bJlixo2bKjXXnvNbvmNGzdUsmTJbO8vrR///vvvdv389u3bOnPmjB599NEs7SejfnLy5Em5ubnZwpWs9rvcrjHt8+7UqVN2oxYyunUnqzVm1o+z87MgyfbUh1GjRmn//v3q06ePli9frvHjx2frc/VunwXu7u5q37692rdvr6SkJI0dO1bz58/X8OHDeRwokAHmYAAAQNKQIUPk7u6ul19+WZcvX063/tSpU1q8eLEkqUWLFpJke51m4cKFduvTtG/fXhcvXtSqVav0yy+/KCQkxG59mzZt5OzsrPDw8HR/5TMMQ9euXbtn/Wl/af3r9klJSfr444/t2gUEBMjT01OffPKJkpOTbcs3btyY7nGAISEhunDhgj755JN0x0tMTFR8fHym9QQEBKhUqVJasWKF3eMfd+7cqWPHjqlly5b3PKf7ITvn5O7unuGtABn9NfSjjz5K9xi9Fi1a6IcffrC7f/vq1avpHnGX1fdOktzc3DL8QplW01/38eOPP+qHH35I1zYvCgkJUUpKSoZPJklOTra9D4899piKFSumBQsW2N0Gkubq1at3PY6zs3O6n7HNmzfbPTo1OwICAuTl5ZWun69duzZbt5EcOHBAP//8s+31uXPntH37djVt2tT23ma13+V2jc2bN7cd66/u/PzLTo1pT7y4sy9n9Wfh5s2bdp9fkuTn5ycnJyfbOWbnczWzn6s7P3tdXV1VtWpVGYaRYf8DwAgGAAAk/fkX1FmzZmn8+PFq3769OnfuLD8/PyUlJenAgQOKjo62Taz46KOPqmvXrlq5cqVu3Lih+vXr69ChQ1q7dq1at25tNzJA+vOLZtGiRfX666/L2dlZbdu2TXfsZ599Vm+99ZZiYmLUunVrFS1aVGfOnNG2bdvUs2dPDR48+K71165dWx4eHgoLC1NoaKgsFovWr1+f7hdrV1dXjR07Vq+++qoGDhyokJAQxcTEaM2aNenuse7cubM2b96sKVOmaO/evapTp45SUlJ0/PhxRUdH6/3331dgYGCG9bi4uGjChAmaOHGi+vfvrw4dOtgeU1mpUiUNGjQoK29LrsvOOdWoUUO7d+/WwoULVbZsWXl7e6tWrVpq2bKl1q9fr2LFiqlatWr64Ycf9M0336S7h3/IkCFav369hgwZogEDBtgeU1mxYkX9+uuvtnZZfe/Satq0aZNmzJihwMBAubu7Kzg4WC1bttTnn3+u0aNHq2XLljpz5oxWrFihatWq3TUIyisaNGigXr16acGCBTpy5IiaNm0qFxcXnTx5UtHR0Zo0aZLatWunYsWK6V//+pdefPFFdevWTe3bt5eXl5fOnj2rnTt3qk6dOpo8eXKmx2nZsqUiIiI0ceJE1a5dW7/99ps2btyYrfkS/srFxUXPPvusJk+erIEDB6p9+/Y6c+aM1qxZk619+vn5afDgwXaPqZSksWPH2tWelX6X2zVWr15dHTt21Mcff6y4uDjVrl1be/bsyXDURVZrrF69upydnRUZGam4uDi5urqqUaNGWf5Z2LNnj6ZNm6Z27dqpSpUqSklJ0fr16+0+X7PzuZrZz9XgwYNVunRp1alTR6VKldLx48e1dOlStWjR4p7zfQAFFQEDAAD/3+OPP64NGzbogw8+0Pbt27V8+XK5urrKarUqLCxMPXv2tLWdPn26vL29tXbtWm3btk2lS5fW8OHDNWbMmHT7LVy4sIKDg7Vx40Y1adJEpUqVStdm2LBhqlKlihYtWqSIiAhJf84H0LRpUwUHB9+z9pIlS2r+/Pl6/fXXNXv2bJUoUUKdOnVS48aN04UT/fv3l2EYWrhwoV5//XU9+uijmjdvnqZPn2435NfJyUkRERFatGiR1q9fr61bt8rNzU3e3t4KDQ2957Djbt26qUiRIoqMjNSsWbPk7u6u1q1b64UXXrBNlvegZeecwsLCNHnyZM2ePVuJiYnq2rWratWqpUmTJsnJyUkbN27UrVu3VKdOHS1cuFBDhgyxO1bZsmW1ZMkSTZ8+Xe+99548PT3Vu3dvlS1bVpMmTbK1y85717dvXx05ckRr1qzRokWLVKlSJQUHB6tbt266fPmyVq5cqa+//lrVqlXTm2++qejoaH377bf396LmkmnTpikgIEArVqzQ22+/LWdnZ1WqVEmdOnVSnTp1bO2efPJJlS1bVu+9954++OADJSUlqVy5cqpXr16GT1f5qxEjRighIUEbN27Upk2b5O/vrwULFuitt97Kcd29evVSSkqKPvjgA73xxhvy8/PTvHnz9M4772R5H/Xr11dQUJAiIiJ09uxZVatWTTNmzLC7fSGr/e5+1Pjaa6+pZMmS2rhxo7Zv366GDRvqvffeSzdaK6s1lilTRlOnTtWCBQs0adIkpaSkaMmSJWrYsGGWfhasVquaNWumL7/8UhcuXJCbm5usVqsiIyMVFBRka5fVz9XMfq569eqljRs3auHChYqPj1f58uUVGhqqUaNGZem6AQWRxcgrs8IAAACHSU1NVePGjfXEE09o+vTpji4HKDCsVqv69et315EXAJBfMAcDAAAFzK1bt9INOV63bp1iY2PVoEEDB1UFAADyO26RAACggPnhhx80Y8YMtWvXTp6enjp8+LBWr14tPz8/u8dnAgAAZAcBAwAABUylSpVUvnx5ffTRR7p+/bo8PDzUuXNnTZgwQa6uro4uDwAA5FPMwQAAAAAAAExjDgYAAAAAAGAaAQMAAAAAADCNORgApHPgwAEZhiEXFxdHlwIAAADAgW7fvi2LxaLatWvfsy0jGACkYxiG7R+QlxmGoaSkJPoq8jz6KvIL+iryC/rqg5Od7wWMYACQjouLi5KSklStWjW5u7s7uhwgU/Hx8Tpy5Ah9FXkefRX5BX0V+QV99cE5dOhQltsyggEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAyZbFYHF0CcFcWi0Vubm70VeR59FXkF/RVAGbwmEoAGXJ1dZWbm5ujywDuys3NTf7+/o4uA7gn+iryi5z01dRUQ05OBBIACBgA3EXE8l2KuXjd0WUAAIA8qlJZD43u09TRZQDIIwgYAGQq5uJ1nYy55ugyAAAAAOQDzMEAAAAAAABMI2AAAAAAAACmETAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwDQCBgAAAAAAYBoBAwAAAAAAMI2AAQAAAAAAmEbAAAAAAAAATCNgAAAAAAAAphEwAAAAAAAA0wgYAAAAAACAaQQMAAAAAADANAIGAAAAAABgGgED8oydO3dq6NChatSokWrUqKEmTZpo2LBhioqKUmpq6gOr48aNG7JarVqzZs19O8aZM2dktVoVHR2d7W1//vln9ezZU7Vq1ZLVatWNGzfuQ4UAAAAAkD2FHF0AIEn/+c9/tGDBAj3xxBOaPHmyypQpo8uXL2vbtm164YUX5OHhoccee8zRZeaasmXLauXKlapSpUq2t50+fbpSUlK0YMECFSlSREWLFs39AgEAAAAgmwgY4HA7duzQggULNGbMGI0dO9ZuXUhIiAYOHKhChfJnV01MTFSRIkXSLXd1dVVQUFCO9nn8+HH17dtXjRo1MlkdAAAAAOQebpGAwy1cuFBlypTRyJEjM1xfs2ZN+fv72y3bsWOHevTooZo1a6pRo0aaMmWK4uPjbev37t0rq9WqXbt26fnnn1ft2rXVqlUrRUZGptv/J598ouDgYNWqVUsDBw7U77//nmEda9as0ZNPPqnAwEA99thjevvtt5WSkmK33mq16sCBA3rqqacUFBSkN954I8N9ZXSLRHBwsKZNm6Zly5apVatWqlu3rkaNGqWrV6/anVNsbKzmzp0rq9Wq0NBQSVJqaqrmzp2r4OBgBQQEqF27dlqxYkWGxwYAAACA+4GAAQ6VnJys/fv3q1GjRlkepRAdHa2RI0fKz89P4eHheuGFF7R161ZNmjQpXdspU6aoSpUqioiIUKtWrTRr1iz997//ta3/8ssv9corr6hhw4YKDw9X48aN9cwzz6Tbz8KFC/Xyyy+rWbNmmj9/voYOHaolS5bo7bffTtf2+eefV6NGjTR//nx17tw5G1dD+uKLL/TFF19o8uTJmjRpkvbt26dXX31VklSjRg2tXLlS7u7u6t69u1auXKkpU6ZIkt544w2Fh4era9eumj9/vpo1a6YpU6Zo6dKl2To+AAAAAORU/hx3jr+N2NhYJSUlqUKFCnbLDcOwGx3g5OQkJycnGYahN954Q+3bt9e///1v2/oyZcpo2LBhGjVqlB555BHb8jZt2thuu2jcuLF27NihLVu2qHnz5pKkefPmqV69epoxY4Yk6bHHHtOtW7c0d+5c2z5u3rypd999V0OGDNFzzz0nSWratKlcXFw0c+ZMDR48WCVLlrS17927t4YNG5aj62EYhubNmydXV1dJUkxMjBYsWKDU1FQVK1ZMQUFBcnZ2Vvny5W23WFy9elVLly7V4MGDbefarFkzXbt2TREREerTp4+cnZ1zVE8ta0VVLFMiR9sCAIC/vzJexRxdAgooi8UiNzc3WSwWR5eCvyBgQJ5w5wfDli1b7EYS9OvXT5MnT9aJEycUExOjf/7zn0pOTratb9CggZycnPTTTz/ZBQzNmjWzO0bVqlV1/vx5SVJKSop+/vlnvfDCC3bHbtu2rV3AcODAAcXHx6tdu3Z2x2zSpIkSExN19OhRNWjQwLa8ZcuWObwKUv369W3hgiRVrVpVt2/f1pUrV1SmTJkMtzl48KBu376tdu3a2S0PCQlRVFSUTp48qapVq+aonl7tgnK0HQAAAHA/ubm5pbuN+u/CSE2VxSl/3mxAwACH8vT0lKurq+1Lf5rGjRtr9erVkmQ3N8O1a9ckSaNHj85wf+fOnbN7Xbx4cbvXLi4uiouLk/TnX/6Tk5Pl5eVl16Z06dJ2r9OO2bVr1ywd887ts6NECfvRAmlhw61btzLd5vr16xkeN+11bGxsjus5ERWphCvn7t0QAAAAgGlupSrIt+NQR5eRYwQMcKhChQqpTp062r17t1JSUmxD+T08PBQYGChJdn/R9/T0lCRNnjxZNWvWTLe/smXLZvnYXl5eKlSokG0SxTSXL1+2e+3h4SFJCg8PV/ny5dPtx9vbO8vHvB/SrsmVK1dUrlw52/K080hbnxMJV84p4cIpM+UBAAAAKCAIGOBwTz31lIYPH6758+dnOjIhzcMPP6zy5cvr9OnT6tevn6njOjs7y9/fX1u3btWgQYNsy7ds2WLXrnbt2nJzc9P58+f1xBNPmDrm/RAYGCgXFxdFR0fbDRPbvHmzSpUqpSpVqjiuOAAAAAAFBgEDHK5ly5YaNmyY3n33Xf3yyy8KCQlR2bJlFRcXp++++06XLl1S0aJFJf05j0JYWJgmTJig+Ph4tWzZUm5ubjp79qx27typ8ePHy9fXN8vHHjFihEaNGqWJEyeqffv2+vnnn7V+/Xq7NiVKlNC4ceP05ptv6vz582rQoIGcnZ11+vRpbd++XXPmzJGbm1uuXpPs8PLyUv/+/fXBBx/I1dVVQUFB2rlzp6KiovTKK6/keIJHAAAAAMgOAgbkCc8//7zq1q2rZcuWaerUqbp586Y8PDxUo0YNvfbaa+rQoYOtbUhIiEqUKKH58+dr48aNkqRKlSrpsccey/b8B48//rimTp2q+fPn67PPPlOtWrU0e/Zs9ejRw67d008/rXLlymnhwoVaunSpChUqJB8fH7Vs2VIuLi7mL4BJL774oooXL67Vq1dr/vz5qlSpkqZOnarevXs7ujQAAAAABYTFMAzD0UUAyFsOHTokSXLev5Y5GAAAAIAHxK2cj/wHTnZ0GXbSvhukzZF3N/nz2RcAAAAAACBPIWAAAAAAAACmETAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwDQCBgAAAAAAYBoBAwAAAAAAMI2AAQAAAAAAmEbAAAAAAAAATCNgAAAAAAAAphEwAAAAAAAA0wgYAAAAAACAaQQMAAAAAADANAIGAAAAAABgGgEDAAAAAAAwrZCjCwCQd7mVquDoEgAAAIACI7///k3AACBTvh2HOroEAAAAoEAxUlNlccqfNxvkz6oB3HdJSUlKSEhwdBnAXSUkJOjw4cP0VeR59FXkF/RV5Bd/576aX8MFiYABwF0YhuHoEoC7MgxDCQkJ9FXkefRV5Bf0VeQX9NW8iYABAAAAAACYRsAAAAAAAABMI2AAAAAAAACmETAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMADIlMVicXQJwF1ZLBa5ubnRV5Hn0VcBAAVBIUcXACBvcnV1lZubm6PLAO7Kzc1N/v7+ji4DuCf6atalphpyciKIAYD8iIABQKYilu9SzMXrji4DAFBAVCrrodF9mjq6DABADhEwAMhUzMXrOhlzzdFlAAAAAMgHmIMBAAAAAACYRsAAAAAAAABMI2AAAAAAAACmETAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwDQCBgAAAAAAYBoBAwAAAAAAMI2AAQAAAAAAmEbAAAAAAAAATCNgAAAAAAAAphEwAAAAAAAA0wgYAAAAAACAaQQMAAAAAADANAIGFFidOnWS1WrVd99998CPfebMGVmtVkVHR2d7259//lk9e/ZUrVq1ZLVadePGjftQIQAAAABkTyFHFwA4wtGjR/Xrr79KkjZu3Kh69eo90OOXLVtWK1euVJUqVbK97fTp05WSkqIFCxaoSJEiKlq0aO4XCAAAAADZxAgGFEgbN26Uk5OTGjZsqOjoaN2+ffuBHt/V1VVBQUHy9PTM9rbHjx9X8+bN1ahRIwUFBcnZ2Tn3CwQAAACAbCJgQIFjGIaioqLUqFEjPfXUU4qNjdVXX32Vrt3Ro0fVr18/BQYGqk2bNtqwYYNGjRql0NBQu3bHjh3TyJEjVbduXQUFBWnYsGE6derUXWvI6BaJ4OBgTZs2TcuWLVOrVq1Ut25djRo1SlevXpUk7d27V1arVbGxsZo7d66sVqutltTUVM2dO1fBwcEKCAhQu3bttGLFCrOXCgAAAACyjIABBc7+/fsVExOjjh07qlmzZvL09FRUVJRdm8TERD399NOKjY3Vm2++qeeee06RkZH6+eef7dqdPn1avXv31vXr1zVz5kzNmjVLV69e1aBBg5SUlJTt2r744gt98cUXmjx5siZNmqR9+/bp1VdflSTVqFFDK1eulLu7u7p3766VK1dqypQpkqQ33nhD4eHh6tq1q+bPn69mzZppypQpWrp0aQ6vEgAAAABkD3MwoMCJiopS4cKF1aZNG7m4uKht27basGGD/vjjD9t8Bp9++qmuXLmi5cuXy9vbW5IUEBCgNm3ayMfHx7av8PBweXh4aOHChSpcuLAkqU6dOnr88ce1atUq9evXL1u1GYahefPmydXVVZIUExOjBQsWKDU1VcWKFbPdElG+fHkFBQVJkq5evaqlS5dq8ODBGjt2rCSpWbNmunbtmiIiItSnT58c30ZRy1pRFcuUyNG2QHb8kZik63GJji4DgINVKuvh6BIAACYQMKBASU5OVnR0tFq0aKHixYtLkp588kmtXLlSW7duVZcuXSRJP/30k/z8/GzhgiR5e3vr0Ucftdvfrl271L59ezk7Oys5OVmSVKJECfn7++unn37Kdn3169e3hQuSVLVqVd2+fVtXrlxRmTJlMtzm4MGDun37ttq1a2e3PCQkRFFRUTp58qSqVq2a7VokqVe7oBxtB2SXkZoqixOD6gBIqamGnJwsji4DAJADBAwoUHbt2qWrV6+qVatWtsc7+vn5qUyZMoqKirIFDBcvXpSXl1e67b28vHTr1i3b62vXrmnx4sVavHhxurYuLi7Zrq9ECfvRAmlhw1+Peafr169LkkqXLm23PO11bGxstutIcyIqUglXzuV4eyAr3EpVkG/HoTnaNiEhQSdOnJCvr6/c3NxyuTIg99BXs45wAQDyLwIGFCgbN26UJE2cOFETJ060W3ft2jVduXJFpUqVUtmyZXXkyJF021+9etXusZAeHh5q0aKF+vbtm67tg3p8ZNqTKK5cuaJy5crZll++fNlufU4kXDmnhAt3n7AScCTDMJSQkCDDMBxdCnBX9FUAQEFAwIACIyEhQdu3b1fr1q01YMAAu3WXL1/Wc889p02bNik0NFQBAQFat26dTp8+rcqVK0v688kPv/zyi+rWrWvbrnHjxjp69Kj8/f0d9rjIwMBAubi4KDo6Wv7+/rblmzdvVqlSpVSlShWH1AUAAACgYCFgQIGxfft2xcfHKzQ0VA0bNky3/v3331dUVJRCQ0P1j3/8Q/Pnz9eIESNsEyeGh4erdOnSslj+b+jmuHHj1L17dw0ePFg9e/ZU6dKldfnyZX377beqV6+eOnbseN/Py8vLS/3799cHH3wgV1dXBQUFaefOnYqKitIrr7zisOADAAAAQMFCwIACIyoqShUrVswwXJCkLl266LXXXtOpU6fk4+OjDz/8UFOmTNGECRNUrlw5jRo1SuvWrbNNDilJDz30kFatWqXZs2dr6tSpio+PV5kyZVS/fn1ZrdYHdWp68cUXVbx4ca1evVrz589XpUqVNHXqVPXu3fuB1QAAAACgYLMY3AwIZElsbKxat26tQYMGacyYMY4u5746dOiQJMl5/1rmYMB951bOR/4DJ+do2/j4eB05ckTVq1eXu7t7LlcG5B76KvIL+iryC/rqg5P23SAwMPCebRnBAGTivffeU+nSpVWpUiVdunRJH374oVJSUvSPf/zD0aUBAAAAQJ5DwABkwsnJSfPmzdOFCxfk7OysWrVqafHixapQoYKjSwMAAACAPIeAAcjEkCFDNGTIEEeXAQAAAAD5gpOjCwAAAAAAAPkfAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwDQCBgAAAAAAYBoBAwAAAAAAMI2AAQAAAAAAmEbAAAAAAAAATCNgAAAAAAAAphEwAAAAAAAA0wgYAAAAAACAaQQMAAAAAADANAIGAAAAAABgGgEDAAAAAAAwjYABAAAAAACYRsAAAAAAAABMK+ToAgDkXW6lKji6BBQA9DMAAIC/BwIGAJny7TjU0SWggDBSU2VxYlAdAABAfsZvcwAylJSUpISEBEeXgQKCcAEAACD/4zc6AJkyDMPRJQAAAADIJwgYAAAAAACAaQQMAAAAAADANAIGAAAAAABgGgEDAAAAAAAwjYABAAAAAACYRsAAAAAAAABMI2AAAAAAAACmETAAAAAAAADTCpndwc6dO7Vo0SIdPnxYcXFxMgwjXZsjR46YPQwAAAAAAMjDTI1g2LJli0aMGKHLly+rffv2Sk1NVYcOHdS+fXsVKVJEVqtVo0ePzq1aAQAAAABAHmVqBMOCBQtUs2ZNffzxx7p+/bqWL1+uf/zjH2rcuLHOnDmjXr16ydvbO7dqBQAAAAAAeZSpEQzHjh1T+/bt5ezsrEKF/swqkpOTJUne3t7q06ePIiMjzVcJwCEsFoujSwDuymKxyM3Njb4KAACQB5gawVCkSBG5uLhIkkqUKCFXV1ddunTJtr506dI6c+aMuQoBOISrq6vc3NwcXQZwV25ubvL393d0GUCmUlMNOTkRgAEACgZTAYOvr6+OHTtme129enWtX79enTp1UkpKiqKiolShQgXTRQJwjIjluxRz8bqjywCAfKlSWQ+N7tPU0WUAAPDAmAoYnnjiCX300Ud66aWX5OrqqhEjRmjUqFGqX7++JCkhIUGvvfZarhQK4MGLuXhdJ2OuOboMAAAAAPmAqYBh8ODBGjx4sO11q1at9NFHH+nzzz+Xs7OzWrRooUaNGpkuEgAAAAAA5G2mAoaM1KtXT/Xq1cvt3QIAAAAAgDzM1FMkqlevro0bN2a6ftOmTapevbqZQwAAAAAAgHzAVMBgGMZd16ekpPDoMAAAAAAACgBTAYOkTAOEmzdv6uuvv1bJkiXNHgIAAAAAAORx2Z6DITw8XBEREZL+DBdeeOEFvfDCCxm2NQxDoaGh5ioEAAAAAAB5XrYDhsDAQPXt21eGYejjjz9W06ZNVaVKFbs2FotFbm5uqlGjhtq0aZNbtQIAAAAAgDwq2wFDixYt1KJFC0lSQkKCevfurVq1auV6YQAAAAAAIP8w9ZjKGTNm5FYdAAAAAAAgHzMVMKQ5f/68Dh8+rLi4uAyfLNGlS5fcOAwAAAAAAMijTAUMt27d0ksvvaTPP/9cqampslgstoDhr0+XIGAAAAAAAODvzdRjKv/zn/9o69atevbZZ/XRRx/JMAzNnDlTH374oZo3b65HH31U69evz61aAQAAAABAHmUqYNiyZYu6deumYcOGqVq1apKkcuXKqUmTJlqwYIGKFy+uZcuW5UqhAAAAAAAg7zIVMFy5ckU1a9aUJBUpUkTSn0+WSNO2bVtt3brVzCEAAAAAAEA+YCpgKF26tK5duyZJcnNzk4eHh06cOGFbf/PmTd26dctchQAAAAAAIM8zNcljzZo1tX//ftvrVq1a6YMPPlCZMmWUmpqqRYsWKSgoyGyNAAAAAAAgjzMVMISGhio6OlpJSUlydXXVM888owMHDujFF1+UJPn4+GjSpEm5UigAAAAAAMi7TAUM9erVU7169WyvK1SooM2bN+u3336Tk5OTHn74YRUqZOoQAAAAAAAgH8j1b/9OTk569NFHc3u3AAAAAAAgD8tWwLBv374cHaR+/fo52g4AAAAAAOQP2QoYQkNDZbFYbK8Nw7B7nZkjR45kvzIAAAAAAJBvZCtgWLJkid3rpKQkvfnmm0pMTFTPnj3l6+srSTp+/LhWrVolNzc3vfDCC7lXLQAAAAAAyJOcstO4QYMGdv+++uorubi4aMOGDRo8eLCCg4MVHBysIUOGaN26dXJ2dtZXX311v2pHAdCpUydZrVZ99913ji7lno4cOaI5c+YoISHhnm3nzJmj2rVr5+g4ixYtUsuWLVW9enWNGjUqR/sAAAAAgNyWrYDhThs3blTnzp1VuHDhdOvc3NzUuXNnbdiwwcwhUIAdPXpUv/76q6Q/+1ped+TIEYWHh2cpYOjRo4cWL16c7WOcPHlSM2fO1JNPPqlly5YxQggAAABAnmEqYEhISNClS5cyXX/p0qUsfdkCMrJx40Y5OTmpYcOGio6O1u3btx1dUq4pX768atasme3tTpw4IcMw1LNnT9WpU8d2WxIAAAAAOJqpgKFx48ZasmSJPv/883TrtmzZoiVLlqhJkyZmDoECyjAMRUVFqVGjRnrqqacUGxub4e02x44d05gxY9SgQQPVqlVLnTp1UlRUlG19amqqFi5cqJCQEAUEBKhp06YaN26c4uLi7PYxcuRI1a1bV0FBQRo2bJhOnTpldxyr1arIyEjNmTNHTZo0UcOGDTVx4kTFx8dLktasWaOJEydK+vPnwmq1Kjg4ONPzu/MWib1798pqtWrXrl16/vnnVbt2bbVq1UqRkZG2NmFhYRoxYoQkqXXr1rJarVqzZo0kKSYmRuPGjbOdw+DBg22jPwAAAADgQcjWJI93mjJligYMGKBnnnlGZcqU0UMPPSRJOnXqlC5evCgfHx+98soruVIoCpb9+/crJiZGo0ePVrNmzeTp6amoqCi7L+0nT55Ur169VKFCBU2aNEllypTRb7/9prNnz9ravPrqq1q5cqUGDhyopk2b6o8//tCOHTsUHx+v4sWL6/Tp0+rdu7ceeeQRzZw5UxaLRfPnz9egQYMUHR0tV1dX276WLVumunXraubMmTp58qTeeOMNlSpVShMmTFDLli01cuRIzZs3T++//76KFy9ut21WTZkyRZ07d1ZERIS2bdumWbNmyWq1qnnz5ho1apSqVq2qWbNmKTw8XGXKlJGPj49u3ryp0NBQOTk5aerUqSpcuLDmzZun/v37a8OGDapQoYK5NwMAAAAAssBUwFCuXDlt2LBBK1as0H//+1/bF7tq1app8ODB6tmzp4oUKZIrhaJgiYqKUuHChdWmTRu5uLiobdu22rBhg/744w8VLVpU0p+jAFxcXLR8+XIVK1ZMkuxGzJw4cULLly/X+PHjNXz4cNvytm3b2v47PDxcHh4eWrhwoW0ukTp16ujxxx/XqlWr1K9fP1vbMmXK6K233pIkNW/eXIcPH9aWLVs0YcIEeXl5ycfHR5JUo0YNeXl55ei827Rpo7Fjx0r6cyTEjh07tGXLFjVv3lw+Pj62WyKqV68ub29vSX8+3eXs2bP67LPPVLVqVUlS/fr11apVKy1evFhhYWE5qkWSKpX1yPG2AFDQ8RkKAChoTAUMklS4cGENHDhQAwcOzI16ACUnJys6OlotWrRQ8eLFJUlPPvmkVq5cqa1bt6pLly6SpD179qht27a2cOFOe/bskWEY6t69e6bH2rVrl9q3by9nZ2clJydLkkqUKCF/f3/99NNPdm3vvN2natWq+uyzz3J6mhlq1qyZ7b8tFouqVq2q8+fP33Wb7777To888ogtXJAkT09PNWnSRN9//72pekb3aWpqewAo6FJTDTk5WRxdBgAAD4TpgAHIbbt27dLVq1fVqlUr3bhxQ5Lk5+enMmXKKCoqyhYwxMbGqmzZspnuJzY2VoUKFVKpUqUybXPt2jUtXrw4wyc6uLi42L0uUaJEuvVJSUlZPa0sSQtU/nqMv84XkZEbN26odOnS6ZaXKlVKR48eNVVPYmIio5CQpyUkJOjEiRPy9fWVm5ubo8sB0iFcAAAUJKYDhkuXLmn16tU6fPiw4uLilJqaarfeYrHk6HF8KLjSHkk5ceJE28SJaa5du6YrV66oVKlS8vT01MWLFzPdj6enp5KTk23tM+Lh4aEWLVqob9++6dal3YqR13l4eOjEiRPpll+5ckUeHuaG5xqGYWp74H4zDEMJCQn0VQAAgDzAVMDwyy+/aMCAAUpMTJSvr69+++03VatWTTdu3NCFCxfk4+Oj8uXL51atKAASEhK0fft2tW7dWgMGDLBbd/nyZT333HPatGmTQkND1bhxY9scCBndJtGoUSNZLBZ9+umnGjZsWIbHa9y4sY4ePSp/f385Ozubqj1txENuj2q4l7p162rLli06fvy4Hn74YUnS9evX9c0336hXr14PtBYAAAAABZepgOGtt96Su7u71q1bpyJFiqhJkyb65z//qcaNG2vz5s3617/+pVmzZuVWrSgAtm/frvj4eIWGhqphw4bp1r///vuKiopSaGioxowZox07dqhv374aMmSIypQpo2PHjikhIUFDhw6Vr6+vevfurXfeeUfXr19X48aNlZiYqB07dmjs2LEqV66cxo0bp+7du9smJS1durQuX76sb7/9VvXq1VPHjh2zXHvaHAjLli1T69atVaRIEVmt1ly7Npnp1q2bFi1apOHDh+vZZ5+1PUWiUKFCzI0CAAAA4IExFTDs379fQ4YMUcWKFRUbGyvp/4ZUh4SE6Pvvv9cbb7yhpUuXmi4UBUNUVJQqVqyYYbggSV26dNFrr72mU6dOqUqVKlqxYoXeeustTZ06VSkpKapSpYrdaIXJkyfL29tbq1at0uLFi+Xp6an69evbbn946KGHtGrVKs2ePVtTp05VfHy8ypQpo/r162c7HPD399fYsWO1atUqvf/++6pQoYK++OKLnF+MLCpWrJg++ugjzZw5U6+88opSU1NVp04dLV26lEdUAgAAAHhgLIaJG1dr166tf/7zn+rRo4dSU1MVGBioN998U+3bt5ckrVq1Sq+99poOHDiQawUDuP8OHTok6c9HzjJxHvKy+Ph4HTlyRNWrV5e7u7ujywEyRV9FfkFfRX5BX31w0r4bBAYG3rOtk5kDeXt768yZM3/uyMlJ3t7e2r17t239/v37082KDwAAAAAA/n5M3SLRrFkzRUdHa/z48ZKkPn36aObMmTp9+rQMw9C3336rp556KlcKBQAAAAAAeZepgGHEiBHq0KGDbt++LRcXFw0cOFDx8fH6/PPP5eTkpFGjRmn48OG5VSsAAAAAAMijTAUMHh4e8vDwsL22WCwaNWqURo0aZbowAAAAAACQf5iag2HAgAF2cy7cac+ePRowYICZQwAAAAAAgHzAVMDw7bff6vLly5muv3r1qvbt22fmEAAAAAAAIB8wFTBIf94WkZnff/9dRYsWNXsIAAAAAACQx2V7Doa1a9dq7dq1ttfz5s3TJ598kq5dXFycfv31VzVv3txchQAAAAAAIM/LdsCQkJCga9eu2V7/8ccfcnJKPxDC3d1dvXv31ujRo81VCAAAAAAA8rxsBwx9+/ZV3759JUnBwcGaNGmSHn/88VwvDAAAAAAA5B+mHlP5xRdf5FYdAAAAAAAgHzMVMEhSSkqKoqOjtXfvXl25ckXjxo2T1WpVXFycdu/erTp16qh06dK5USsAAAAAAMijTAUMN27c0JAhQ3Tw4EG5u7srISFB/fv3l/TnHAzTp09Xly5d9Nxzz+VKsQAAAAAAIG8y9ZjKWbNm6ejRo/rggw+0bds2GYZhW+fs7Ky2bdtq586dposEAAAAAAB5m6mAYfv27QoNDVXTpk1lsVjSra9SpYpiYmLMHAIAAAAAAOQDpgKGuLg4eXt7Z7o+OTlZKSkpZg4BAAAAAADyAVMBg4+Pj37++edM1+/atUtVq1Y1cwgAAAAAAJAPmAoYunfvrk8//VSbNm2yzb9gsViUlJSkt99+W1999ZV69eqVK4UCAAAAAIC8y9RTJAYOHKj//e9/eu6551SiRAlJ0oQJExQbG6vk5GT16tVLPXr0yJVCAQAAAABA3mUqYLBYLLZHUUZHR+vUqVNKTU2Vj4+PQkJCVL9+/dyqEwAAAAAA5GGmAoY09erVU7169XJjVwAAAAAAIB/KdsAwYsSIbLW3WCyaN29edg8DAAAAAADykWwHDDt27FDhwoVVunRp28SOd2OxWHJUGAAAAAAAyD+yHTCUK1dOFy5cUMmSJdWxY0d16NBBZcqUuR+1AQAAAACAfCLbj6ncuXOnlixZIn9/f82bN08tW7bUoEGD9Omnn+rmzZv3o0YADpCSkpKlUUoAAAAAIOUgYJCkBg0aaNq0afr666/1zjvvyNPTU6+++qqaNGmiMWPGKDo6WklJSbldK4AHKCUlxdElAAAAAMhHchQwpHFxcVHr1q01e/Zs7dq1S9OmTdPly5c1fvx4RUZG5laNAAAAAAAgjzMVMKRJSkrS119/re3bt+vw4cMqXLiwKlWqlBu7BgAAAAAA+UC2J3lMk5qaql27dumzzz7Ttm3blJiYqMaNG+vVV1/VE088IXd399ysEwAAAAAA5GHZDhj279+vqKgoRUdHKzY2VrVq1dL48eMVEhIiLy+v+1EjAAAAAADI47IdMPTt21dFihRR8+bN1bFjR9utEOfOndO5c+cy3KZGjRrmqgQAAAAAAHlajm6RSExM1Oeff66tW7fetZ1hGLJYLDpy5EiOigMAAAAAAPlDtgOGGTNm3I86AAAAAABAPpbtgKFr1673ow4AAAAAAJCP5cpjKgEAAAAAQMFGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGABkymKxOLoE4K4sFovc3Nzoq8jz6KvIL+irAMzI9lMkABQMrq6ucnNzc3QZwF25ubnJ39/f0WUA90RfRX6RWV9NTTXk5EToAODuCBgAZCpi+S7FXLzu6DIAAIADVSrrodF9mjq6DAD5AAEDgEzFXLyukzHXHF0GAAAAgHyAORgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwDQCBgAAAAAAYBoBAwAAAAAAMI2AAQAAAAAAmEbAAAAAAAAATCNgAAAAAAAAphEwAAAAAAAA0wgYAAAAAACAaQQMAAAAAADANAIGAAAAAABgGgEDAAAAAAAwjYABAAAAAACYRsAAAAAAAABMI2CAQ8yZM0dWq1X9+vVLt+7f//63goODs73PRYsWaefOnemWBwcHa9q0adnaV1hYmDp27Gh7feTIEc2ZM0cJCQnZrisjc+bMUe3atXO07aJFi9SyZUtVr15do0aNypV6AAAAAMCsQo4uAAXbd999p71796phw4am97VkyRK1bNlSLVq0sFseHh6uEiVKZGtfo0aNUnx8vO31kSNHFB4ern79+snNzc10rT169EhXZ1acPHlSM2fO1NChQ9WqVSuVLFnSdC0AAAAAkBsIGOAw7u7uqlatmubOnZsrAUNm/P39s72Nj4/Pfajk/5QvX17ly5fP9nYnTpyQYRjq2bOnKleufB8qAwAAAICc4RYJONSoUaO0Z88e7d+/P9M28fHxmjZtmtq2batatWopODhYkydPVlxcnK1NcHCwYmJitGzZMlmtVlmtVq1Zs8a2Lu0WiTVr1sjf31+XL1+2O0ZsbKwCAgK0YsUKSfa3SKxZs0YTJ06UJDVu3FhWq1XBwcG6evWqAgIC9Mknn6SruUePHnrmmWcyPac7b5HYu3evrFardu3apeeff161a9dWq1atFBkZaWsTFhamESNGSJJat25td44xMTEaN26c6tatq6CgIA0ePFi//vprpscHAAAAgNxGwACHatWqlfz9/RUREZFpm8TERKWkpGj8+PGKjIzUM888o3379tnNPxAeHq4yZcqobdu2WrlypVauXKmWLVum29cTTzwhZ2dnRUdH2y3//PPPJUnt2rVLt03Lli01cuRISdL777+vlStXKjw8XF5eXnriiSf06aef2rU/evSoDh48qO7du2f5OqSZMmWKqlSpooiICLVq1UqzZs3Sf//7X0l/hjETJkywnW/aOd68eVOhoaE6fPiwpk6dqjfffFPXrl1T//79de7cuWzXAAAAAAA5wS0ScLiRI0dq7NixOnjwoGrWrJluvZeXl6ZOnWp7nZycLG9vb/Xt21cnTpyQr6+v/P395erqqtKlSysoKCjTYxUvXlwtWrRQVFSU+vfvb1seFRWlpk2bytPTM8Pjp90yUaNGDXl5ednW9ezZU4MGDdKxY8dUtWpVSdKnn36qChUqqGnTptm9FGrTpo3Gjh0r6c/REjt27NCWLVvUvHlz+fj4yNfXV5JUvXp1eXt7S/pz7omzZ8/qs88+s9VQv359tWrVSosXL1ZYWFi260hTy1pRFctkb/4KILf8kZik63GJji4DAAq8SmU9HF0CgHyCgAEO98QTT8jPz08RERFasGBBhm3WrVunRYsW6ffff7ebfPHkyZO2L91Z1aFDB40fP15nz55VxYoVdfHiRe3bt0+vv/56tmtv1KiRKleurNWrV+ull15ScnKyNmzYoF69esnJKfsDhJo1a2b7b4vFoqpVq+r8+fN33ea7777TI488YgsXJMnT01NNmjTR999/n+0a/qpXuyBT2wNmGKmpsuTg5wgAkPtSUw05OVkcXQaAPI6AAQ5nsVg0YsQIPffcc/r555/Trd+6dateeukl9erVS+PHj5enp6cuXbqk0aNH69atW9k+XqtWreTm5qbPPvtMQ4cO1ebNm1W4cGG1bt06R7X36NFDS5Ys0fPPP68dO3bo6tWr6tatW7b3Jf05wuKvXFxc7OaayMiNGzdUunTpdMtLlSqlo0eP5qiONCeiIpVwhdss8OC5laog345D79kuISHBNpIpN57wAtwv9FXkF5n1VcIFAFlBwIA8ISQkRHPmzNHcuXNVsWJFu3XR0dGqXr26baJGSfr2229zfKwiRYqodevW2rRpk4YOHapNmzapVatWcnd3z9H+unXrpnfffVc7duzQ6tWr1bBhwwf6hAcPDw+dOHEi3fIrV67Iw8PckMaEK+eUcOGUqX0A95NhGEpISJBhGI4uBbgr+iryC/oqADMYe4o8wcnJSSNGjND27dvTPf0gMTFRLi4udss2btyYbh8uLi5ZHtHQsWNHHT58WF999ZV++OEHdejQ4a7t046flJSUbl2ZMmXUsmVLvf/++/rqq6/0j3/8I0s15Ja6devqt99+0/Hjx23Lrl+/rm+++UZ169Z9oLUAAAAAKLgIGJBnPPnkk6pcubL27t1rt7xJkyY6ePCgIiIi9M0332jGjBnavXt3uu0ffvhh7dmzR7t27dKhQ4d07dq1TI/VpEkTeXp66p///KdKlCih5s2b37W2tPkNli1bph9//DFdCNKzZ08dOHBA7u7uatu2bVZPOVd069ZNFStW1PDhw/XZZ59p27Ztevrpp1WoUCENHDjwgdYCAAAAoOAiYECe4ezsrGHDhqVb3rt3bz399NNaunSpxowZo3Pnzumtt95K1+65555T+fLlNXbsWHXv3l1ffvllpsdycXFR27ZtdfHiRbVp00aurq53rc3f319jx47Vhg0b1Lt3b9tjK9M0a9ZMbm5u6tChgwoXLpzFM84dxYoV00cffaRHH31Ur7zyiiZMmCAPDw8tXbpUFSpUeKC1AAAAACi4LAY3WAGm7d69W4MGDdKnn36qgIAAR5dj2qFDhyRJzvvXMgcDHMKtnI/8B06+Z7v4+HgdOXJE1atXz/E8KsCDQF9FfkFfRX5BX31w0r4bBAYG3rMtkzwCJly4cEGnTp3Sm2++qTp16vwtwgUAAAAAyAlukQBM+OSTTzRgwABJ0vTp0x1cDQAAAAA4DiMYABPGjh2rsWPHOroMAAAAAHA4RjAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwDQCBgAAAAAAYBoBAwAAAAAAMI2AAQAAAAAAmEbAAAAAAAAATCNgAAAAAAAAphEwAAAAAAAA0wgYAAAAAACAaQQMAAAAAADANAIGAAAAAABgWiFHFwAg73IrVcHRJaCAou8BAADkPwQMADLl23Goo0tAAWakpsrixEA7AABgLyUlRbdu3ZIk3bp1S078vmCKi4uLnJ2dc2VfBAwAMpSUlKSEhAS5ubk5uhQUUIQLAADgrwzD0Pnz5xUbG6vU1FQVKlRIZ8+eJWDIBZ6enipfvrwsFoup/RAwAMiUYRiOLgEAAACQJFu4ULZsWRUuXFhJSUkqXLhwrv31vSAyDEPx8fG6ePGiJKlCBXO3qRIwAAAAAADytJSUFFu4UKpUKaWkpMhisahIkSIEDCaljVi+ePGiypYta+p6MpYEAAAAAJCn3b59W5Lk7u7u4Er+ntKua9p1zikCBgAAAABAvmB2jgBkLLeuKwEDAAAAAAAwjYABAAAAAACYxiSPAAAAAABIslqtWWq3ZMkSNWzY8D5Xk/8QMAAAAAAAIOmNN96we71+/Xrt2rUr3fKqVas+yLLyDQIGAAAAAAAkde7c2e71jz/+qF27dqVbjowxBwMAAAAAAFnw0ksvqWHDhhk+zvHpp59W27Ztba+tVqumTZumDRs2qG3btgoMDFS3bt20b9++dNteuHBBEydOVJMmTRQQEKAOHTpo9erV9/Vc7gcCBgAAAAAAsqBz586KjY3V119/bbf80qVL2rNnjzp16mS3fN++fXrttdfUqVMnjRs3TrGxsRoyZIh+++03W5vLly+rZ8+e2r17t/r166dJkybJx8dHkyZN0qJFix7EaeUabpEAAAAAACALGjVqpPLly2vDhg1q1aqVbflnn32m1NTUdAHDb7/9pk8//VQBAQGSpA4dOqhdu3Z69913FR4eLkl6++23lZKSoo0bN6pkyZKSpD59+ui5555TeHi4evfurSJFijygMzSHEQwAMmWxWBxdAnBXFotFbm5u9FXkefRVAPh7cHJy0pNPPqkvvvhCN2/etC3fsGGDateurcqVK9u1r127ti1ckKSKFSvq8ccf19dff62UlBQZhqHPP/9cwcHBMgxDV69etf1r1qyZ4uLi9PPPPz+w8zOLEQwAMuTq6io3NzdHlwHclZubm/z9/R1dBnBPZvpqaqohJyeCCQDIK7p06aLIyEht27ZNXbp00fHjx/Xzzz9r6tSp6do+9NBD6ZZVqVJFCQkJunr1qpycnHTjxg2tXLlSK1euzPB4V69ezfVzuF8IGABkKmL5LsVcvO7oMgCgwKpU1kOj+zR1dBkAgL+oVq2aatSooQ0bNqhLly7asGGDXFxcFBISku19paamSpI6deqkrl27ZtjGarWaqvdBImAAkKmYi9d1Muaao8sAAAAA8pQuXbpo5syZunjxoqKiotSyZUt5eHika/f777+nW3by5Em5ubnJy8tLklS0aFGlpqaqSZMm973u+405GAAAAAAAyIaOHTvKYrHo3//+t06fPp1ucsc0Bw4csJtD4dy5c9q+fbuaNm0qZ2dnOTs7q23bttqyZYvdkyXS5KfbIyRGMAAAAAAAkC1eXl567LHHFB0drRIlSqhly5YZtvPz89PgwYMVGhoqV1dXLV++XJI0duxYW5vnn39ee/fuVc+ePdWjRw9Vq1ZN169f188//6zdu3fr22+/fRCnlCsIGAAAAAAAyKbOnTvryy+/VEhIiFxdXTNsU79+fQUFBSkiIkJnz55VtWrVNGPGDD366KO2NqVLl9aqVasUERGhrVu3avny5fL09FS1atU0YcKEB3U6uYKAAQAAAACADEyePFmTJ0/OcJ2Li4skZXp7RJpOnTrds02pUqXueqz8gjkYAAAAAADIplWrVqly5cqqW7euo0vJMxjBAAAAAABAFn322Wf69ddftWPHDk2aNEkWi8XRJeUZBAwAAAAAAGTRc889J3d3d3Xv3l19+/Z1dDl5CgEDAAAAAABZ9Ouvv+Zqu78T5mAAAAAAAACmETAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhWyNEFAAAAAABQkMyZM0fh4eHplj/yyCOKiopyQEW5g4ABAAAAAJBvpaYacnKy5LtjFylSRIsXL063LD8jYAAAAAAA5FtOThZFLN+lmIvXH+hxK5X10Og+TXO8vZOTk4KCgu7ZLjExMd8EDwQMAAAAAIB8LebidZ2MueboMnKF1WrV888/r+vXr2vdunWKj4/XgQMHZBiGPvzwQ33yySeKiYlRuXLlFBoaqkGDBtltf+zYMc2aNUvffvutUlJS1KBBA7388svy8fG577UTMAAAAAAA4ADJycl2r52dnSVJS5YsUa1atfTvf//b1ubf//63Vq1apREjRqhWrVrav3+/Zs2apcKFC6tPnz6SpNOnT6t379565JFHNHPmTFksFs2fP1+DBg1SdHS0XF1d7+v5EDAAAAAAAPCAxcfHq0aNGnbL3njjDUmSh4eHwsPDZbH8Ob/DqVOntHTpUk2dOlW9evWSJDVp0kSJiYmKiIhQr1695OTkpPDwcHl4eGjhwoUqXLiwJKlOnTp6/PHHtWrVKvXr1+++nhMBAwAAAAAAD1iRIkW0dOlSu2WVK1eWJDVv3twWLkjSN998I0lq06aN3aiHJk2aKDIyUufOnVOlSpW0a9cutW/fXs7OzrZ2JUqUkL+/v3766af7fUp5J2CwWq33bDNjxgytXbtW7u7uWrBgwQOoypzg4GC1bNlSkydPliSFhYXpp59+ytePHckte/fu1YEDBzRixAhHl5Jj27Zt04ULF3KUAp45c0Zr165Vz549Va5cOdvyvXv3asCAAVq9erUCAwNzs1wAAAAAeYiTk1Omv/OXKlXK7vW1a9dkGIYaNWqUYfu0gOHatWtavHhxuqdTSJKLi4v5ou8hzwQMK1eutHvdq1cvhYaGqmPHjrZlPj4+qlmzppycnB50ebli1KhRio+Pd3QZecK3336rDz/8MN8HDD/99FOOAoaYmBiFh4erZcuWdgFDjRo1tHLlSlWtWjU3SwUAAACQj/x19IL05y0TFotFH3/8cYZBga+vr61dixYt1Ldv33RtihYten+K/Ys8EzBk9HiOChUqpFvu5eX1YAq6Dx7ErJ3I34oVK5alR9UAAAAAKDgaN24sSYqNjVVwcPBd2x09elT+/v62CSMfpHw3FCA0NFTDhw+3vZ4zZ45q166tw4cPq1evXqpZs6a6du2qw4cP69atW5oyZYrq16+v5s2ba9GiRen2d+DAAQ0YMEBBQUGqW7eunn/+eV25cuWuNcTHx2vatGlq27atatWqpeDgYE2ePFlxcXF33S4sLMxuRIYkfffdd+rSpYsCAwP15JNPateuXercubPCwsLSbbd371516dJFQUFB6t69e7p7aAzD0AcffKC2bdsqICBAjz/+eLpzvt/X68yZM7JarVq/fr2mTZum+vXrq1mzZnr99ddt9wDNmTNH4eHhio+Pl9VqldVqVWhoaKbXLe1WimbNmikoKEidO3fWunXr7Nrs3btXVqtVu3bt0vPPP6/atWurVatWioyMzPA9uNe1vHXrlmbMmKFmzZopMDBQnTt31tatW+32s3btWh09etR2Dmnv2b3qTbsNQpK6d+9u2/6v53Ho0KEs15Kd8wIAAACQ//j6+qpfv3568cUXNW/ePH3zzTfauXOnFi9erFGjRtnajRs3Tr///rsGDx6sTZs26dtvv9WmTZv0r3/964Hcqp9nRjCYcfv2bb300ksaNGiQSpcurVmzZmnMmDGqU6eOSpUqpdmzZ2v79u2aMWOGatasqTp16kj684tgaGioWrRoobffflsJCQmaPXu2Ro0ale6Wjb9KTExUSkqKxo8fLy8vL507d07z58/XqFGj9NFHH2W57osXL2ro0KHy9/fX7NmzFRcXp3/961+Ki4tT9erV7dpeunRJ06dP17Bhw1S8eHG99dZbGjNmjLZu3WobIpOVx5Y8qOs1e/ZsPf7445o9e7YOHDigOXPmyMfHR3369FGPHj10/vx5RUVF2e4NKlasWKbX6ezZs6pTp4769OkjV1dX7d+/Xy+//LIMw1DXrl3t2k6ZMkWdO3dWRESEtm3bplmzZslqtap58+bZupYTJkzQV199pWeffVYPP/yw1q9fr7FjxyoiIkKPP/64Ro0apatXr+r48eOaNWuWpP8bXXOvemvUqKHJkydr2rRpmjFjhh5++OG79pN71ZKd8wIAAAD+jiqV9fjbH/Pll1+Wr6+vVq5cqYiICBUtWlS+vr5q166drc1DDz2kVatWafbs2Zo6dari4+NVpkwZ1a9fP0vzHpr1twkYJkyYoBYtWkiSUlNTbV+yJ06cKElq1KiRoqOjFR0dbfvC/NZbbykgIMDu8R9+fn7q2LGjdu7cadvfnby8vDR16lTb6+TkZHl7e6tv3746ceKE7f6Xe1m0aJGcnZ21YMEC2xdsb2/vDO/pv379upYuXapHHnlEkuTm5qYBAwboxx9/VL169bL82JIHdb1q1qypl19+WZLUtGlT7d27V1u2bFGfPn1Uvnx5lS9fXk5OTlm6HaBDhw62/zYMQ/Xr19eFCxe0cuXKdAFDmzZtNHbsWEl/Dg/asWOHtmzZYhcw3Ota/vLLL/r88881depU9e7dW9Kfs7jGxMTYvtT7+PjIy8tLZ8+eTXcO96q3WLFiqlatmiTpkUceuetkjlmpJavnlRO1rBVVsUyJHG2L/OGPxCRdj0t0dBkAMuGIX5gBIL9JTTU0uk9Thx3bycly74Z3GDt2rO17y51+/fXXDJdbLBb1799f/fv3v+u+q1SpotmzZ2e7ptzwtwgYnJycbPekSH9eUOnPL9hpnJ2d5ePjo/Pnz0uSEhIStH//fr344otKSUmx27ZChQo6dOhQpgGDJK1bt06LFi3S77//bjdx48mTJ7McMBw6dEgNGza0++t9vXr15Onpma5t2bJlbV8cJdm+oF64cEFS1h9bIj2Y69WsWTO7+qtWrao9e/Zk4aqkd/36dc2ZM0fbt2/XhQsXbMfP6Dr99bgWi0VVq1a1nUOae13L77//XpLskkBJCgkJ0YwZMxQfHy93d/dcqfdeslPLvc4rJ3q1C8rxtsgfjNRUWfLpxLlAQZHTX14BoKBw5Gckn8/2/hYBQ5EiReTq6mp7nTYcvHjx4nbtXFxcdOvWLUnSjRs3lJKSohkzZmjGjBnp9nnu3LlMj7d161a99NJL6tWrl8aPHy9PT09dunRJo0ePtu0/Ky5dumT7cv9XGU1kWaKE/V+R084x7XhZfWyJ9GCuV0b7SkpKyrC2ewkLC9OBAwc0evRoVatWTcWKFdPy5cu1efPmdG0zOu6dc2Pc61pev35dLi4u6QKB0qVLyzAMxcXF3TVgyE6995KdWu51XjlxIipSCVcy/1lA/uZWqoJ8Ow51dBmmJCQk2EaOubm5ObocIFNm+iq/vAIA8ou/RcCQE8WLF5fFYtHw4cPVunXrdOtLliyZ6bbR0dGqXr26pk2bZlv27bffZruGMmXK6OrVq+mWZ7TsXrL62JKcMnO9zLh165Z27NihsLAwu4kgP/744/tyPOnPa3n79m1dv35dHh7/NzT18uXLslgs6UKM+1mvmVpyQ8KVc0q4cOq+HgMwwzAMJSQkyDAMR5cC3BV9FQBQEBTYgMHd3V1BQUE6fvz4Xe+Bz0hiYmK6L/EbN27Mdg2BgYFauXKlbt68abtN4rvvvlNsbGy295XVx5bklJnrlZGsjmhISkpSamqq3fW+efOmvvjiC9M1ZKZu3bqS/gyS0uazSHvt7+9vGzHw1xEe2a03q6MLsloLAAAAADhagQ0YJOnFF1/UwIED9eyzz6pDhw4qUaKEzp8/r2+++UbdunVTw4YNM9yuSZMmmjZtmiIiIlS7dm3t3LlTu3fvzvbxBw0apOXLl2v48OEaPHiwbty4oYiICJUsWdI2iWJW/fWxJYMHD1atWrV0+/ZtnTx5Unv37tXcuXOzXd+dcnq9MlK1alUlJydr8eLFql27tooVK5bh0xSKFy+uwMBARUZGysvLS4UKFdJ7772nYsWK5WikR1Y8+uijatOmjWbOnKnExET5+vpqw4YNOnDggN11rFq1qj799FNFRUXpoYceUsmSJeXt7Z2leqtUqSJnZ2d9+umnKlSokJydnTMMbrJaCwAAAAA4WoEOGOrUqaOPP/5Yc+bM0cSJE3X79m2VL19ejRo10kMPPZTpdr1799aZM2e0dOlSffDBB2rWrJneeust9ezZM1vHL1u2rCIjIzV9+nSNGzdOPj4+mjRpkqZNm5ajoe9ZeWyJGTm9Xhlp1aqV+vbtq/fee09XrlxR/fr1M33E51tvvaXJkycrLCxMnp6eCg0NVXx8vD788MPcOK0Mvfnmm/rPf/6jyMhIxcbG6uGHH9a7775rNzqke/fuOnjwoF599VXFxsaqa9eumjlzZpbq9fLy0uTJk/X+++9rw4YNSk5OznS22KzUAgAAAACOZjG4GTBPOXnypEJCQvTaa6+lewQj8KAcOnRIkuS8fy1zMPyNuZXzkf/AyY4uw5T4+HgdOXJE1atX55Yh5Gn0VeQX9FXkVYmJibbJcosUKaKUlBQlJiaqSJEicnZ2dnR5+d6d1/ev0r4bZOVW+QI9giEveOutt2S1WlW2bFmdPn1aCxYsUJkyZdSmTRtHlwYAAAAAQJYRMDjY7du3NWvWLF2+fFlFihRRgwYN9OKLL6po0aKOLg0AAAAAgCwjYHCwsLAwhYWFOboMAAAAAABMcXJ0AQAAAAAAFCRz5syR1Wq1/WvUqJEGDBig7777Lsv7CAsLU8eOHe/ZrnPnzg/sj9qMYAAAAAAA5FtGaqosTo7527mZYxcpUkSLFy+WJJ0/f15z587VoEGDtGbNGvn5+d1z+1GjRik+Pj5Hx75fCBgAAAAAAPmWxclJJ6IilXDl3AM9rlupCvLtODTH2zs5OSkoKMj2umbNmgoODtaKFSs0efK9n/Tl4+OT42PfLwQMAAAAAIB8LeHKuXz/ePWKFSvKy8tLZ86c0YcffqjPPvtMJ0+elKurq2rWrKmwsDD5+vra2oeFhemnn35SVFSUbdn+/fs1ffp0HT16VA899JBeeOGFB3oOBAwAAAAAADjYzZs3FRsbq7Jly+r8+fPq37+/KlasqJs3b2rFihXq3bu3tmzZIk9Pzwy3v3TpkgYPHiyr1arZs2frxo0bmjp1quLj41W9evUHcg4EDAAAAAAAOEBycrKkP+dgeP3115WSkqK2bdvqscces7VJSUlR06ZN1bhxY23ZskW9evXKcF+LFy+WxWJRZGSkihcvLkkqX768Bg0adN/PIw0BAwAAAAAAD1h8fLxq1Khhe+3h4aHJkyfrscce0w8//KB33nlHhw8fVmxsrK3NyZMnM93fjz/+qIYNG9rCBUlq3LhxpiMe7gcCBgAAAAAAHrAiRYpo6dKlslgsKlmypCpUqCAnJyedPXtWTz/9tAICAjR16lSVLVtWLi4uGj58uG7dupXp/i5duqSHHnoo3XIvL6/7eRp2CBgAAAAAAHjAnJycFBgYmG75V199pfj4eIWHh6tEiRKS/ryV4vr163fdX5kyZXTlypV0y69evZo7BWeBYx4WCgAAAAAA0klMTJTFYlGhQv83HmDz5s22+RoyU7NmTe3du1dxcXG2Zbt377a7xeJ+YwQDAAAAAAB5RKNGjSRJEydOVO/evXX06FEtXLjQNpohMwMHDtTHH3+soUOHaujQobpx44bmzJnDHAwAAAAAAGSVW6kKf5tjWq1WzZgxQ+Hh4Ro+fLiqV6+ud955R88+++xdtytbtqwiIyM1ffp0PfPMM/Lx8dHkyZP19ttv35c6M2IxDMN4YEcDkC8cOnRIkuS8f60SLpxycDW4X9zK+ch/4GRHl2FKfHy8jhw5ourVq8vd3d3R5QCZoq8iv6CvIq9KTEzUiRMn5OvrqyJFiiglJUWJiYkqUqSInCwWWZwcc/e/kZrqsGPnpjuv71+lfTfIaL6IO+X/KwEAAAAAKLAc+QX/7xAu5CauBgAAAAAAMI2AAQAAAAAAmEbAAAAAAAAATCNgAAAAAAAAphEwAAAAAADyBR6CeH/k1nUlYAAAAAAA5GkuLi6S/nyUKnJf2nVNu845VSg3igHw9+RWqoKjS8B9xPsLAADyC2dnZ3l6eurixYuSpMKFCyspKcm2DjljGIbi4+N18eJFeXp6mr6WBAwAMuXbcaijS8B9ZqSm8vxmAACQL5QvX16SdPHiRaWmpio5OVmFChWSE7/LmObp6Wm7vmYQMADIUFJSkhISEuTm5uboUnAfES4AAID8wmKxqEKFCipbtqxu3Lih48ePy8fHh99XTXJxccm1USAEDAAyxSQ6AAAAyGucnZ1VuHBhSX/eKlGkSBEHV4Q0/OkKAAAAAACYRsAAAAAAAABMI2AAAAAAAACmWQxusgZwh/3798swDLm4uMhisTi6HCBThmHo9u3b9FXkefRV5Bf0VeQX9NUHJykpSRaLRXXq1LlnWyZ5BJBO2oc0H9bI6ywWi1xdXR1dBnBP9FXkF/RV5Bf01QfHYrFk+XsBIxgAAAAAAIBpzMEAAAAAAABMI2AAAAAAAACmETAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDADsHDt2TE899ZSCgoLUtGlTvfHGG0pKSnJ0WSjANm/erJEjR6p58+YKCgpS586dtXr1ahmGYddu1apVatu2rQIDA9WpUyd9+eWXDqoYkP744w81b95cVqtVhw4dsltHX0VesXbtWnXp0kWBgYFq2LChhgwZosTERNv6L774Qp06dVJgYKDatm2rTz/91IHVoqDavn27evToodq1a6tZs2Z65plndPr06XTt+GzNGwgYANhcv35dAwcO1O3btzVnzhyNHz9en3zyiWbOnOno0lCALVq0SG5ubgoLC9O8efPUvHlzvfLKK4qIiLC1+eyzz/TKK68oJCREkZGRCgoK0pgxY/TDDz84rnAUaHPnzlVKSkq65fRV5BXz5s3Tq6++qvbt2+uDDz7QtGnT5O3tbeu33333ncaMGaOgoCBFRkYqJCREkyZNUnR0tIMrR0Gyd+9ejRkzRtWqVVNERIT++c9/6pdfftHTTz9tF4bx2Zp3WIw7/wQEoMBasGCB5s+fry+//FKenp6SpJUrV2rq1Kn68ssvVa5cOccWiALp6tWr8vLyslv2yiuvaNOmTdq3b5+cnJzUtm1bBQQE6K233rK16d27t4oXL67IyMgHXTIKuGPHjql79+566aWXNGXKFK1evVqBgYGSRF9FnnD8+HE9+eSTmjt3rlq0aJFhm8GDB+uPP/7QihUrbMuef/55HTlyRJs2bXpQpaKAmzx5snbt2qVt27bJYrFIkvbs2aOBAwdq2bJlqlevniQ+W/MSRjAAsPnvf/+rxo0b28IFSQoJCVFqaqp27drluMJQoN0ZLkhS9erVdfPmTcXHx+v06dM6efKkQkJC7Nq0b99eu3fv5hYfPHDTp09X79695evra7ecvoq8Ys2aNfL29s40XEhKStLevXvVrl07u+Xt27fXsWPHdObMmQdRJqDk5GQVLVrUFi5IUvHixSXJdqskn615CwEDAJvjx4/r4YcftltWokQJlSlTRsePH3dQVUB633//vcqVK6dixYrZ+uadX+aqVq2q27dvZ3ifJnC/REdH67ffftPo0aPTraOvIq/48ccf5efnp7lz56px48YKCAhQ79699eOPP0qSTp06pdu3b6f7naBq1aqSxO8EeGC6deumY8eOadmyZYqLi9Pp06f1n//8R/7+/qpTp44kPlvzGgIGADY3btxQiRIl0i338PDQ9evXHVARkN53332nTZs26emnn5YkW9+8s++mvabv4kFJSEjQzJkzNX78eBUrVizdevoq8opLly7p66+/1vr16zVlyhRFRETIYrHo6aef1pUrV+iryDPq1aun8PBwvfXWW6pXr55at26tK1euKDIyUs7OzpL4bM1rCBgAAPnG+fPnNX78eDVs2FADBgxwdDmAnXnz5qlUqVL6xz/+4ehSgLsyDEPx8fF655131K5dO7Vo0ULz5s2TYRhaunSpo8sDbPbv368XX3xRPXv21OLFi/XOO+8oNTVVw4YNs5vkEXkHAQMAmxIlSiguLi7d8uvXr8vDw8MBFQH/58aNGxo6dKg8PT01Z84cOTn9+b+wtL55Z9+9ceOG3XrgfoqJidGHH36ocePGKS4uTjdu3FB8fLwkKT4+Xn/88Qd9FXlGiRIl5OnpqUcffdS2zNPTU/7+/vrf//5HX0WeMX36dDVq1EhhYWFq1KiR2rVrp/fee0+HDx/W+vXrJfF7QF5DwADA5uGHH053X2VcXJwuXbqU7j5M4EFKTEzU8OHDFRcXp/fff982wZMkW9+8s+8eP35cLi4uqly58gOtFQXTmTNndPv2bQ0bNkz169dX/fr1NWLECEnSgAED9NRTT9FXkWdUq1Yt03W3bt2Sj4+PXFxcMuyrkvidAA/MsWPH7IIwSSpfvrxKliypU6dOSeL3gLyGgAGATfPmzfXNN9/YEl/pzwnLnJyc1LRpUwdWhoIsOTlZzz77rI4fP673338/3eNSK1eurCpVqqR7NvumTZvUuHFjubq6PshyUUBVr15dS5Yssfs3ceJESdLUqVM1ZcoU+iryjFatWik2NlZHjhyxLbt27Zp+/vln1ahRQ66urmrYsKG2bNlit92mTZtUtWpVeXt7P+iSUUBVrFhRhw8ftlsWExOja9euqVKlSpL4PSCvKeToAgDkHb1799ZHH32k0aNHa/jw4bpw4YLeeOMN9e7dO92XOuBBmTp1qr788kuFhYXp5s2b+uGHH2zr/P395erqqrFjx2rChAny8fFRw4YNtWnTJh08eJB7ifHAlChRQg0bNsxwXY0aNVSjRg1Joq8iT2jdurUCAwM1btw4jR8/XoULF9Z7770nV1dX9e3bV5I0cuRIDRgwQP/6178UEhKivXv3KioqSm+//baDq0dB0rt3b7322muaPn26goODFRsba5vv5q+PpeSzNe+wGGkPEAUA/TkU7dVXX9WBAwdUtGhRde7cWePHjyf9hcMEBwcrJiYmw3Xbt2+3/SVt1apVioyM1NmzZ+Xr66vnnntOrVq1epClAnb27t2rAQMGaPXq1QoMDLQtp68iL7h69apmzJihL7/8Urdv31a9evU0ceJEu9sntm/frtmzZ+vEiROqWLGihg0bpu7duzuwahQ0hmFoxYoVWr58uU6fPq2iRYsqKChI48ePtz02NQ2frXkDAQMAAAAAADCNORgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAOC+OXjwoHr37q2goCBZrVYdOXLE0SXdldVq1Zw5cxxdBgDkS4UcXQAAAEBet2bNGk2cONH22tXVVRUrVlTTpk01atQolS5d2oHVmfe///1PmzdvVteuXeXt7Z1r+719+7aeffZZubq6auLEiSpSpIgqVqx432rYuHGjrly5okGDBpmoGgCQUwQMAAAAWTRu3Dh5e3srKSlJ33//vZYvX66dO3cqKipKbm5uji4vx/73v/8pPDxcDRo0yNWA4dSpU4qJidH06dPVo0eP+15DVFSUjh49SsAAAA5CwAAAAJBFzZs3V2BgoCSpR48e8vT01MKFC7V9+3Z17NjR1L4TEhLydUiRkatXr0qSihcv7uBKAAAPAnMwAAAA5FCjRo0kSWfOnLEtW79+vbp166aaNWuqQYMGGj9+vM6dO2e3XWhoqDp27KiffvpJ/fr1U61atfSf//xHknTr1i3NmTNHbdu2VWBgoJo1a6YxY8bo1KlTtu1TU1O1aNEidejQQYGBgWrSpIkmT56s69ev2x0nODhYw4cP13fffafu3bsrMDBQjz/+uNatW2drs2bNGj3zzDOSpAEDBshqtcpqtWrv3r13Pffdu3erb9++CgoKUr169TRy5EgdO3bMtj4sLEz9+/eXJD3zzDOyWq0KDQ3NcF9ZqWHZsmXq0KGDAgIC1KxZM02dOlU3btywu6Y7duxQTEyMbfvg4GBJUlJSkt555x1169ZNdevWVVBQkPr27as9e/bc9RwBANnDCAYAAIAcSvvS7+npKUmaN2+e3nnnHYWEhKh79+66evWqli5dqn79+mndunUqUaKEbdvY2FgNHTpUHTp0UKdOnVSqVCmlpKRo+PDh2r17tzp06KABAwbojz/+0K5du/Tbb7/Jx8dHkjR58mStXbtW3bp1U2hoqM6cOaNly5bp8OHDWr58uVxcXGzH+f333/XMM8+oe/fu6tq1qz799FOFhYWpRo0aeuSRR1S/fn2Fhobqo48+0ogRI/Twww9LkqpWrZrpeX/zzTcaOnSovL29NWbMGCUmJmrp0qXq06eP1qxZI29vb/Xq1UvlypXT/PnzFRoaqsDAwEznqrhXDXPmzFF4eLiaNGmiPn366MSJE1q+fLkOHTpkO98RI0YoLi5O58+ft82XUbRoUUnSzZs3tWrVKnXs2FE9evTQH3/8odWrV2vIkCFatWqVqlevnu33HgCQAQMAAAB39emnnxp+fn7GN998Y1y5csU4d+6c8dlnnxkNGjQwatasaZw/f944c+aMUb16dWPevHl22/7666+Gv7+/3fL+/fsbfn5+xvLly+3arl692vDz8zMWLlyYrobU1FTDMAxj3759hp+fn7Fhwwa79f/973/TLW/VqpXh5+dn7Nu3z7bsypUrRkBAgDFz5kzbss2bNxt+fn7Gnj17snQ9OnfubDRu3Ni4du2abdmRI0eMRx991HjxxRdty/bs2WP4+fkZmzdvvuc+M6vhypUrRo0aNYynn37aSElJsS1funSp4efnZ6xevdq2bNiwYUarVq3S7Ts5Odm4deuW3bLr168bTZo0MSZOnGi33M/Pz3j33XfvWS8AID1ukQAAAMiiQYMGqXHjxmrRooXGjx+vokWLKjw8XOXKldPWrVuVmpqqkJAQXb161favdOnSeuihh9LdcuDq6qpu3brZLfv8889VsmRJ260Ff2WxWCRJ0dHRKl68uJo2bWp3nBo1asjd3T3dcapVq6Z69erZXnt5ecnX11enT5/O0TW4ePGijhw5oq5du9pGbkjSo48+qiZNmmjnzp052m9mvvnmG92+fVsDBgyQk9P//erao0cPFStWLEvHc3Z2lqurq6Q/by+JjY1VcnKyAgICdPjw4VytFwAKMm6RAAAAyKLJkyfL19dXzs7OKl26tHx9fW1fek+ePCnDMNSmTZsMty1UyP7XrnLlytm+9KY5deqUfH1907X9q99//11xcXFq3LhxhuuvXLli97pChQrp2nh4eKSbryGrzp49K0ny9fVNt65q1ar6+uuvFR8fL3d39xztP7Pjpd02kcbV1VWVK1dWTExMlvazdu1affjhhzpx4oRu375tW56bT80AgIKOgAEAACCLatasaXuKxJ1SU1NlsVgUGRkpZ2fndOvv/MJdpEiRHNWQmpqqUqVKadasWRmu9/LysnudUS0Fzfr16xUWFqbWrVtr8ODBKlWqlJydnbVgwYIcj+QAAKRHwAAAAJALfHx8ZBiGvL29M/zrflb38eOPP+r27dt2EzXe2Wb37t2qU6dOjkOKO6XdfpEVFStWlCSdOHEi3brjx4+rZMmSORq9kFkNacc7fvy4KleubFuelJSkM2fOqEmTJvfcx5YtW1S5cmWFh4fbtXn33XezXScAIHPMwQAAAJAL2rRpI2dnZ4WHh8swDLt1hmHo2rVrWdrHtWvXtGzZsnTr0vYZEhKilJQUzZ07N12b5ORku0c3ZpWbm5skKS4u7p5ty5Ytq+rVq2vdunV2x/rtt9+0a9cutWjRItvHv1sNTZo0kYuLiz766CO767p69WrFxcXZHc/NzS3Dc0gbxfHX7X/88Uf98MMPOaoVAJAxRjAAAADkAh8fHz377LN66623FBMTo9atW6to0aI6c+aMtm3bpp49e2rw4MF33UeXLl20bt06zZgxQwcPHlTdunWVkJCg3bt3q0+fPmrdurUaNGigXr16acGCBTpy5IiaNm0qFxcXnTx5UtHR0Zo0aZLatWuXrdqrV68uZ2dnRUZGKi4uTq6urmrUqJFKlSqVYfsXX3xRQ4cOVa9evdS9e3fbYyqLFy+uMWPGZOvYWalh+PDhCg8P15AhQxQcHKwTJ07o448/VmBgoDp16mTbR40aNbRp0ybNmDFDgYGBcnd3V3BwsFq2bKnPP/9co0ePVsuWLXXmzBmtWLFC1apVU3x8fI7qBQCkR8AAAACQS4YNG6YqVapo0aJFioiIkCSVL19eTZs2VXBw8D23T/uCPW/ePEVFRenzzz+Xp6en6tSpI6vVams3bdo0BQQEaMWKFXr77bfl7OysSpUqqVOnTqpTp0626y5TpoymTp2qBQsWaNKkSUpJSdGSJUsyDRiaNGmi999/X++++67effddFSpUSPXr19cLL7xgdxtDbtUwduxYeXl5aenSpZoxY4Y8PDzUs2dPPffcc3a3kvTt21dHjhzRmjVrtGjRIlWqVEnBwcHq1q2bLl++rJUrV+rrr79WtWrV9Oabbyo6OlrffvttjuoFAKRnMe4cwwcAAAAAAJBNzMEAAAAAAABMI2AAAAAAAACmETAAAAAAAADTCBgAAAAAAIBpBAwAAAAAAMA0AgYAAAAAAGAaAQMAAAAAADCNgAEAAAAAAJhGwAAAAAAAAEwjYAAAAAAAAKYRMAAAAAAAANMIGAAAAAAAgGkEDAAAAAAAwLT/B12w+9Gl28Y+AAAAAElFTkSuQmCC",
"text/plain": [
"