{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib\n", "matplotlib.use('Agg')\n", "from matplotlib import pyplot as plt\n", "import seaborn as sns\n", "\n", "import argparse\n", "import os\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# enable using seabord in jupyter notebook\n", "%matplotlib inline\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from utils import read_latest_results\n", "import os" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/home/michal/Development/hugging-face/amu-cai/pl-asr-leaderboard\n", "./data/amu-cai/pl-asr-bigos-v2-secret/test/eval_results-per_sample-latest.tsv\n", "./data/amu-cai/pl-asr-bigos-v2-secret/test/eval_results-per_dataset-latest.tsv\n" ] } ], "source": [ "dataset = \"amu-cai/pl-asr-bigos-v2-secret\"\n", "split = \"test\"\n", "\n", "# print current dir\n", "print(os.getcwd())\n", "\n", "df_per_sample, df_per_dataset = read_latest_results(dataset, split)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datasetsubsetsplitref_typeeval_normsystemidrefhypaudio_durationWILMERWERCER
33265amu-cai/pl-asr-bigos-v2-secretgoogle-fleurs-22testorigallgoogle_v2_shortgoogle-fleurs-22-test-0003-00022.wavjedynym z siedmiu cudów świata zachowanym do d...jedynym z siedmiu cudów świata zachowanym do d...6.660.000.000.000.00
10816amu-cai/pl-asr-bigos-v2-secretfair-mls-20testorigallwav2vec2_large-xlsr-53-polishfair-mls-20-test-0004-00027.wavwygląda ona tak jak indyanin któryby zamiast o...wygląda ona tak jakindyanin który zamiast okry...16.7442.3126.8328.215.56
23473amu-cai/pl-asr-bigos-v2-secretpwr-azon_spont-20testorigallazure_latestpwr-azon_spont-20-test-0003-00003.wavwłaśnie moja yyy dzisiejsza prezentacja której...właśnie moja dzisiejsza prezentacja której tem...10.7041.5227.7829.418.33
\n", "
" ], "text/plain": [ " dataset subset split ref_type \\\n", "33265 amu-cai/pl-asr-bigos-v2-secret google-fleurs-22 test orig \n", "10816 amu-cai/pl-asr-bigos-v2-secret fair-mls-20 test orig \n", "23473 amu-cai/pl-asr-bigos-v2-secret pwr-azon_spont-20 test orig \n", "\n", " eval_norm system \\\n", "33265 all google_v2_short \n", "10816 all wav2vec2_large-xlsr-53-polish \n", "23473 all azure_latest \n", "\n", " id \\\n", "33265 google-fleurs-22-test-0003-00022.wav \n", "10816 fair-mls-20-test-0004-00027.wav \n", "23473 pwr-azon_spont-20-test-0003-00003.wav \n", "\n", " ref \\\n", "33265 jedynym z siedmiu cudów świata zachowanym do d... \n", "10816 wygląda ona tak jak indyanin któryby zamiast o... \n", "23473 właśnie moja yyy dzisiejsza prezentacja której... \n", "\n", " hyp audio_duration \\\n", "33265 jedynym z siedmiu cudów świata zachowanym do d... 6.66 \n", "10816 wygląda ona tak jakindyanin który zamiast okry... 16.74 \n", "23473 właśnie moja dzisiejsza prezentacja której tem... 10.70 \n", "\n", " WIL MER WER CER \n", "33265 0.00 0.00 0.00 0.00 \n", "10816 42.31 26.83 28.21 5.56 \n", "23473 41.52 27.78 29.41 8.33 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_per_sample.sample(3)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of unique speakers: 88\n" ] } ], "source": [ "# extract the fifth field from the audio file name stored in \"id\" column from the df_per_sample dataframe\n", "spk_ids = df_per_sample['audio_filename'] = df_per_sample['id'].apply(lambda x: x.split('-')[1:5])\n", "spk_ids = spk_ids.apply(lambda x: '-'.join(x))\n", "df_per_sample['spk_id'] = spk_ids\n", "df_per_sample.sample(3)\n", "# print the number of unique speakers\n", "print(f\"Number of unique speakers: {df_per_sample['spk_id'].nunique()}\")" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total duration of the dataset: 4.85 hours\n" ] } ], "source": [ "# filter the df_per_sample dataframe to leave only unique audio recordings\n", "df_per_sample_unique_audio = df_per_sample.drop_duplicates(subset='id')\n", "# calculate the total size of the dataset in hours based on the list of unique audio recordings\n", "total_duration_hours = df_per_sample_unique_audio['audio_duration'].sum() / 3600\n", "print(f\"Total duration of the dataset: {total_duration_hours:.2f} hours\")\n", "\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datasetsubsetsplitsamplesref_typeeval_normsystemSERWILMERWERCER
79amu-cai/pl-asr-bigos-v2-secretmozilla-common_voice_15-23test200origallgoogle_default54.0024.9915.4915.736.08
219amu-cai/pl-asr-bigos-v2-secretpolyai-minds14-21test53origallwhisper_local_medium79.2537.3629.7136.6128.66
169amu-cai/pl-asr-bigos-v2-secretpwr-shortwords-unktest92origallwav2vec2_xls-r-1b-polish35.8712.937.387.431.11
\n", "
" ], "text/plain": [ " dataset subset split \\\n", "79 amu-cai/pl-asr-bigos-v2-secret mozilla-common_voice_15-23 test \n", "219 amu-cai/pl-asr-bigos-v2-secret polyai-minds14-21 test \n", "169 amu-cai/pl-asr-bigos-v2-secret pwr-shortwords-unk test \n", "\n", " samples ref_type eval_norm system SER WIL \\\n", "79 200 orig all google_default 54.00 24.99 \n", "219 53 orig all whisper_local_medium 79.25 37.36 \n", "169 92 orig all wav2vec2_xls-r-1b-polish 35.87 12.93 \n", "\n", " MER WER CER \n", "79 15.49 15.73 6.08 \n", "219 29.71 36.61 28.66 \n", "169 7.38 7.43 1.11 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_per_dataset.sample(3)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "cols_to_select = [\"system\", \"subset\", \"SER\", \"WIL\", \"MER\", \"WER\", \"CER\"]\n", "# select only the columns we want to plot\n", "df_per_dataset_selected_cols = df_per_dataset[cols_to_select]\n" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['google_v2_long', 'google_v2_short', 'whisper_cloud_whisper-1',\n", " 'google_default', 'google_command_and_search',\n", " 'google_latest_long', 'google_latest_short', 'whisper_local_tiny',\n", " 'whisper_local_base', 'whisper_local_small',\n", " 'whisper_local_medium', 'whisper_local_large',\n", " 'whisper_local_large-v1', 'whisper_local_large-v2', 'azure_latest',\n", " 'nemo_stt_pl_fastconformer_hybrid_large_pc',\n", " 'wav2vec2_large-xlsr-53-polish', 'wav2vec2_xls-r-1b-polish',\n", " 'mms_1b-all'], dtype=object)" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluated_systems_list = df_per_sample[\"system\"].unique()\n", "evaluated_systems_list\n" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "from utils import download_tsv_from_google_sheet\n", "def retrieve_asr_systems_meta_from_the_catalog(asr_systems_list):\n", " # read the catalog\n", " print(\"Reading ASR systems catalog\")\n", " asr_systems_cat_url = \"https://docs.google.com/spreadsheets/d/1fVsE98Ulmt-EIEe4wx8sUdo7RLigDdAVjQxNpAJIrH8/edit#gid=681521237\"\n", " catalog = download_tsv_from_google_sheet(asr_systems_cat_url)\n", " print(\"ASR systems catalog read\")\n", " # filter only the systems we are interested in\n", " catalog = catalog[catalog[\"Codename\"].isin(asr_systems_list)]\n", "\n", " return catalog" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reading ASR systems catalog\n", "ASR systems catalog read\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CodenameSystemModelLinkTypeLast update (YYMM)
0whisper_cloud_whisper-1whisper_cloudwhisper-1todocommercial2403
1azure_latestazurelatesttodocommercialtodo
2google_v2_longgoogle_v2longtodocommercialtodo
3google_v2_shortgoogle_v2shorttodocommercialtodo
4google_defaultgoogledefaulttodocommercialtodo
5google_latest_longgooglelatest_longtodocommercialtodo
6google_latest_shortgooglelatest_shorttodocommercialtodo
7google_command_and_searchgooglecommand_and_searchtodocommercialtodo
8whisper_local_tinywhisper_localtinytodofreetodo
9whisper_local_basewhisper_localbasetodofreetodo
10whisper_local_smallwhisper_localsmalltodofreetodo
11whisper_local_mediumwhisper_localmediumtodofreetodo
12whisper_local_largewhisper_locallargetodofree2311
13whisper_local_large-v2whisper_locallarge-v2todofree2209
14whisper_local_large-v1whisper_locallarge-v1todofree2209
15nemo_stt_pl_fastconformer_hybrid_large_pcnemostt_pl_fastconformer_hybrid_large_pctodofreetodo
18mms_1b-allmms1b-alltodofreetodo
\n", "
" ], "text/plain": [ " Codename System \\\n", "0 whisper_cloud_whisper-1 whisper_cloud \n", "1 azure_latest azure \n", "2 google_v2_long google_v2 \n", "3 google_v2_short google_v2 \n", "4 google_default google \n", "5 google_latest_long google \n", "6 google_latest_short google \n", "7 google_command_and_search google \n", "8 whisper_local_tiny whisper_local \n", "9 whisper_local_base whisper_local \n", "10 whisper_local_small whisper_local \n", "11 whisper_local_medium whisper_local \n", "12 whisper_local_large whisper_local \n", "13 whisper_local_large-v2 whisper_local \n", "14 whisper_local_large-v1 whisper_local \n", "15 nemo_stt_pl_fastconformer_hybrid_large_pc nemo \n", "18 mms_1b-all mms \n", "\n", " Model Link Type Last update (YYMM) \n", "0 whisper-1 todo commercial 2403 \n", "1 latest todo commercial todo \n", "2 long todo commercial todo \n", "3 short todo commercial todo \n", "4 default todo commercial todo \n", "5 latest_long todo commercial todo \n", "6 latest_short todo commercial todo \n", "7 command_and_search todo commercial todo \n", "8 tiny todo free todo \n", "9 base todo free todo \n", "10 small todo free todo \n", "11 medium todo free todo \n", "12 large todo free 2311 \n", "13 large-v2 todo free 2209 \n", "14 large-v1 todo free 2209 \n", "15 stt_pl_fastconformer_hybrid_large_pc todo free todo \n", "18 1b-all todo free todo " ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_evaluated_systems_info = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list)\n", "df_evaluated_systems_info" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def get_asr_systems_metadata(asr_systems_list):\n", " asr_systems_metadata = {}\n", " for asr_system in asr_systems_list:\n", " asr_systems_metadata[asr_system] = {\n", " \"color\": sns.color_palette(\"husl\", len(asr_systems_list))[list(asr_systems_list).index(asr_system)]\n", " }\n", " return asr_systems_metadata" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "asr_systems_metadata = get_asr_systems_metadata(evaluated_systems_list) " ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
avg_WERmed_WERstd_WERmin_WERmax_WER
system
whisper_local_large8.385.537.503.7929.17
whisper_local_large-v29.586.618.685.0335.32
whisper_cloud_whisper-110.055.978.534.1731.85
whisper_local_large-v110.507.848.754.1136.01
google_latest_long11.1210.267.740.0026.28
google_v2_long11.2410.387.780.2827.37
whisper_local_medium11.529.038.625.9436.61
google_latest_short12.4611.097.020.0028.27
wav2vec2_xls-r-1b-polish13.7410.388.127.4332.93
google_command_and_search14.5215.196.690.2822.97
nemo_stt_pl_fastconformer_hybrid_large_pc15.0312.7510.652.1042.56
google_default15.5316.517.290.2825.22
mms_1b-all16.9011.9311.297.1542.46
google_v2_short17.8014.9813.710.0052.73
azure_latest18.8515.3813.201.1439.87
whisper_local_small20.5215.9216.268.1168.65
wav2vec2_large-xlsr-53-polish25.5320.7016.776.8169.35
whisper_local_base35.6031.7917.8621.4985.81
whisper_local_tiny54.2944.4028.9133.71139.29
\n", "
" ], "text/plain": [ " avg_WER med_WER std_WER min_WER \\\n", "system \n", "whisper_local_large 8.38 5.53 7.50 3.79 \n", "whisper_local_large-v2 9.58 6.61 8.68 5.03 \n", "whisper_cloud_whisper-1 10.05 5.97 8.53 4.17 \n", "whisper_local_large-v1 10.50 7.84 8.75 4.11 \n", "google_latest_long 11.12 10.26 7.74 0.00 \n", "google_v2_long 11.24 10.38 7.78 0.28 \n", "whisper_local_medium 11.52 9.03 8.62 5.94 \n", "google_latest_short 12.46 11.09 7.02 0.00 \n", "wav2vec2_xls-r-1b-polish 13.74 10.38 8.12 7.43 \n", "google_command_and_search 14.52 15.19 6.69 0.28 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 15.03 12.75 10.65 2.10 \n", "google_default 15.53 16.51 7.29 0.28 \n", "mms_1b-all 16.90 11.93 11.29 7.15 \n", "google_v2_short 17.80 14.98 13.71 0.00 \n", "azure_latest 18.85 15.38 13.20 1.14 \n", "whisper_local_small 20.52 15.92 16.26 8.11 \n", "wav2vec2_large-xlsr-53-polish 25.53 20.70 16.77 6.81 \n", "whisper_local_base 35.60 31.79 17.86 21.49 \n", "whisper_local_tiny 54.29 44.40 28.91 33.71 \n", "\n", " max_WER \n", "system \n", "whisper_local_large 29.17 \n", "whisper_local_large-v2 35.32 \n", "whisper_cloud_whisper-1 31.85 \n", "whisper_local_large-v1 36.01 \n", "google_latest_long 26.28 \n", "google_v2_long 27.37 \n", "whisper_local_medium 36.61 \n", "google_latest_short 28.27 \n", "wav2vec2_xls-r-1b-polish 32.93 \n", "google_command_and_search 22.97 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 42.56 \n", "google_default 25.22 \n", "mms_1b-all 42.46 \n", "google_v2_short 52.73 \n", "azure_latest 39.87 \n", "whisper_local_small 68.65 \n", "wav2vec2_large-xlsr-53-polish 69.35 \n", "whisper_local_base 85.81 \n", "whisper_local_tiny 139.29 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "from utils import basic_stats_per_dimension\n", "basic_stats_per_dimension(df_per_dataset, \"WER\", \"system\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "system\n", "whisper_local_large 42.15\n", "whisper_cloud_whisper-1 44.86\n", "whisper_local_large-v2 45.18\n", "whisper_local_large-v1 50.23\n", "google_latest_long 51.98\n", "google_v2_long 52.36\n", "whisper_local_medium 53.36\n", "nemo_stt_pl_fastconformer_hybrid_large_pc 59.41\n", "google_latest_short 59.61\n", "azure_latest 59.81\n", "wav2vec2_xls-r-1b-polish 60.63\n", "google_v2_short 62.14\n", "mms_1b-all 64.93\n", "google_command_and_search 65.36\n", "google_default 66.21\n", "whisper_local_small 67.74\n", "wav2vec2_large-xlsr-53-polish 73.49\n", "whisper_local_base 85.25\n", "whisper_local_tiny 92.02\n", "Name: SER, dtype: float64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from utils import ser_from_per_sample_results\n", "df_ser = ser_from_per_sample_results(df_per_sample, \"system\")\n", "df_ser\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "subset\n", "pwr-viu-unk 16.00\n", "pwr-maleset-unk 30.26\n", "pwr-shortwords-unk 41.93\n", "mozilla-common_voice_15-23 45.51\n", "pjatk-clarin_studio-15 65.84\n", "mailabs-corpus_librivox-19 69.58\n", "pwr-azon_read-20 69.87\n", "google-fleurs-22 76.47\n", "polyai-minds14-21 80.06\n", "pjatk-clarin_mobile-15 84.19\n", "fair-mls-20 85.08\n", "pwr-azon_spont-20 98.90\n", "Name: SER, dtype: float64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_ser = ser_from_per_sample_results(df_per_sample, \"subset\")\n", "df_ser" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
avg_SERmed_SERstd_SERmin_SERmax_SER
system
whisper_local_large47.8148.7525.7410.595.83
whisper_cloud_whisper-150.6150.7525.4816.5100.00
whisper_local_large-v250.7052.7526.188.597.92
whisper_local_large-v154.8660.0026.2511.597.92
google_latest_long55.8863.0029.550.097.92
google_v2_long55.9963.2529.170.595.83
whisper_local_medium57.6562.7526.5611.5100.00
google_latest_short61.2564.7431.670.097.87
azure_latest62.4975.5032.472.097.92
google_v2_short63.7268.5331.350.097.83
nemo_stt_pl_fastconformer_hybrid_large_pc63.7275.2530.8012.0100.00
wav2vec2_xls-r-1b-polish64.2768.0027.5316.0100.00
google_command_and_search66.5775.2531.740.5100.00
google_default67.3676.7532.110.5100.00
mms_1b-all68.9370.5020.1742.0100.00
whisper_local_small70.1177.7523.8833.5100.00
wav2vec2_large-xlsr-53-polish77.1482.7524.7017.5100.00
whisper_local_base86.4493.8615.8153.0100.00
whisper_local_tiny92.6197.1211.3961.0100.00
\n", "
" ], "text/plain": [ " avg_SER med_SER std_SER min_SER \\\n", "system \n", "whisper_local_large 47.81 48.75 25.74 10.5 \n", "whisper_cloud_whisper-1 50.61 50.75 25.48 16.5 \n", "whisper_local_large-v2 50.70 52.75 26.18 8.5 \n", "whisper_local_large-v1 54.86 60.00 26.25 11.5 \n", "google_latest_long 55.88 63.00 29.55 0.0 \n", "google_v2_long 55.99 63.25 29.17 0.5 \n", "whisper_local_medium 57.65 62.75 26.56 11.5 \n", "google_latest_short 61.25 64.74 31.67 0.0 \n", "azure_latest 62.49 75.50 32.47 2.0 \n", "google_v2_short 63.72 68.53 31.35 0.0 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 63.72 75.25 30.80 12.0 \n", "wav2vec2_xls-r-1b-polish 64.27 68.00 27.53 16.0 \n", "google_command_and_search 66.57 75.25 31.74 0.5 \n", "google_default 67.36 76.75 32.11 0.5 \n", "mms_1b-all 68.93 70.50 20.17 42.0 \n", "whisper_local_small 70.11 77.75 23.88 33.5 \n", "wav2vec2_large-xlsr-53-polish 77.14 82.75 24.70 17.5 \n", "whisper_local_base 86.44 93.86 15.81 53.0 \n", "whisper_local_tiny 92.61 97.12 11.39 61.0 \n", "\n", " max_SER \n", "system \n", "whisper_local_large 95.83 \n", "whisper_cloud_whisper-1 100.00 \n", "whisper_local_large-v2 97.92 \n", "whisper_local_large-v1 97.92 \n", "google_latest_long 97.92 \n", "google_v2_long 95.83 \n", "whisper_local_medium 100.00 \n", "google_latest_short 97.87 \n", "azure_latest 97.92 \n", "google_v2_short 97.83 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 100.00 \n", "wav2vec2_xls-r-1b-polish 100.00 \n", "google_command_and_search 100.00 \n", "google_default 100.00 \n", "mms_1b-all 100.00 \n", "whisper_local_small 100.00 \n", "wav2vec2_large-xlsr-53-polish 100.00 \n", "whisper_local_base 100.00 \n", "whisper_local_tiny 100.00 " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "basic_stats_per_dimension(df_per_dataset, \"SER\", \"system\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
avg_WERmed_WERstd_WERmin_WERmax_WER
system
whisper_local_large6.920.0021.640.0616.67
whisper_local_large-v28.210.0024.900.0600.00
whisper_cloud_whisper-18.970.0025.660.0616.67
google_latest_long9.143.4514.340.0100.00
google_v2_long9.193.5714.390.0100.00
whisper_local_large-v19.232.3823.390.0616.67
whisper_local_medium10.093.7023.530.0650.00
wav2vec2_xls-r-1b-polish12.077.6017.570.0200.00
google_latest_short12.206.9016.590.0100.00
nemo_stt_pl_fastconformer_hybrid_large_pc14.036.6729.780.0616.67
google_command_and_search14.6210.3417.390.0166.67
google_default15.3212.0017.450.0166.67
mms_1b-all15.709.0928.940.0666.67
azure_latest16.448.3322.000.0120.00
google_v2_short16.888.3322.060.0100.00
whisper_local_small19.1611.1140.950.01100.00
wav2vec2_large-xlsr-53-polish22.1716.6727.690.0633.33
whisper_local_base35.1727.2741.600.0616.67
whisper_local_tiny54.1143.9084.010.01900.00
\n", "
" ], "text/plain": [ " avg_WER med_WER std_WER min_WER \\\n", "system \n", "whisper_local_large 6.92 0.00 21.64 0.0 \n", "whisper_local_large-v2 8.21 0.00 24.90 0.0 \n", "whisper_cloud_whisper-1 8.97 0.00 25.66 0.0 \n", "google_latest_long 9.14 3.45 14.34 0.0 \n", "google_v2_long 9.19 3.57 14.39 0.0 \n", "whisper_local_large-v1 9.23 2.38 23.39 0.0 \n", "whisper_local_medium 10.09 3.70 23.53 0.0 \n", "wav2vec2_xls-r-1b-polish 12.07 7.60 17.57 0.0 \n", "google_latest_short 12.20 6.90 16.59 0.0 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 14.03 6.67 29.78 0.0 \n", "google_command_and_search 14.62 10.34 17.39 0.0 \n", "google_default 15.32 12.00 17.45 0.0 \n", "mms_1b-all 15.70 9.09 28.94 0.0 \n", "azure_latest 16.44 8.33 22.00 0.0 \n", "google_v2_short 16.88 8.33 22.06 0.0 \n", "whisper_local_small 19.16 11.11 40.95 0.0 \n", "wav2vec2_large-xlsr-53-polish 22.17 16.67 27.69 0.0 \n", "whisper_local_base 35.17 27.27 41.60 0.0 \n", "whisper_local_tiny 54.11 43.90 84.01 0.0 \n", "\n", " max_WER \n", "system \n", "whisper_local_large 616.67 \n", "whisper_local_large-v2 600.00 \n", "whisper_cloud_whisper-1 616.67 \n", "google_latest_long 100.00 \n", "google_v2_long 100.00 \n", "whisper_local_large-v1 616.67 \n", "whisper_local_medium 650.00 \n", "wav2vec2_xls-r-1b-polish 200.00 \n", "google_latest_short 100.00 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 616.67 \n", "google_command_and_search 166.67 \n", "google_default 166.67 \n", "mms_1b-all 666.67 \n", "azure_latest 120.00 \n", "google_v2_short 100.00 \n", "whisper_local_small 1100.00 \n", "wav2vec2_large-xlsr-53-polish 633.33 \n", "whisper_local_base 616.67 \n", "whisper_local_tiny 1900.00 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "basic_stats_per_dimension(df_per_sample, \"WER\", \"system\")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
avg_MERmed_MERstd_MERmin_MERmax_MER
system
whisper_local_large6.130.0012.090.0100.0
whisper_local_large-v27.220.0013.860.0100.0
whisper_cloud_whisper-18.040.0017.290.0100.0
whisper_local_large-v18.302.3814.550.0100.0
google_latest_long8.923.3314.020.0100.0
google_v2_long8.953.5714.000.0100.0
whisper_local_medium9.063.7014.720.0100.0
wav2vec2_xls-r-1b-polish11.527.4116.000.0100.0
google_latest_short11.846.9016.070.0100.0
nemo_stt_pl_fastconformer_hybrid_large_pc12.116.6716.920.0100.0
google_command_and_search13.8710.3415.910.0100.0
mms_1b-all14.568.8920.840.0100.0
google_default14.5911.7616.050.0100.0
azure_latest15.488.1620.680.0100.0
whisper_local_small16.4711.1121.100.0100.0
google_v2_short16.608.3321.800.0100.0
wav2vec2_large-xlsr-53-polish20.6616.6720.850.0100.0
whisper_local_base30.7025.7125.250.0100.0
whisper_local_tiny43.4940.9125.780.0100.0
\n", "
" ], "text/plain": [ " avg_MER med_MER std_MER min_MER \\\n", "system \n", "whisper_local_large 6.13 0.00 12.09 0.0 \n", "whisper_local_large-v2 7.22 0.00 13.86 0.0 \n", "whisper_cloud_whisper-1 8.04 0.00 17.29 0.0 \n", "whisper_local_large-v1 8.30 2.38 14.55 0.0 \n", "google_latest_long 8.92 3.33 14.02 0.0 \n", "google_v2_long 8.95 3.57 14.00 0.0 \n", "whisper_local_medium 9.06 3.70 14.72 0.0 \n", "wav2vec2_xls-r-1b-polish 11.52 7.41 16.00 0.0 \n", "google_latest_short 11.84 6.90 16.07 0.0 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 12.11 6.67 16.92 0.0 \n", "google_command_and_search 13.87 10.34 15.91 0.0 \n", "mms_1b-all 14.56 8.89 20.84 0.0 \n", "google_default 14.59 11.76 16.05 0.0 \n", "azure_latest 15.48 8.16 20.68 0.0 \n", "whisper_local_small 16.47 11.11 21.10 0.0 \n", "google_v2_short 16.60 8.33 21.80 0.0 \n", "wav2vec2_large-xlsr-53-polish 20.66 16.67 20.85 0.0 \n", "whisper_local_base 30.70 25.71 25.25 0.0 \n", "whisper_local_tiny 43.49 40.91 25.78 0.0 \n", "\n", " max_MER \n", "system \n", "whisper_local_large 100.0 \n", "whisper_local_large-v2 100.0 \n", "whisper_cloud_whisper-1 100.0 \n", "whisper_local_large-v1 100.0 \n", "google_latest_long 100.0 \n", "google_v2_long 100.0 \n", "whisper_local_medium 100.0 \n", "wav2vec2_xls-r-1b-polish 100.0 \n", "google_latest_short 100.0 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 100.0 \n", "google_command_and_search 100.0 \n", "mms_1b-all 100.0 \n", "google_default 100.0 \n", "azure_latest 100.0 \n", "whisper_local_small 100.0 \n", "google_v2_short 100.0 \n", "wav2vec2_large-xlsr-53-polish 100.0 \n", "whisper_local_base 100.0 \n", "whisper_local_tiny 100.0 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "basic_stats_per_dimension(df_per_sample, \"MER\", \"system\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
avg_CERmed_CERstd_CERmin_CERmax_CER
system
whisper_local_large3.390.0020.480.0762.50
wav2vec2_xls-r-1b-polish3.461.147.720.097.83
whisper_local_large-v23.910.0023.490.0743.75
whisper_local_large-v14.120.4521.500.0796.88
whisper_cloud_whisper-14.150.0021.660.0762.50
whisper_local_medium4.160.6221.060.0803.12
google_v2_long4.470.6611.740.094.68
google_latest_long4.660.6712.030.094.68
mms_1b-all4.691.4720.360.0793.75
nemo_stt_pl_fastconformer_hybrid_large_pc5.481.3621.920.0771.88
google_command_and_search5.802.7010.840.096.81
google_default6.433.2610.970.096.81
google_latest_short6.641.8213.000.096.39
wav2vec2_large-xlsr-53-polish6.703.0420.780.0781.25
whisper_local_small7.222.1734.610.01118.28
azure_latest8.971.7918.660.098.20
google_v2_short11.252.4820.090.098.94
whisper_local_base11.946.1429.110.0771.88
whisper_local_tiny20.2311.2067.470.02042.86
\n", "
" ], "text/plain": [ " avg_CER med_CER std_CER min_CER \\\n", "system \n", "whisper_local_large 3.39 0.00 20.48 0.0 \n", "wav2vec2_xls-r-1b-polish 3.46 1.14 7.72 0.0 \n", "whisper_local_large-v2 3.91 0.00 23.49 0.0 \n", "whisper_local_large-v1 4.12 0.45 21.50 0.0 \n", "whisper_cloud_whisper-1 4.15 0.00 21.66 0.0 \n", "whisper_local_medium 4.16 0.62 21.06 0.0 \n", "google_v2_long 4.47 0.66 11.74 0.0 \n", "google_latest_long 4.66 0.67 12.03 0.0 \n", "mms_1b-all 4.69 1.47 20.36 0.0 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 5.48 1.36 21.92 0.0 \n", "google_command_and_search 5.80 2.70 10.84 0.0 \n", "google_default 6.43 3.26 10.97 0.0 \n", "google_latest_short 6.64 1.82 13.00 0.0 \n", "wav2vec2_large-xlsr-53-polish 6.70 3.04 20.78 0.0 \n", "whisper_local_small 7.22 2.17 34.61 0.0 \n", "azure_latest 8.97 1.79 18.66 0.0 \n", "google_v2_short 11.25 2.48 20.09 0.0 \n", "whisper_local_base 11.94 6.14 29.11 0.0 \n", "whisper_local_tiny 20.23 11.20 67.47 0.0 \n", "\n", " max_CER \n", "system \n", "whisper_local_large 762.50 \n", "wav2vec2_xls-r-1b-polish 97.83 \n", "whisper_local_large-v2 743.75 \n", "whisper_local_large-v1 796.88 \n", "whisper_cloud_whisper-1 762.50 \n", "whisper_local_medium 803.12 \n", "google_v2_long 94.68 \n", "google_latest_long 94.68 \n", "mms_1b-all 793.75 \n", "nemo_stt_pl_fastconformer_hybrid_large_pc 771.88 \n", "google_command_and_search 96.81 \n", "google_default 96.81 \n", "google_latest_short 96.39 \n", "wav2vec2_large-xlsr-53-polish 781.25 \n", "whisper_local_small 1118.28 \n", "azure_latest 98.20 \n", "google_v2_short 98.94 \n", "whisper_local_base 771.88 \n", "whisper_local_tiny 2042.86 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "basic_stats_per_dimension(df_per_sample, \"CER\", \"system\")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
subsetidsystemrefhypWER
30825pwr-viu-unkpwr-viu-unk-test-0003-00363.wavwhisper_local_tinywyczyśćwit exhausting się z nas samaspeaksistna odwie...1900.00
37224polyai-minds14-21polyai-minds14-21-test-0003-00050.wavwhisper_local_tinydzień dobry chciałbym wpłacić gotówkę na konto...dzień dobry chciałbym płacil go tu w kanaekąto...1541.67
37207polyai-minds14-21polyai-minds14-21-test-0003-00033.wavwhisper_local_tinydzień dobry mam problem ze swoją kartą próbuję...dzień dobry mam problem ze słyukartą próbuj uż...1342.86
37204polyai-minds14-21polyai-minds14-21-test-0003-00030.wavwhisper_local_tinydzień dobry chciałabym się dowiedzieć i jakie ...dzień dobry chciałabym się do wiedzieć i jakie...1226.67
37310polyai-minds14-21polyai-minds14-21-test-0003-00030.wavwhisper_local_smalldzień dobry chciałabym się dowiedzieć i jakie ...dzień dobry chciałabym się dowiedzieć jakie je...1100.00
30832pwr-viu-unkpwr-viu-unk-test-0003-00377.wavwhisper_local_tinycofnijto s然creamuắm on jest nawet determinowi usda z...1100.00
37776polyai-minds14-21polyai-minds14-21-test-0003-00043.wavmms_1b-alldzień dobry pani ja mam potrzebędzieńdory w panie ja mam potrzebę wpłacić dużą...666.67
37217polyai-minds14-21polyai-minds14-21-test-0003-00043.wavwhisper_local_tinydzień dobry pani ja mam potrzebędzień dobry wpają ja mam potrzeby w płacić duż...666.67
37376polyai-minds14-21polyai-minds14-21-test-0003-00043.wavwhisper_local_mediumdzień dobry pani ja mam potrzebędzień dobry panie i panie ja mam potrzebę wpła...650.00
16760mozilla-common_voice_15-23mozilla-common_voice_15-23-test-1618-00006.wavwhisper_local_tinysumienie go ujęło podstępniesob mean guys adesso tam ogieło tego pod auste...650.00
\n", "
" ], "text/plain": [ " subset \\\n", "30825 pwr-viu-unk \n", "37224 polyai-minds14-21 \n", "37207 polyai-minds14-21 \n", "37204 polyai-minds14-21 \n", "37310 polyai-minds14-21 \n", "30832 pwr-viu-unk \n", "37776 polyai-minds14-21 \n", "37217 polyai-minds14-21 \n", "37376 polyai-minds14-21 \n", "16760 mozilla-common_voice_15-23 \n", "\n", " id system \\\n", "30825 pwr-viu-unk-test-0003-00363.wav whisper_local_tiny \n", "37224 polyai-minds14-21-test-0003-00050.wav whisper_local_tiny \n", "37207 polyai-minds14-21-test-0003-00033.wav whisper_local_tiny \n", "37204 polyai-minds14-21-test-0003-00030.wav whisper_local_tiny \n", "37310 polyai-minds14-21-test-0003-00030.wav whisper_local_small \n", "30832 pwr-viu-unk-test-0003-00377.wav whisper_local_tiny \n", "37776 polyai-minds14-21-test-0003-00043.wav mms_1b-all \n", "37217 polyai-minds14-21-test-0003-00043.wav whisper_local_tiny \n", "37376 polyai-minds14-21-test-0003-00043.wav whisper_local_medium \n", "16760 mozilla-common_voice_15-23-test-1618-00006.wav whisper_local_tiny \n", "\n", " ref \\\n", "30825 wyczyść \n", "37224 dzień dobry chciałbym wpłacić gotówkę na konto... \n", "37207 dzień dobry mam problem ze swoją kartą próbuję... \n", "37204 dzień dobry chciałabym się dowiedzieć i jakie ... \n", "37310 dzień dobry chciałabym się dowiedzieć i jakie ... \n", "30832 cofnij \n", "37776 dzień dobry pani ja mam potrzebę \n", "37217 dzień dobry pani ja mam potrzebę \n", "37376 dzień dobry pani ja mam potrzebę \n", "16760 sumienie go ujęło podstępnie \n", "\n", " hyp WER \n", "30825 wit exhausting się z nas samaspeaksistna odwie... 1900.00 \n", "37224 dzień dobry chciałbym płacil go tu w kanaekąto... 1541.67 \n", "37207 dzień dobry mam problem ze słyukartą próbuj uż... 1342.86 \n", "37204 dzień dobry chciałabym się do wiedzieć i jakie... 1226.67 \n", "37310 dzień dobry chciałabym się dowiedzieć jakie je... 1100.00 \n", "30832 to s然creamuắm on jest nawet determinowi usda z... 1100.00 \n", "37776 dzieńdory w panie ja mam potrzebę wpłacić dużą... 666.67 \n", "37217 dzień dobry wpają ja mam potrzeby w płacić duż... 666.67 \n", "37376 dzień dobry panie i panie ja mam potrzebę wpła... 650.00 \n", "16760 sob mean guys adesso tam ogieło tego pod auste... 650.00 " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#print only ref hyp and WER for the worst samples\n", "df_per_sample.sort_values(by='WER', ascending=False).head(10)[['subset', 'id', 'system', 'ref','hyp','WER']]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
subsetidsystemrefhypMER
30825pwr-viu-unkpwr-viu-unk-test-0003-00363.wavwhisper_local_tinywyczyśćwit exhausting się z nas samaspeaksistna odwie...100.00
37224polyai-minds14-21polyai-minds14-21-test-0003-00050.wavwhisper_local_tinydzień dobry chciałbym wpłacić gotówkę na konto...dzień dobry chciałbym płacil go tu w kanaekąto...96.35
37207polyai-minds14-21polyai-minds14-21-test-0003-00033.wavwhisper_local_tinydzień dobry mam problem ze swoją kartą próbuję...dzień dobry mam problem ze słyukartą próbuj uż...95.43
37204polyai-minds14-21polyai-minds14-21-test-0003-00030.wavwhisper_local_tinydzień dobry chciałabym się dowiedzieć i jakie ...dzień dobry chciałabym się do wiedzieć i jakie...94.85
37310polyai-minds14-21polyai-minds14-21-test-0003-00030.wavwhisper_local_smalldzień dobry chciałabym się dowiedzieć i jakie ...dzień dobry chciałabym się dowiedzieć jakie je...92.18
30832pwr-viu-unkpwr-viu-unk-test-0003-00377.wavwhisper_local_tinycofnijto s然creamuắm on jest nawet determinowi usda z...100.00
37776polyai-minds14-21polyai-minds14-21-test-0003-00043.wavmms_1b-alldzień dobry pani ja mam potrzebędzieńdory w panie ja mam potrzebę wpłacić dużą...93.02
37217polyai-minds14-21polyai-minds14-21-test-0003-00043.wavwhisper_local_tinydzień dobry pani ja mam potrzebędzień dobry wpają ja mam potrzeby w płacić duż...90.91
37376polyai-minds14-21polyai-minds14-21-test-0003-00043.wavwhisper_local_mediumdzień dobry pani ja mam potrzebędzień dobry panie i panie ja mam potrzebę wpła...88.64
16760mozilla-common_voice_15-23mozilla-common_voice_15-23-test-1618-00006.wavwhisper_local_tinysumienie go ujęło podstępniesob mean guys adesso tam ogieło tego pod auste...100.00
\n", "
" ], "text/plain": [ " subset \\\n", "30825 pwr-viu-unk \n", "37224 polyai-minds14-21 \n", "37207 polyai-minds14-21 \n", "37204 polyai-minds14-21 \n", "37310 polyai-minds14-21 \n", "30832 pwr-viu-unk \n", "37776 polyai-minds14-21 \n", "37217 polyai-minds14-21 \n", "37376 polyai-minds14-21 \n", "16760 mozilla-common_voice_15-23 \n", "\n", " id system \\\n", "30825 pwr-viu-unk-test-0003-00363.wav whisper_local_tiny \n", "37224 polyai-minds14-21-test-0003-00050.wav whisper_local_tiny \n", "37207 polyai-minds14-21-test-0003-00033.wav whisper_local_tiny \n", "37204 polyai-minds14-21-test-0003-00030.wav whisper_local_tiny \n", "37310 polyai-minds14-21-test-0003-00030.wav whisper_local_small \n", "30832 pwr-viu-unk-test-0003-00377.wav whisper_local_tiny \n", "37776 polyai-minds14-21-test-0003-00043.wav mms_1b-all \n", "37217 polyai-minds14-21-test-0003-00043.wav whisper_local_tiny \n", "37376 polyai-minds14-21-test-0003-00043.wav whisper_local_medium \n", "16760 mozilla-common_voice_15-23-test-1618-00006.wav whisper_local_tiny \n", "\n", " ref \\\n", "30825 wyczyść \n", "37224 dzień dobry chciałbym wpłacić gotówkę na konto... \n", "37207 dzień dobry mam problem ze swoją kartą próbuję... \n", "37204 dzień dobry chciałabym się dowiedzieć i jakie ... \n", "37310 dzień dobry chciałabym się dowiedzieć i jakie ... \n", "30832 cofnij \n", "37776 dzień dobry pani ja mam potrzebę \n", "37217 dzień dobry pani ja mam potrzebę \n", "37376 dzień dobry pani ja mam potrzebę \n", "16760 sumienie go ujęło podstępnie \n", "\n", " hyp MER \n", "30825 wit exhausting się z nas samaspeaksistna odwie... 100.00 \n", "37224 dzień dobry chciałbym płacil go tu w kanaekąto... 96.35 \n", "37207 dzień dobry mam problem ze słyukartą próbuj uż... 95.43 \n", "37204 dzień dobry chciałabym się do wiedzieć i jakie... 94.85 \n", "37310 dzień dobry chciałabym się dowiedzieć jakie je... 92.18 \n", "30832 to s然creamuắm on jest nawet determinowi usda z... 100.00 \n", "37776 dzieńdory w panie ja mam potrzebę wpłacić dużą... 93.02 \n", "37217 dzień dobry wpają ja mam potrzeby w płacić duż... 90.91 \n", "37376 dzień dobry panie i panie ja mam potrzebę wpła... 88.64 \n", "16760 sob mean guys adesso tam ogieło tego pod auste... 100.00 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_per_sample.sort_values(by='WER', ascending=False).head(10)[['subset', 'id', 'system', 'ref','hyp','MER']]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AAAPhCAYAAAAmemLQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfVzUVf7//+cwCGoKiqZAWoFdmOS0bLspWZRZGmrapu6a06WmCdjuarV9/DqGGGbllrW7oNmF7eaUZVmmq7uZaVM2tWbSFKVd0ZWCWSikGODM/P7wNxMTWIPxdpiZx/1243Zz3ufAnMOMw/DknNcxeb1erwAAAAAAAAC0qphQDwAAAAAAAACIRARvAAAAAAAAgAEI3gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAxA8AYAAAAAAAAYgOANAAAAAAAAMADBGwAAAAAAAGAAgjcAAAAAAADAAARvAAAAAAAAgAEI3gAAQJtVUlIik8mkAQMGhHoobUq/fv101llnNbn+3HPPyWQy6YILLmjS9uijj8pkMunFF1+UJD322GMymUxH/HjjjTf8n/vjtoSEBF1wwQX697//bdwkw9ydd96p559/PtTDAAAAIRYb6gEAAAAcid1u18knn6z//e9/+vjjj3XKKaeEekhtwnnnnadHHnlE1dXVSkxM9F/fvHmzYmNjtWXLFjU0NKhdu3YBbWazWVlZWQFfa+7cuUpLS2tyHz/+Xl9yySW65ppr5PV69fnnn2vRokW67LLLtG7dOg0bNqyVZxj+7rzzTo0dO1aXX355qIcCAABCiOANAAC0SeXl5Xr99de1cuVK3XjjjbLb7SooKDimY/B4PKqvr1f79u2P6f3+nPPOO08PPfSQXn/9deXk5Pivb968Wb///e/1xBNPaOvWrRo4cKC/7bXXXpPFYlHnzp0DvlZOTo5+85vf/Ox9nnbaabrqqqv8t8eMGaN+/frpgQceaDPB24EDB3TccceFehgAAAB+bDUFAABtkt1uV9euXTVixAiNHTtWdrvd39bQ0KCkpCRdf/31TT6vpqZG7du31y233OK/VldXp4KCAp1yyimKj49X79699Ze//EV1dXUBn2symTRt2jTZ7XZlZGQoPj5e//nPfyRJf/3rX3XuueeqW7du6tChg84++2w988wzTe7/4MGD+uMf/6ju3burc+fOGjVqlHbu3CmTyaQ5c+YE9N25c6cmTpyonj17Kj4+XhkZGXr00Ud/9ntz3nnnSToctPl8//33evvtt3XFFVcoPT09oG3Pnj368MMP/Z/XGs444wx1795dn3zyyc/23bRpk0wmk5566in9v//3/5ScnKzjjjtOo0aN0pdfftmk/5tvvqlLL71UiYmJ6tixoy644IKA+UjSnDlzZDKZ9P7772vChAnq2rXrT86voaFBhYWFOvXUU9W+fXt169ZN5513ntavXy9JWrp0qUwmk7Zt29bkc++8806ZzWbt3LlTkvTRRx9pzJgxSk5OVvv27dWrVy+NHz9e1dXVkg4/jw4cOKB//vOf/u251113nf/rBfO4+75nTz/9tAoLC3XCCSeoc+fOGjt2rKqrq1VXV6c///nP6tGjhzp16qTrr7++yfMZAACEHiveAABAm2S323XFFVcoLi5OV155pRYtWqQtW7bot7/9rdq1a6ff/e53WrlypR588EHFxcX5P+/5559XXV2dxo8fL+nwqrVRo0bptdde05QpU3TGGWfo3Xff1cKFC/Xhhx82qcP18ssv6+mnn9a0adPUvXt3nXzyyZKkBx54QKNGjZLValV9fb2WL1+ucePGac2aNRoxYoT/86+77jo9/fTTuvrqqzVw4EC98sorAe0+u3fv1sCBA/1h3/HHH69169Zp0qRJqqmp0Z///Ocjfm/S09OVmpqq1157zX9ty5Ytqq+v17nnnqtzzz1Xmzdv1s033yxJev311yWp2WCqurpa33zzTcA1k8mkbt26HfH+fZ+3d+9e9enT5yf7NTZv3jyZTCbddttt+vrrr3X//ffr4osvVmlpqTp06CDp8Pc/JydHZ599tgoKChQTE6OlS5fqoosu0quvvqpzzjkn4GuOGzdOp556qu688055vd4j3vecOXM0f/583XDDDTrnnHNUU1Ojt956S2+//bYuueQSjR07Vvn5+bLb7crMzAz4XLvdrgsvvFAnnHCC6uvrNWzYMNXV1emmm25ScnKydu7cqTVr1mjfvn1KTEzU448/7r+fKVOmSJL/+9TSx33+/Pnq0KGD/u///k8ff/yx/v73v6tdu3aKiYnR3r17NWfOHL3xxht67LHHlJaWpttvvz3oxwMAABwDXgAAgDbmrbfe8kryrl+/3uv1er0ej8fbq1cv75/+9Cd/n//+979eSd7Vq1cHfO7w4cO96enp/tuPP/64NyYmxvvqq68G9Fu8eLFXknfz5s3+a5K8MTEx3rKysiZjqq2tDbhdX1/vPfPMM70XXXSR/9rWrVu9krx//vOfA/ped911XknegoIC/7VJkyZ5U1JSvN98801A3/Hjx3sTExOb3N+PjRs3ztuhQwdvfX291+v1eufPn+9NS0vzer1eb0lJibdHjx7+vrfccotXknfnzp3+a0uXLvVKavYjPj4+4L4keSdNmuTds2eP9+uvv/a+9dZb3ksvvdQrybtgwYKfHKfX6/Vu3LjRK8l7wgkneGtqavzXn376aa8k7wMPPOD1eg8/zqeeeqp32LBhXo/H4+9XW1vrTUtL815yySX+awUFBV5J3iuvvPJn79/r9XrPOuss74gRI36yz5VXXulNTU31ut1u/7W3337bK8m7dOlSr9fr9W7bts0rybtixYqf/FrHHXec99prr21yPdjH3fc9O/PMM/2PsW+MJpPJm5OTE/D5WVlZ3pNOOuknxwQAAI49tpoCAIA2x263q2fPnho8eLCkwyuw/vCHP2j58uVyu92SpIsuukjdu3fXU0895f+8vXv3av369frDH/7gv7ZixQqdccYZ6tu3r7755hv/x0UXXSRJ2rhxY8B9X3DBBerXr1+TMflWZPnup7q6Wueff77efvtt/3XfttS8vLyAz73pppsCbnu9Xj377LO67LLL5PV6A8Y1bNgwVVdXB3zd5px33nk6ePCgtm7dKunwttNzzz1XkjRo0CB9/fXX+uijj/xtaWlpSk1NbfJ1iouLtX79+oCPdevWNen3yCOP6Pjjj1ePHj30m9/8Rhs2bNBf/vIXzZgx4yfH2dg111wTUGNu7NixSklJ0dq1ayVJpaWl+uijjzRhwgR9++23/u/JgQMHNGTIEDkcDnk8noCvOXXq1KDuu0uXLiorK/N/T440vl27dgU8J+x2uzp06KAxY8ZIkv8wi//+97+qra0NbuL/v6N53K+55pqAQzIGDBggr9eriRMnBvQbMGCAvvzySx06dKhFYwIAAMZiqykAAGhT3G63li9frsGDB6u8vNx/fcCAAbr33nu1YcMGDR06VLGxsRozZoyeeOIJ1dXVKT4+XitXrlRDQ0NA8PbRRx/pgw8+0PHHH9/s/X399dcBt5s74VOS1qxZo6KiIpWWlgbU0jKZTP5/f/7554qJiWnyNX58QuiePXu0b98+LVmyREuWLAlqXD/WuM7bgAED9Prrr6uoqEiSdOaZZyohIUGbN29W7969tXXr1oDvSWPnnHNOUIcrjB49WtOmTVN9fb22bNmiO++8U7W1tYqJCf7vuKeeemrAbZPJpFNOOUWfffaZJPlDsWuvvfaIX6O6ulpdu3b13z7S4/Vjc+fO1ejRo3XaaafpzDPP1KWXXqqrr75aFovF3+eSSy5RSkqK7Ha7hgwZIo/HoyeffFKjR4/2B4ZpaWmaMWOG7rvvPtntdp1//vkaNWqUrrrqqoATZptzNI/7iSeeGHDbdx+9e/duct3j8ai6uvpntwkDAIBjh+ANAAC0KS+//LIqKiq0fPlyLV++vEm73W7X0KFDJUnjx4/Xgw8+qHXr1unyyy/X008/rb59++qss87y9/d4POrfv7/uu+++Zu/vxwFG45VtPq+++qpGjRql7OxslZSUKCUlRe3atdPSpUv1xBNPtHiOvlVbV1111RFDpsaBUHPOOussde7cWa+99pqGDx+uqqoq/4q3mJgYDRgwQK+99pr69Omj+vr6X3ywQq9evXTxxRdLkoYPH67u3btr2rRpGjx4sK644opf9LV9fN+XBQsW6Fe/+lWzfTp16hRwu7nHqznZ2dn65JNPtGrVKr344ot6+OGHtXDhQi1evFg33HCDJMlsNmvChAl66KGHVFJSos2bN2vXrl0Bp7lK0r333qvrrrvO/7X++Mc/av78+XrjjTfUq1evn51fSx53s9ncbL8jXff+RJ07AABw7BG8AQCANsVut6tHjx4qLi5u0rZy5Uo999xzWrx4sTp06KDs7GylpKToqaee0nnnnaeXX35Zs2bNCvicPn366J133tGQIUMCVqe1xLPPPqv27dvrv//9r+Lj4/3Xly5dGtDvpJNOksfjUXl5ecDqro8//jig3/HHH6/OnTvL7Xb7w6yWMpvNGjhwoDZv3qzXXntNCQkJ6t+/v7/93HPP1VNPPeVfbdeaJ5pK0o033qiFCxfKZrPpd7/7XVDf2x9v8/R6vfr444/9YZPvAIKEhISj/r78FN9JuNdff73279+v7OxszZkzxx+8SYe3dt57771avXq11q1bp+OPP17Dhg1r8rX69++v/v37y2az6fXXX9egQYO0ePFi/6rD5r4frfG4AwCA8EKNNwAA0GYcPHhQK1eu1MiRIzV27NgmH9OmTdN3332nF154QdLhlV1jx47V6tWr9fjjj+vQoUNNtlT+/ve/186dO/XQQw81e38HDhz42XGZzWaZTCZ/fTlJ+uyzz5qciOoLaEpKSgKu//3vf2/y9caMGaNnn31W7733XpP727Nnz8+OSTocpu3Zs0dLly7VgAEDArZ9nnvuudqxY4dWrVqlbt266YwzzgjqawYrNjZWN998sz744AOtWrUqqM/517/+pe+++85/+5lnnlFFRYVycnIkSWeffbb69Omjv/71r9q/f3+Tzw/2+9Kcb7/9NuB2p06ddMoppwRsG5YOrzizWCx6+OGH9eyzz2r8+PGKjf3hb9U1NTVN6qj1799fMTExAV/ruOOO0759+wL6tdbjDgAAwgcr3gAAQJvxwgsv6LvvvtOoUaOabR84cKCOP/542e12f8D2hz/8QX//+99VUFCg/v37NwmYrr76aj399NOaOnWqNm7cqEGDBsntdmv79u16+umn9d///vdna5yNGDFC9913ny699FJNmDBBX3/9tYqLi3XKKafI5XL5+5199tkaM2aM7r//fn377bcaOHCgXnnlFX344YeSAldB3XXXXdq4caMGDBigyZMnq1+/fqqqqtLbb7+tl156SVVVVT/7/fKtYnM6nZozZ06T75XJZNIbb7yhyy677Igr0tatW6ft27c3uX7uuecqPT39J+//uuuu0+233667775bl19++c+ONykpSeedd56uv/567d69W/fff79OOeUUTZ48WdLhIPXhhx9WTk6OMjIydP311+uEE07Qzp07tXHjRiUkJGj16tU/ez/N6devny688EKdffbZSkpK0ltvvaVnnnlG06ZNa9L3mmuu0S233CJJTbaZvvzyy5o2bZrGjRun0047TYcOHdLjjz/uD9V8zj77bL300ku67777lJqaqrS0NA0YMKBVHncAABBGQniiKgAAQIDLLrvM2759e++BAweO2Oe6667ztmvXzvvNN994vV6v1+PxeHv37u2V5C0qKmr2c+rr67133323NyMjwxsfH+/t2rWr9+yzz/YWFhZ6q6ur/f0kefPz85v9Go888oj31FNP9cbHx3v79u3rXbp0qbegoMD747dTBw4c8Obn53uTkpK8nTp18l5++eXeHTt2eCV577rrroC+u3fv9ubn53t79+7tbdeunTc5Odk7ZMgQ75IlS4L6fh04cMAbGxvrleR98cUXm7RbLBavJO/dd9/dpG3p0qVeSUf8WLp0aVDflzlz5ngleTdu3HjEcW7cuNEryfvkk096Z86c6e3Ro4e3Q4cO3hEjRng///zzJv23bdvmveKKK7zdunXzxsfHe0866STv73//e++GDRv8fXzf+z179vzEd+gHRUVF3nPOOcfbpUsXb4cOHbx9+/b1zps3z1tfX9+kb0VFhddsNntPO+20Jm2ffvqpd+LEid4+ffp427dv701KSvIOHjzY+9JLLwX02759uzc7O9vboUMHryTvtdde628L5nH3fc9WrFgR8HV9j9uWLVsCrrf0+wEAAI4Nk9dLBVYAAAAjlZaWKjMzU8uWLZPVag31cI65TZs2afDgwVqxYoXGjh0b6uH8rG+++UYpKSm6/fbbNXv27FAPBwAAhDFqvAEAALSigwcPNrl2//33KyYmRtnZ2SEYEVrqsccek9vt1tVXXx3qoQAAgDBHjTcAAIBWdM8992jr1q0aPHiwYmNjtW7dOq1bt05TpkxR7969Qz08/ISXX35Z77//vubNm6fLL79cJ598cqiHBAAAwhzBGwAAQCs699xztX79et1xxx3av3+/TjzxRM2ZM0ezZs0K9dDwM+bOnavXX39dgwYNanISLQAAwNGgxhsAAAAAAABgAGq8AQAAAAAAAAZgq2kQPB6Pdu3apc6dO8tkMoV6OAAAAAAAAAghr9er7777TqmpqYqJOfK6NoK3IOzatYtiyAAAAAAAAAjw5ZdfqlevXkdsJ3gLQufOnSUd/mYmJCSEeDQAAAAAAAAIpZqaGvXu3dufGR0JwVsQfNtLExISCN4AAAAAAAAgST9bkozDFQAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAxA8AYAAAAAAAAYgOANAAAAAAAAMADBGwAAAAAAAGAAgjcAAAAAAADAAARvAAAAAAAAgAEI3gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAxA8AYAAAAAAAAYgOANAAAAAAAAMADBGwAAAAAAAGAAgjcAAAAAAADAAARvAAAAAAAAgAEI3gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAxA8AYAAAAAAAAYIDbUAwAAAOHN7XbL5XKpqqpKSUlJslgsMpvNoR4WAAAAEHIEbwAA4Kg5HA6VlJSosrLSfy05OVl5eXnKzs4O4cgAAACA0GOrKQAAOCoOh0MFBQVKT09XcXGx1q5dq+LiYqWnp6ugoEAOhyPUQwQAAABCyuT1er2hHkRbV1NTo8TERFVXVyshISHUwwEAIOTcbresVqvS09NVVFSkmJgf/pbn8Xhks9lUXl6uZcuWse0UAAAAESfYrIgVbwAAoMVcLpcqKytltVoDQjdJiomJkdVqVUVFhVwuV4hGCAAAAIQewRsAAGixqqoqSVJaWlqz7b7rvn4AAABANCJ4AwAALZaUlCRJKi8vb7bdd93XDwAAAIhGBG8AAKDFLBaLkpOTZbfb5fF4Ato8Ho/sdrtSUlJksVhCNEIAAAAg9AjeAABAi5nNZuXl5cnpdMpms6msrEy1tbUqKyuTzWaT0+lUbm4uBysAAAAgqnGqaRA41RQAgOY5HA6VlJSosrLSfy0lJUW5ubnKzs4O4cgAAAAA4wSbFRG8BYHgDQCAI3O73XK5XKqqqlJSUpIsFgsr3QAAABDRgs2KYo/hmAAAQAQym83KzMwM9TAAAACANocabwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAA4Q0eHM4HLrsssuUmpoqk8mk559/PqDdZDI1+7FgwQJ/n5NPPrlJ+1133RXwdVwul84//3y1b99evXv31j333HMspgcAAAAAAIAoFtLg7cCBAzrrrLNUXFzcbHtFRUXAx6OPPiqTyaQxY8YE9Js7d25Av5tuusnfVlNTo6FDh+qkk07S1q1btWDBAs2ZM0dLliwxdG4AAAAAAACIbrGhvPOcnBzl5OQcsT05OTng9qpVqzR48GClp6cHXO/cuXOTvj52u1319fV69NFHFRcXp4yMDJWWluq+++7TlClTfvkkAAAAAAAAgGaETY233bt369///rcmTZrUpO2uu+5St27dlJmZqQULFujQoUP+NqfTqezsbMXFxfmvDRs2TDt27NDevXubva+6ujrV1NQEfAAAAAAAAAAtEdIVby3xz3/+U507d9YVV1wRcP2Pf/yjfv3rXyspKUmvv/66Zs6cqYqKCt13332SpMrKSqWlpQV8Ts+ePf1tXbt2bXJf8+fPV2FhoUEzAQAAAAAAQDQIm+Dt0UcfldVqVfv27QOuz5gxw/9vi8WiuLg43XjjjZo/f77i4+OP6r5mzpwZ8HVramrUu3fvoxs4AAAAAAAAolJYBG+vvvqqduzYoaeeeupn+w4YMECHDh3SZ599ptNPP13JycnavXt3QB/f7SPVhYuPjz/q0A4AAAAAAACQwqTG2yOPPKKzzz5bZ5111s/2LS0tVUxMjHr06CFJysrKksPhUENDg7/P+vXrdfrppze7zRQAAAAAAABoDSEN3vbv36/S0lKVlpZKksrLy1VaWqovvvjC36empkYrVqzQDTfc0OTznU6n7r//fr3zzjv69NNPZbfbNX36dF111VX+UG3ChAmKi4vTpEmTVFZWpqeeekoPPPBAwFZSAAAAAAAAoLWFdKvpW2+9pcGDB/tv+8Kwa6+9Vo899pgkafny5fJ6vbryyiubfH58fLyWL1+uOXPmqK6uTmlpaZo+fXpAqJaYmKgXX3xR+fn5Ovvss9W9e3fdfvvtmjJlirGTAwAAAAAAQFQzeb1eb6gH0dbV1NQoMTFR1dXVSkhICPVwAAAAAAAAEELBZkVhUeMNAAAAAAAACDcEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwACxoR4AAAAIb263Wy6XS1VVVUpKSpLFYpHZbA71sAAAAICQI3gDAABHzeFwqKSkRJWVlf5rycnJysvLU3Z2dghHBgAAAIQeW00BAMBRcTgcKigoUHp6uoqLi7V27VoVFxcrPT1dBQUFcjgcoR4iAAAAEFImr9frDfUg2rqamholJiaqurpaCQkJoR4OAAAh53a7ZbValZ6erqKiIsXE/PC3PI/HI5vNpvLyci1btoxtpwAAAIg4wWZFrHgDAAAt5nK5VFlZKavVGhC6SVJMTIysVqsqKirkcrlCNEIAAAAg9AjeAABAi1VVVUmS0tLSmm33Xff1AwAAAKIRwRsAAGixpKQkSVJ5eXmz7b7rvn4AAABANCJ4AwAALWaxWJScnCy73S6PxxPQ5vF4ZLfblZKSIovFEqIRAgAAAKFH8AYAAFrMbDYrLy9PTqdTNptNZWVlqq2tVVlZmWw2m5xOp3JzczlYAQAAAFGNU02DwKmmAAA0z+FwqKSkRJWVlf5rKSkpys3NVXZ2dghHBgAAABgn2KyI4C0IBG8AAByZ2+2Wy+VSVVWVkpKSZLFYWOkGAACAiBZsVhR7DMcEAAAikNlsVmZmZqiHAQAAALQ51HgDAAAAAAAADEDwBgAAAAAAABggpMGbw+HQZZddptTUVJlMJj3//PMB7dddd51MJlPAx6WXXhrQp6qqSlarVQkJCerSpYsmTZqk/fv3B/RxuVw6//zz1b59e/Xu3Vv33HOP0VMDAAAAAABAlAtp8HbgwAGdddZZKi4uPmKfSy+9VBUVFf6PJ598MqDdarWqrKxM69ev15o1a+RwODRlyhR/e01NjYYOHaqTTjpJW7du1YIFCzRnzhwtWbLEsHkBAAAAAAAAIT1cIScnRzk5OT/ZJz4+XsnJyc22ffDBB/rPf/6jLVu26De/+Y0k6e9//7uGDx+uv/71r0pNTZXdbld9fb0effRRxcXFKSMjQ6WlpbrvvvsCArrG6urqVFdX579dU1NzlDMEAAAAAABAtGrzNd42bdqkHj166PTTT1dubq6+/fZbf5vT6VSXLl38oZskXXzxxYqJidGbb77p75Odna24uDh/n2HDhmnHjh3au3dvs/c5f/58JSYm+j969+5t0OwAAAAAAAAQqdp08HbppZfqX//6lzZs2KC7775br7zyinJycuR2uyVJlZWV6tGjR8DnxMbGKikpSZWVlf4+PXv2DOjju+3r82MzZ85UdXW1/+PLL79s7akBAAAAAAAgwoV0q+nPGT9+vP/f/fv3l8ViUZ8+fbRp0yYNGTLEsPuNj49XfHy8YV8fAAAAAAAAka9Nr3j7sfT0dHXv3l0ff/yxJCk5OVlff/11QJ9Dhw6pqqrKXxcuOTlZu3fvDujju32k2nEAAAAAAADALxVWwdtXX32lb7/9VikpKZKkrKws7du3T1u3bvX3efnll+XxeDRgwAB/H4fDoYaGBn+f9evX6/TTT1fXrl2P7QQAAAAAAAAQNUIavO3fv1+lpaUqLS2VJJWXl6u0tFRffPGF9u/fr1tvvVVvvPGGPvvsM23YsEGjR4/WKaecomHDhkmSzjjjDF166aWaPHmy/ve//2nz5s2aNm2axo8fr9TUVEnShAkTFBcXp0mTJqmsrExPPfWUHnjgAc2YMSNU0wYAAAAAAEAUMHm9Xm+o7nzTpk0aPHhwk+vXXnutFi1apMsvv1zbtm3Tvn37lJqaqqFDh+qOO+4IOCyhqqpK06ZN0+rVqxUTE6MxY8bob3/7mzp16uTv43K5lJ+fry1btqh79+666aabdNtttwU9zpqaGiUmJqq6uloJCQm/bNIAAAAAAAAIa8FmRSEN3sIFwRsAAAAAAAB8gs2KwqrGGwAAAAAAABAuCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAA8SGegAAACC8ud1uuVwuVVVVKSkpSRaLRWazOdTDAgAAAEKO4A0AABw1h8OhkpISVVZW+q8lJycrLy9P2dnZIRwZAAAAEHpsNQUAAEfF4XCooKBA6enpKi4u1tq1a1VcXKz09HQVFBTI4XCEeogAAABASJm8Xq831INo62pqapSYmKjq6molJCSEejgAAISc2+2W1WpVenq6ioqKFBPzw9/yPB6PbDabysvLtWzZMradAgAAIOIEmxWx4g0AALSYy+VSZWWlrFZrQOgmSTExMbJaraqoqJDL5QrRCAEAAIDQI3gDAAAtVlVVJUlKS0trtt133dcPAAAAiEYEbwAAoMWSkpIkSeXl5c22+677+gEAAADRiOANAAC0mMViUXJysux2uzweT0Cbx+OR3W5XSkqKLBZLiEYIAAAAhB7BGwAAaDGz2ay8vDw5nU7ZbDaVlZWptrZWZWVlstlscjqdys3N5WAFAAAARDVONQ0Cp5oCANA8h8OhkpISVVZW+q+lpKQoNzdX2dnZIRwZAAAAYJxgsyKCtyAQvAEAcGRut1sul0tVVVVKSkqSxWJhpRsAAAAiWrBZUewxHBMAAIhAZrNZmZmZoR4GAAAA0OZQ4w0AAAAAAAAwAMEbAAAAAAAAYACCNwAAAAAAAMAABG8AAAAAAACAAQjeAAAAAAAAAAMQvAEAAAAAAAAGIHgDAAAAAAAADEDwBgAAAAAAABiA4A0AAAAAAAAwAMEbAAAAAAAAYACCNwAAAAAAAMAABG8AAAAAAACAAQjeAAAAAAAAAAMQvAEAAAAAAAAGIHgDAAAAAAAADEDwBgAAAAAAABggpMGbw+HQZZddptTUVJlMJj3//PP+toaGBt12223q37+/jjvuOKWmpuqaa67Rrl27Ar7GySefLJPJFPBx1113BfRxuVw6//zz1b59e/Xu3Vv33HPPsZgeAAAAAAAAolhIg7cDBw7orLPOUnFxcZO22tpavf3225o9e7befvttrVy5Ujt27NCoUaOa9J07d64qKir8HzfddJO/raamRkOHDtVJJ52krVu3asGCBZozZ46WLFli6NwAAAAAAAAQ3WJDeec5OTnKyclpti0xMVHr168PuPaPf/xD55xzjr744gudeOKJ/uudO3dWcnJys1/Hbrervr5ejz76qOLi4pSRkaHS0lLdd999mjJlSutNBgAAAAAAAGgkrGq8VVdXy2QyqUuXLgHX77rrLnXr1k2ZmZlasGCBDh065G9zOp3Kzs5WXFyc/9qwYcO0Y8cO7d27t9n7qaurU01NTcAHAAAAAAAA0BIhXfHWEt9//71uu+02XXnllUpISPBf/+Mf/6hf//rXSkpK0uuvv66ZM2eqoqJC9913nySpsrJSaWlpAV+rZ8+e/rauXbs2ua/58+ersLDQwNkAAAAAAAAg0oVF8NbQ0KDf//738nq9WrRoUUDbjBkz/P+2WCyKi4vTjTfeqPnz5ys+Pv6o7m/mzJkBX7empka9e/c+usEDAAAAAAAgKrX54M0Xun3++ed6+eWXA1a7NWfAgAE6dOiQPvvsM51++ulKTk7W7t27A/r4bh+pLlx8fPxRh3YAAEQbt9stl8ulqqoqJSUlyWKxyGw2h3pYAAAAQMi16eDNF7p99NFH2rhxo7p16/azn1NaWqqYmBj16NFDkpSVlaVZs2apoaFB7dq1kyStX79ep59+erPbTAEAQPAcDodKSkpUWVnpv5acnKy8vDxlZ2eHcGQAAABA6IX0cIX9+/ertLRUpaWlkqTy8nKVlpbqiy++UENDg8aOHau33npLdrtdbrdblZWVqqysVH19vaTDByfcf//9euedd/Tpp5/Kbrdr+vTpuuqqq/yh2oQJExQXF6dJkyaprKxMTz31lB544IGAraQAAKDlHA6HCgoKlJ6eruLiYq1du1bFxcVKT09XQUGBHA5HqIcIAAAAhJTJ6/V6Q3XnmzZt0uDBg5tcv/baazVnzpwmhyL4bNy4URdeeKHefvtt5eXlafv27aqrq1NaWpquvvpqzZgxI2CrqMvlUn5+vrZs2aLu3bvrpptu0m233Rb0OGtqapSYmKjq6uqf3eoKAEA0cLvdslqtSk9PV1FRkWJifvhbnsfjkc1mU3l5uZYtW8a2UwAAAEScYLOikAZv4YLgDQCAQNu2bdP06dNVXFysjIyMJu1lZWXKz8/XwoULlZmZGYIRAgAAAMYJNisK6VZTAAAQnqqqqiTpiKvTfdd9/QAAAIBoRPAGAABaLCkpSdLh+qzN8V339QMAAACiEcEbAABoMYvFouTkZNntdnk8noA2j8cju92ulJQUWSyWEI0QAAAACD2CNwAA0GJms1l5eXlyOp2y2WwqKytTbW2tysrKZLPZ5HQ6lZuby8EKAAAAiGocrhAEDlcAAKB5DodDJSUlqqys9F9LSUlRbm6usrOzQzgyAAAAwDicatqKCN4AADgyt9stl8ulqqoqJSUlyWKxsNINAAAAES3YrCj2GI4JAABEILPZrMzMzFAPAwAAAGhzqPEGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGCA21AMAAADhze12y+VyqaqqSklJSbJYLDKbzaEeFgzAYw0AANAyBG8AAOCoORwOlZSUqLKy0n8tOTlZeXl5ys7ODuHI0Np4rAEAAFqOraYAAOCoOBwOFRQUKD09XcXFxVq7dq2Ki4uVnp6ugoICORyOUA8RrYTHGgAA4OiYvF6vN9SDaOtqamqUmJio6upqJSQkhHo4AACEnNvtltVqVXp6uoqKihQT88Pf8jwej2w2m8rLy7Vs2TK2IoY5HmsAAICmgs2KWPEGAABazOVyqbKyUlarNSCIkaSYmBhZrVZVVFTI5XKFaIRoLTzWAAAAR4/gDQAAtFhVVZUkKS0trdl233VfP4QvHmsAAICjR/AGAABaLCkpSZJUXl7ebLvvuq8fwhePNQAAwNEjeAMAAC1msViUnJwsu90uj8cT0ObxeGS325WSkiKLxRKiEaK18FgDAAAcPYI3AADQYmazWXl5eXI6nbLZbCorK1Ntba3Kyspks9nkdDqVm5tLsf0IwGMNAABw9DjVNAicagoAQPMcDodKSkpUWVnpv5aSkqLc3FxlZ2eHcGRobTzWAAAAPwg2KyJ4CwLBGwAAR+Z2u+VyuVRVVaWkpCRZLBZWP0UoHmsAAIDDgs2KYo/hmAAAQAQym83KzMwM9TBwDPBYAwAAtAw13gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAxA8AYAAAAAAAAYgOANAAAAAAAAMADBGwAAAAAAAGAAgjcAAAAAAADAAARvAAAAAAAAgAEI3gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAxA8AYAAAAAAAAYgOANAAAAAAAAMADBGwAAAAAAAGAAgjcAAAAAAADAAARvAAAAAAAAgAEI3gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAwQ0uDN4XDosssuU2pqqkwmk55//vmAdq/Xq9tvv10pKSnq0KGDLr74Yn300UcBfaqqqmS1WpWQkKAuXbpo0qRJ2r9/f0Afl8ul888/X+3bt1fv3r11zz33GD01AAAAAAAARLmQBm8HDhzQWWedpeLi4mbb77nnHv3tb3/T4sWL9eabb+q4447TsGHD9P333/v7WK1WlZWVaf369VqzZo0cDoemTJnib6+pqdHQoUN10kknaevWrVqwYIHmzJmjJUuWGD4/AAAAAAAARC+T1+v1hnoQkmQymfTcc8/p8ssvl3R4tVtqaqpuvvlm3XLLLZKk6upq9ezZU4899pjGjx+vDz74QP369dOWLVv0m9/8RpL0n//8R8OHD9dXX32l1NRULVq0SLNmzVJlZaXi4uIkSf/3f/+n559/Xtu3bw9qbDU1NUpMTFR1dbUSEhJaf/IAAAAAAAAIG8FmRW22xlt5ebkqKyt18cUX+68lJiZqwIABcjqdkiSn06kuXbr4QzdJuvjiixUTE6M333zT3yc7O9sfuknSsGHDtGPHDu3du7fZ+66rq1NNTU3ABwAAAAAAANASbTZ4q6yslCT17Nkz4HrPnj39bZWVlerRo0dAe2xsrJKSkgL6NPc1Gt/Hj82fP1+JiYn+j969e//yCQEAAAAAACCqtFrw9v333+uvf/1ra325kJo5c6aqq6v9H19++WWohwQAAAAAAIAw06Lgbc+ePVqzZo1efPFFud1uSVJDQ4MeeOABnXzyybrrrrtabWDJycmSpN27dwdc3717t78tOTlZX3/9dUD7oUOHVFVVFdCnua/R+D5+LD4+XgkJCQEfAAAAAAAAQEsEHby99tprOvXUUzVq1Cjl5OTo3HPP1fvvv6+MjAw9+OCDmjNnTquuDEtLS1NycrI2bNjgv1ZTU6M333xTWVlZkqSsrCzt27dPW7du9fd5+eWX5fF4NGDAAH8fh8OhhoYGf5/169fr9NNPV9euXVttvAAAAAAAAEBjQQdvNptNw4cPl8vl0owZM7Rlyxb97ne/05133qn3339fU6dOVYcOHVp05/v371dpaalKS0slHT5QobS0VF988YVMJpP+/Oc/q6ioSC+88ILeffddXXPNNUpNTfWffHrGGWfo0ksv1eTJk/W///1Pmzdv1rRp0zR+/HilpqZKkiZMmKC4uDhNmjRJZWVleuqpp/TAAw9oxowZLRorAAAAAAAA0BImr9frDaZjt27d9Oqrr6pfv346ePCgOnXqpJUrV2r06NFHfeebNm3S4MGDm1y/9tpr9dhjj8nr9aqgoEBLlizRvn37dN5556mkpESnnXaav29VVZWmTZum1atXKyYmRmPGjNHf/vY3derUyd/H5XIpPz9fW7ZsUffu3XXTTTfptttuC3qcwR4RCwAAAAAAgMgXbFYUdPAWExMTcIpo586dVVpaqj59+rTOiNswgjcAAAAAAAD4BJsVxbbki77//vuqrKyUJHm9Xu3YsUMHDhwI6GOxWI5iuAAAAAAAAEBkadGKN5PJpOa6+66bTCb/aaeRhBVvAAAAAAAA8Gn1FW/l5eWtMjAAAAAAAAAgGgQdvJ100klGjgMAAAAAAACIKDHBdrznnnt08OBB/+3Nmzerrq7Of/u7775TXl5e644OAAAAAAAACFNB13gzm82qqKjwn2qakJCg0tJSpaenS5J2796t1NRUarwBAAAAAAAgogWbFQW94u3H+VyQeR0AAAAAAAAQlYIO3gAAAAAAAAAEj+ANAAAAAAAAMEDQp5pK0sMPP6xOnTpJkg4dOqTHHntM3bt3l3T4cAUAAAAAAAAAhwV9uMLJJ58sk8n0s/3Ky8t/8aDaGg5XAAAAAAAAgE+wWVHQK942btyotLS0VhkcAAAAAAAAEOmCrvHWp08fpaWlaeLEiVq2bJl27txp5LgAAAAAAACAsBb0ireXX35ZmzZt0qZNm/Tkk0+qvr5e6enpuuiiizR48GANHjxYPXv2NHKsAAAAAAAAQNgIusZbY99//71ef/11fxD3v//9Tw0NDerbt6/KysqMGGdIUeMNAAAAAAAAPsFmRUcVvPnU19dr8+bNWrdunR588EHt379fbrf7aL9cm0XwBgAAAAAAAJ9WP1xBOhy0vfHGG9q4caM2bdqkN998U71791Z2drb+8Y9/6IILLvjFAwcAAAAAAAAiQdDB20UXXaQ333xTaWlpuuCCC3TjjTfqiSeeUEpKipHjAwAAAAAAAMJS0MHbq6++qpSUFF100UW68MILdcEFF6hbt25Gjg0AAAAAAAAIWzHBdty3b5+WLFmijh076u6771Zqaqr69++vadOm6ZlnntGePXuMHCcAAAAAAAAQVo76cIXvvvtOr732mr/e2zvvvKNTTz1V7733XmuPMeQ4XAEAAAAAAAA+wWZFQa94+7HjjjtOSUlJSkpKUteuXRUbG6sPPvjgaL8cAAAAAAAAEFGCrvHm8Xj01ltvadOmTdq4caM2b96sAwcO6IQTTtDgwYNVXFyswYMHGzlWAAAAAAAAIGwEHbx16dJFBw4cUHJysgYPHqyFCxfqwgsvVJ8+fYwcHwAAAAAAABCWgg7eFixYoMGDB+u0004zcjwAAAAAAABARAg6eLvxxhuNHAcAAAAAAAAQUY76cAUAAAAAAAAAR0bwBgAAAAAAABiA4A0AAAAAAAAwAMEbAAAAAAAAYACCNwAAAAAAAMAABG8AAAAAAACAAQjeAAAAAAAAAAMQvAEAAAAAAAAGIHgDAAAAAAAADEDwBgAAAAAAABiA4A0AAAAAAAAwAMEbAAAAAAAAYACCNwAAAAAAAMAABG8AAAAAAACAAQjeAAAAAAAAAAMQvAEAAAAAAAAGIHgDAAAAAAAADEDwBgAAAAAAABiA4A0AAAAAAAAwAMEbAAAAAAAAYACCNwAAAAAAAMAABG8AAAAAAACAAQjeAAAAAAAAAAMQvAEAAAAAAAAGIHgDAAAAAAAADEDwBgAAAAAAABiA4A0AAAAAAAAwAMEbAAAAAAAAYACCNwAAAAAAAMAABG8AAAAAAACAAQjeAAAAAAAAAAMQvAEAAAAAAAAGIHgDAAAAAAAADEDwBgAAAAAAABiA4A0AAAAAAAAwAMEbAAAAAAAAYACCNwAAAAAAAMAAbT54O/nkk2UymZp85OfnS5IuvPDCJm1Tp04N+BpffPGFRowYoY4dO6pHjx669dZbdejQoVBMBwAAAAAAAFEiNtQD+DlbtmyR2+32337vvfd0ySWXaNy4cf5rkydP1ty5c/23O3bs6P+32+3WiBEjlJycrNdff10VFRW65ppr1K5dO915553HZhIAAAAAAACIOm0+eDv++OMDbt91113q06ePLrjgAv+1jh07Kjk5udnPf/HFF/X+++/rpZdeUs+ePfWrX/1Kd9xxh2677TbNmTNHcXFxTT6nrq5OdXV1/ts1NTWtNBsAAAAAAABEiza/1bSx+vp6LVu2TBMnTpTJZPJft9vt6t69u84880zNnDlTtbW1/jan06n+/furZ8+e/mvDhg1TTU2NysrKmr2f+fPnKzEx0f/Ru3dv4yYFAAAAAACAiNTmV7w19vzzz2vfvn267rrr/NcmTJigk046SampqXK5XLrtttu0Y8cOrVy5UpJUWVkZELpJ8t+urKxs9n5mzpypGTNm+G/X1NQQvgEAAAAAAKBFwip4e+SRR5STk6PU1FT/tSlTpvj/3b9/f6WkpGjIkCH65JNP1KdPn6O6n/j4eMXHx//i8QIAAAAAACB6hc1W088//1wvvfSSbrjhhp/sN2DAAEnSxx9/LElKTk7W7t27A/r4bh+pLhwAAAAAAADwS4VN8LZ06VL16NFDI0aM+Ml+paWlkqSUlBRJUlZWlt599119/fXX/j7r169XQkKC+vXrZ9h4AQAAAAAAEN3CYqupx+PR0qVLde211yo29ochf/LJJ3riiSc0fPhwdevWTS6XS9OnT1d2drYsFoskaejQoerXr5+uvvpq3XPPPaqsrJTNZlN+fj7bSQEAAAAAAGCYsAjeXnrpJX3xxReaOHFiwPW4uDi99NJLuv/++3XgwAH17t1bY8aMkc1m8/cxm81as2aNcnNzlZWVpeOOO07XXnut5s6de6ynAQAAAAAAgChi8nq93lAPoq2rqalRYmKiqqurlZCQEOrhAAAAAAAAIISCzYrCpsYbAAAAAAAAEE4I3gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAxA8AYAAAAAAAAYgOANAAAAAAAAMADBGwAAAAAAAGAAgjcAAAAAAADAAARvAAAAAAAAgAEI3gAAAAAAAAADELwBAAAAAAAABiB4AwAAAAAAAAwQG+oBAACA8OZ2u+VyuVRVVaWkpCRZLBaZzeZQDwsAAAARLFzegxK8AQCAo+ZwOFRSUqLKykr/teTkZOXl5Sk7OzuEIwMAAECkCqf3oGw1BQAAR8XhcKigoEDp6ekqLi7W2rVrVVxcrPT0dBUUFMjhcIR6iAAAAIgw4fYe1OT1er2hHkRbV1NTo8TERFVXVyshISHUwwEAIOTcbresVqvS09NVVFSkmJgf/pbn8Xhks9lUXl6uZcuWtckl/wAAAAg/bek9aLBZESveAABAi7lcLlVWVspqtQa84ZGkmJgYWa1WVVRUyOVyhWiEAAAAiDTh+B6UGm8AAKDFqqqqJElpaWnNFrZNS0sL6AeEq3Ap3AwAQDRo/B60OW3xPSjBGwAAaLGkpCRJ0nPPPafVq1c3KWw7cuTIgH5AOAqnws0AAEQD33vL8vJyZWRkNGkvLy8P6NcWsNUUAAC0mMViUZcuXfTQQw8pLS0toLBtWlqaHn74YXXt2lUWiyXUQwWOSrgVbgYAIBpYLBYlJyfLbrfL4/EEtHk8HtntdqWkpLSp96AEbwAAwBCc34Rw5Xa7VVJSoqysLBUVFSkjI0MdO3ZURkaGioqKlJWVpUWLFsntdod6qAAARBWz2ay8vDw5nU7ZbDaVlZWptrZWZWVlstlscjqdys3NbVNlIQjeAABAi7lcLu3bt0+TJ09WeXm58vPzNXz4cOXn5+uzzz7T5MmTtW/fvjZV2BYIVjgWbgYAIFpkZ2ersLBQn376acB70PLychUWFra5chDUeAMAAC3mK1j7u9/9TuPHj29SfL6urk4PPfRQmypsCwQrHAs3AwB+wME4kS87O1uDBg0Ki8eZ4A0AALTYjwvbZmZmBrS3xcK2QLDCsXAzAOAwDsaJHmazucl70LaIraYAAKDFwrGwLRAsnt8AEJ44GAdtEcEbAABosXAsbAsEi+c3AIQfDsZBW2XycuTYz6qpqVFiYqKqq6uVkJAQ6uEAANBmNLedIyUlRbm5uWznQNjj+Q0A4WPbtm2aPn26iouLmy0TUFZWpvz8fC1cuDAstiei7Qs2K6LGGxBiFP4EEM7CqbBta+K1Ozrw/GbOQCSIluc3B+OgrSJ4A0KIwp8AIkG4FLZtLbx2Rxee35H//I7GOSN6RNPzm4Nx0FZR4w0IEQp/AkD44bUbkSwan9/ROGdEj2h7fnMwDtoqarwFgRpvaG1ut1tWq1Xp6ekqKipSTMwPGbjH45HNZlN5ebmWLVsWkcvAASAc8dqNSBaNz+9onDOiR7Q+v31hY1ZWlqxWq9LS0lReXi673S6n06nCwsKIW+mH0Ak2K2LFGxACLpdLlZWVslqtAT8EJSkmJkZWq1UVFRVyuVwhGiEA4Md47UYki8bndzTOGdEjWp/f2dnZKiws1Keffqr8/HwNHz5c+fn5Ki8vJ3RDyFDjDQgBCn8CQPjhtTt6CnRHo2h8fkfjnBvj/3Nki+bnd7QejIO2i+ANCAEKfwJA+In21+5oKtAdjaLx+R2Nc/bh/3Pki+bntxR9B+OgbWOrKRACFP4EgPATza/d0VagOxpF4/M7Gucs8f85WkTr8xtoiwjegBAwm83Ky8uT0+mUzWZTWVmZamtrVVZWJpvNJqfTqdzcXJZDA0AbEq2v3W63WyUlJcrKylJRUZEyMjLUsWNHZWRkqKioSFlZWVq0aJHcbneoh4pfIBqf39E4Z/4/R49ofH4DbRWnmgaBU01hlOaW+aekpCg3N5dl/gDQRkXba/e2bds0ffp0FRcXN7tdqaysTPn5+Vq4cCHbeiJAtD2/peiaM/+fo080Pb+BYy3YrIgab0AIUfgTAMJPtL12R3OB7mgUbc9vKbrmzP/n6BNNz2+grSJ4A0KMwp8AEH6i6bU72gt0R6Noen77RMuc+f8cnaLl+Q20VdR4AwAAwBFRoBuIHPx/BoBjj+ANAAAAR0SBbiBy8P8ZAI49DlcIAocrAACAaEeBbiBy8P8ZAH65YLMigrcgELwBAABIbrebAt1AhOD/MwD8MpxqCgAAgFZFgW4gcvD/GQCODWq8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABgAII3AAAAAAAAwAAEbwAAAAAAAIABCN4AAAAAAAAAAxC8AQAAAAAAAAYgeAMAAAAAAAAMQPAGAAAAAAAAGIDgDQAAAAAAADAAwRsAAAAAAABggNhQDwAAAIQ3t9stl8ulqqoqJSUlyWKxyGw2h3pYAAAAQMgRvAEAgKPmcDhUUlKiyspK/7Xk5GTl5eUpOzs7hCMDAAAAQo+tpgAA4Kg4HA4VFBQoPT1dxcXFWrt2rYqLi5Wenq6CggI5HI5QDxEAAAAIKZPX6/WGehBtXU1NjRITE1VdXa2EhIRQDwcAgJBzu92yWq1KT09XUVGRYmJ++Fuex+ORzWZTeXm5li1bxrZTAAAARJxgsyJWvAEAgBZzuVyqrKyU1WoNCN0kKSYmRlarVRUVFXK5XCEaIQDgp7jdbm3btk0bNmzQtm3b5Ha7Qz0kAIhIbTp4mzNnjkwmU8BH3759/e3ff/+98vPz1a1bN3Xq1EljxozR7t27A77GF198oREjRqhjx47q0aOHbr31Vh06dOhYTwUAgIhSVVUlSUpLS2u23Xfd1w8A0HY4HA5ZrVZNnz5dd9xxh6ZPny6r1UqJAAAwQJsO3iQpIyNDFRUV/o/XXnvN3zZ9+nStXr1aK1as0CuvvKJdu3bpiiuu8Le73W6NGDFC9fX1ev311/XPf/5Tjz32mG6//fZQTAUAgIiRlJQkSSovL2+23Xfd1w8A0DZQnxMAjq02XeNtzpw5ev7551VaWtqkrbq6Wscff7yeeOIJjR07VpK0fft2nXHGGXI6nRo4cKDWrVunkSNHateuXerZs6ckafHixbrtttu0Z88excXFBTUOarwBABCocY23wsJCvffee6qqqlJSUpLOPPNMFRQUUOMNANoY6nMCQOsJNiuKPYZjOiofffSRUlNT1b59e2VlZWn+/Pk68cQTtXXrVjU0NOjiiy/29+3bt69OPPFEf/DmdDrVv39/f+gmScOGDVNubq7KysqUmZnZ7H3W1dWprq7Of7umpsa4CQIAEIbMZrPy8vJ0++23a+TIkQE/N+Pj41VXV6e5c+dG7C9ubrdbLpfLHzZaLJaInWtj0TpvIFL46nPOnj37iPU58/Pz5XK5jvi7EgCgZdp08DZgwAA99thjOv3001VRUaHCwkKdf/75eu+991RZWam4uDh16dIl4HN69uypyspKSVJlZWVA6OZr97Udyfz581VYWNi6kwEAIAKZTKYWXY8EDodDJSUlAe8lkpOTlZeXp+zs7BCOzFjROm8gklCfEwCOvTZd4y0nJ0fjxo2TxWLRsGHDtHbtWu3bt09PP/20ofc7c+ZMVVdX+z++/PJLQ+8PAIBw43a7VVJSoqysLK1Zs0YLFy7U7NmztXDhQq1Zs0ZZWVlatGhRxJ2SF621kaJ13kCkoT4nABx7bTp4+7EuXbrotNNO08cff6zk5GTV19dr3759AX12796t5ORkSYf/CvvjU059t319mhMfH6+EhISAD8AoHOUOIBz5titZrVa1a9dOmZmZGjJkiDIzM9WuXTtZrVZVVFTI5XKFeqitpnHYWFRUpIyMDHXs2FEZGRkqKiqK2LAxWucdzaLxvUm0zNlisSg5OVl2u10NDQ0Bc25oaJDdbldKSoosFkuohwoAEaNNbzX9sf379+uTTz7R1VdfrbPPPlvt2rXThg0bNGbMGEnSjh079MUXXygrK0uSlJWVpXnz5unrr79Wjx49JEnr169XQkKC+vXrF7J5AD5s2wEQrqJxu1K01kaK1nlHq2h8bxJNc472+pwAEAptesXbLbfcoldeeUWfffaZXn/9df3ud7+T2WzWlVdeqcTERE2aNEkzZszQxo0btXXrVl1//fXKysrSwIEDJUlDhw5Vv379dPXVV+udd97Rf//7X9lsNuXn5ys+Pj7Es0O0Y9sOgHAWjduVojFslKJ33tEoGt+bROOcpeiszwkAodKmg7evvvpKV155pU4//XT9/ve/V7du3fTGG2/o+OOPlyQtXLhQI0eO1JgxY5Sdna3k5GStXLnS//lms1lr1qyR2WxWVlaWrrrqKl1zzTWaO3duqKYESGLbDoDw13i7ksfjCWjzeDwRuV0pGsNGKXrnHW2i8b1JtM85mupzAkAotengbfny5dq1a5fq6ur01Vdfafny5erTp4+/vX379iouLlZVVZUOHDiglStXNqnddtJJJ2nt2rWqra3Vnj179Ne//lWxsWG1wxYRqHFtpCNt24m02kgAIotvu5LT6ZTNZlNZWZlqa2tVVlYmm80mp9Op3NzciNquFI1hoxS984420fjeJNrnHC31OQEg1Np08AZEKrbtAIgE2dnZKiws1Keffqr8/HwNHz5c+fn5Ki8vV2FhYcTWRoqmsFGK3nlHm2h8b8Kcm4rEOQNAqLH0CwiBxtt2MjIymrSzbQdAuMjOztagQYPkcrlUVVWlpKQkWSyWiA1hfGFjSUmJ8vPz/ddTUlIiMmz0idZ5R5NofG/CnKNjzgAQagRvQAg03rZTVFQUsL2BbTsAwo3ZbI660yy9Xm/A7R9vwYxE0RayRptofG/CnKNjzgAQamw1BUKAbTsAEJ58JyD26dMn4ATEPn36RPQJiD6+kNVXE4qfU5EjGt+bMOfomDMAhJrJ++M/2aKJmpoaJSYmqrq6WgkJCaEeDiKIw+FQSUmJKisr/ddSUlKUm5vLth0AaGPcbresVqvS09ObXSlis9lUXl6uZcuW8UsrwlY0vjdhzodF+pwBoLUFmxURvAWB4A1GcrvdbNsBgDCwbds2TZ8+XcXFxc3WRiorK1N+fr4WLlwYdVtvEVmi8b0Jc46OOQNAawo2K6LGGxBi0VgbCQDCEacBIlpE43sT5gwAMAo13gAAAILQ+DTA5nAaIACgLXK73dq2bZs2bNigbdu2ye12h3pIQFRhxRsAAEAQGp8GWFhYqPfee8+/RevMM8/kNEAAQJvTXD2/5ORk5eXlUc8POEao8RYEarwBAADp8C8wt99+u+Lj41VXV+e/7rs9d+5cfpEBALQJvpO4s7KyZLValZaWpvLyctntdjmdThUWFvIzC/gFgs2K2GoKAADQAiaTqUXXIwnblQAgPLjdbpWUlCgrK0tFRUXKyMhQx44dlZGRoaKiImVlZWnRokW8jgPHAFtNAQAAgtD4l5jmtpoWFBRo0aJFGjRoUESeDMh2JQAIHy6XS5WVlZo9e7ZiYgLX28TExMhqtSo/P18ul4tDNgCDseINAAAgCL5fYqxWq9q1a6fMzEwNGTJEmZmZateunaxWqyoqKuRyuUI91Fbn266Unp6u4uJirV27VsXFxUpPT1dBQYEcDkeohwgAaISTuIG2g+ANAAAgCNH6SwzblQAg/HASN9B2ELwBAAAEIVp/iWm80u9I25UidaUfAISrxidxezyegDaPxxPxJ3FTkxRtCTXeAAAAgtD4l5iioqKAECqSf4mJ1pV+ABDOzGaz8vLyVFBQIJvNdsRTTalJChiPFW8AAABB8P0S43Q6ZbPZVFZWptraWpWVlclms8npdCo3NzfifomJ1pV+ABDusrOzVVhYqE8//VT5+fkaPny48vPzVV5ersLCwogMoahJirbI5PV6vaEeRFtXU1OjxMREVVdXKyEhIdTDAQAAIdTcX9JTUlKUm5sbkb/EuN1uWa1WpaenN7vSz2azqby8XMuWLYu40BEAIoHb7ZbL5fKfxG2xWCLy9ZqfVzjWgs2K2GoKAAB+kfr6eq1atUq7du1SamqqRo8erbi4uFAPyzDZ2dkaNGhQVPwSI0X3diUAQPjw1SSdPXv2EWuS5ufny+VyKTMzM0SjRDQieAMAAEdt8eLFWrFiRUDR4sWLF2vcuHGaOnVqCEdmLLPZHFVv2n3blUpKSpSfn++/npKSErHblQAgEkRTvTNqkqKtIngDAABHZfHixVq+fLm6du2qSZMmKSsrS06nU4888oiWL18uSREdvkWbaFvpBwDhzlfvLCsrS7Nnzw5YrVxQUBBxfzhpXJM0IyOjSTs1SREq1HgLAjXeAAAIVF9fr5ycHCUkJGjFihWKjf3hb3mHDh3SuHHjVFNTo3Xr1kX0tlMAANqiaKx3Fo1zRmgFmxVxqikAAGixVatWye12a9KkSQGhmyTFxsZq4sSJcrvdWrVqVYhGCABA9PLVO7NarUesd1ZRUSGXyxWiEba+aD19HG0fW00BAECL7dq1S5KUlZXVbLvvuq8fAAA4dqK13hk1SdEWEbwBAIAWS01NlSQ5nU6NHDmySbvT6QzoBwAAjp1orndGTVK0NWw1BQAALTZ69GiZzWY98sgjOnToUEDboUOH9Oijj8psNmv06NEhGiEAANHLYrEoOTlZdrtdHo8noM3j8chutyslJUUWiyVEIzSW7/TxIUOGKDMzk9AtQrndbm3btk0bNmzQtm3b5Ha7Qz2kZrHiDQAAtFhcXJzGjRun5cuXa9y4cZo4caL/VNNHH31Ue/fu1fjx4zlYAQCAEPDVOysoKJDNZpPVag041dTpdKqwsJBACmHL4XCopKRElZWV/mvJycnKy8trc1uKOdU0CJxqCgBA8xYvXqwVK1YE/IXRbDZr3Lhxmjp1aghHBgAAmgsnUlJSlJub2+bCCSBYDodDBQUFysrKOmKofCye38FmRQRvQSB4AwDgyOrr67Vq1Srt2rVLqampGj16dMSvdHO73dSOAQCEBX5mIZK43W5ZrValp6erqKgo4NRej8cjm82m8vJyLVu2zPDnebBZEVtNAQDAL+LbdhotwmlrAwAAvnpnQCRwuVyqrKzU7NmzA0I3SYqJiZHValV+fr5cLlebed5zuAIAAECQfFsb0tPTVVxcrLVr16q4uFjp6ekqKCiQw+EI9RABAAAiVlVVlSQpLS2t2XbfdV+/toDgDQAAIAhut1slJSXKyspSUVGRMjIy1LFjR2VkZKioqEhZWVlatGhRmz1RCwAAINwlJSVJksrLy5tt91339WsLCN4AAMAvEi5Huf9Svq0NVqv1iFsbKioq5HK5QjRCGCFant8AAIQDi8Wi5ORk2e12eTyegDaPxyO73a6UlBRZLJYQjbAparwBAICjFk31zsJxawN+mWh6fgMAEA7MZrPy8vJUUFAgm812xFNN29IBIqx4AwAARyXa6p013trQ3Cqotri1AUcv2p7fAACEi+zsbBUWFurTTz9Vfn6+hg8frvz8fJWXl6uwsLDN/XHM5PV6vaEeRFsX7BGxAABEi7Z0lPux4ptzYmKi9u3bp927d/vbevbsqS5duqimpiai5hytovH5DQBAuHG73XK5XKqqqlJSUpIsFssx/bkcbFbEijcAANBi0VjvzGw268ILL9SOHTtUX1+vm2++Wc8884xuvvlm1dfXa8eOHbrgggsIYiJAND6/AQAIN2azWZmZmRoyZIgyMzPb7HswarwBAIAWi8Z6Z263W5s2bdLpp5+u6upq3Xvvvf62lJQUnX766XrllVc0efLkNvvGD8GJxuc3AAAwBsEbAABoscb1zjIyMpq0R2K9M98qqNmzZ6tv375NtjZs375d+fn5crlcyszMDPVw8QtE4/MbAAAYg62mAACgxcLxKPdfqvEqqOa2NrAKKnJE4/MbAAAYg+ANAAC0mO8od6fTKZvNprKyMtXW1qqsrEw2m01Op1O5ubkRteWy8Sqo5rAKKnJE4/MbAAAYg1NNg8CppgAANM/hcKikpESVlZX+aykpKcrNzW1zR7n/Upx0GX2i6fkNAABaJtisiOAtCARvAAAcWaiPcj+WHA6HCgoKlJWVJavVqrS0NJWXl8tut8vpdKqwsJBAJsJE0/MbAAAEj+CtFRG8AQAAH1ZBAQAAgOCtFRG8AQCAxlgFBQAAEN2CzYpij+GYAAAAIoLvVFMAAADgp3CqKQAAAAAAAGAAVrwBAIBf5OOPP9bkyZPl9XplMpn00EMP6ZRTTgn1sAy1a9cuTZkyRQcPHlSHDh20ZMkSpaamhnpYhtu/f7/mz5+vXbt2KTU1VTNnzlSnTp1CPSwAwE84ePCgHnzwQX311Vfq1auXbrzxRnXo0CHUwwJ+sXAp/UGNtyBQ4w0AgOZdeOGFR2zbtGnTMRvHsXTJJZeooaGhyfV27dpp/fr1IRjRsTF16lRt3769yfW+fftq8eLFIRgRAODnzJo1S5s3b25yfdCgQZo3b14IRgS0juYOu0pOTlZeXt4xO+wq2KyIraYAAOCoNA7dzGazrr766oC/Mv5UKBeuGoduSUlJmjlzppKSkiRJDQ0NuuSSS0I5PMP4QjeTyaShQ4fq4Ycf1tChQ2UymbR9+3ZNnTo11EMEAPyIL3Rr166dJkyYoGXLlmnChAlq166dNm/erFmzZoV6iMBRcTgcKigoUHp6uoqLi7V27VoVFxcrPT1dBQUFcjgcoR5iAFa8BYEVbwAABPr44491ww03SJKWLVumXr16+du++uorXXXVVZKkhx9+OGK2ne7atUsTJkyQJK1cudIfuElSVVWVrrjiCknSE088EVHbTvfv36+RI0fKZDJp3bp1at++vb/t+++/V05Ojrxer9asWcO2UwBoIw4ePKicnBy1a9dO//73vxUXF+dvq6+v14gRI9TQ0KB169ax7RRhxe12y2q1Kj09XUVFRYqJ+WE9mcfjkc1mU3l5uZYtW2b4tlNWvAEAAMNMnjxZ0uGVbikpKdq2bZs2bNigbdu2KSUlxf9Gx9cvEkyZMkXS4ZVuiYmJAXNOTEz0B3G+fpFi/vz5kg6v9mscuklS+/btdfHFFwf0AwCE3oMPPihJGjduXEDoJklxcXEaO3ZsQD8gXLhcLlVWVspqtQaEbpIUExMjq9WqiooKuVyuEI2wKQ5XAAAALeZbMH/eeefJarU2qa8xcOBAbd68WZG0sP7gwYOSDm+hbW7O5513nl544QV/v0ixa9cuSdLvf//7ZtvHjRun9evX+/sBAELvq6++kiQNHz682fbhw4frySef9PcDwkVVVZUkKS0trdl233Vfv7aAFW8AAKDFTCaTJOmVV15ptr6Gr5Czr18k8G3FWblyZbNzfuGFFwL6RQrfttmnn3662fYVK1YE9AMAhJ6vBMTatWubbfddb1wqAggHvh0G5eXlzbb7rjcuCRJqBG8AAKDFGm9NmTp1qjIyMtSxY0dlZGQEFNqPpC0sjU/unDFjRsCcZ8yY0Wy/SDBz5kxJ0vr16/X9998HtH3//fd66aWXAvoBAELvxhtvlHT4jyP19fUBbfX19XrmmWcC+gHhwmKxKDk5WXa7XR6PJ6DN4/HIbrcrJSVFFoslRCNsiq2mAACgxQ4cOOD/9zXXXCOz2axx48ZpxYoVcrvdzfYLd3v27PH/e+zYsUpKStLEiRP16KOPBmxn2LNnT0StIOjUqZP69u2r7du3KycnRxdffLH/sX7ppZfk9XrVt29fDlYAgDakQ4cOGjRokDZv3qwRI0Zo7NixGj58uNauXatnnnlGDQ0NGjRoUMSt0kbkM5vNysvLU0FBgWw2m6xWq9LS0lReXi673S6n06nCwkLDD1ZoCU41DQKnmgIAEGjDhg264447frbf7NmzNWTIkGMwIuP55hwbG6tDhw41afddj6Q5NzZ16lRt3769yfW+fftG3Co/AIgUs2bN8pd/aGzQoEGaN29eCEYEtA6Hw6GSkpKAmrspKSnKzc1Vdnb2MRlDsFkRK94AAECL+epmFBcXKz4+XpMnT5bX65XJZNJDDz2kuro65efnt6n6Gr+Uby4PPPCAunbtqilTpujgwYPq0KGDlixZor1790bcnBtbvHix9u/fr/nz52vXrl1KTU3VzJkzWekGAG3YvHnzdPDgQT344IP66quv1KtXL914442sdEPYy87O1qBBg+RyuVRVVaWkpCRZLJY2tdLNhxVvQWDFGwAAgdxut6xWq9LT01VUVBRwnLvH45HNZlN5ebmWLVvWJt8AHY1onDMAAACaF2xWxOEKAACgxXz1NZxOp2w2m8rKylRbW6uysjLZbDY5nU7l5uZGVAAVjXMGAADAL8OKtyCw4g0AgOa1hfoax1o0zhkAAACBqPEGAAAMF071NVrTj/9u+ePj7AEAAACJFW9BYcUbAACQDq92KygoUFZW1hGPr2fVGwAAQOSLiBpv8+fP129/+1t17txZPXr00OWXX64dO3YE9LnwwgtlMpkCPqZOnRrQ54svvtCIESPUsWNH9ejRQ7feeqsOHTp0LKcCAADCnNvtVklJibKyslRUVKSMjAx17NhRGRkZKioqUlZWlhYtWiS32x3qoQIAAKCNaNPB2yuvvKL8/Hy98cYbWr9+vRoaGjR06FAdOHAgoN/kyZNVUVHh/7jnnnv8bW63WyNGjFB9fb1ef/11/fOf/9Rjjz2m22+//VhPBwAAhDGXy6XKykpZrdaAE00lKSYmRlarVRUVFXK5XCEaIQAAANqaNl3j7T//+U/A7ccee0w9evTQ1q1bA7ZxdOzYUcnJyc1+jRdffFHvv/++XnrpJfXs2VO/+tWvdMcdd+i2227TnDlzFBcXZ+gcAABAZKiqqpIkpaWlNdvuu+7rBwAAALTpFW8/Vl1dLUlKSkoKuG6329W9e3edeeaZmjlzpmpra/1tTqdT/fv3V8+ePf3Xhg0bppqaGpWVlTV7P3V1daqpqQn4AAAA0c33/qO8vLzZdt/1H79PAQAAQPQKm+DN4/Hoz3/+swYNGqQzzzzTf33ChAlatmyZNm7cqJkzZ+rxxx/XVVdd5W+vrKwMCN0k+W9XVlY2e1/z589XYmKi/6N3794GzAgAgMjgdru1bds2bdiwQdu2bYvYGmcWi0XJycmy2+1NTjH1eDyy2+1KSUmRxWIJ0QgBAADQ1rTpraaN5efn67333tNrr70WcH3KlCn+f/fv318pKSkaMmSIPvnkE/Xp0+eo7mvmzJmaMWOG/3ZNTQ3hGwAAzXA4HCopKQn4Y1ZycrLy8vIi7nRPs9msvLw8FRQUyGazHfFUU7PZHOqhAgAAoI0IixVv06ZN05o1a7Rx40b16tXrJ/sOGDBAkvTxxx9LOvzmf/fu3QF9fLePVBcuPj5eCQkJAR8AACCQw+FQQUGB0tPTVVxcrLVr16q4uFjp6ekqKCiQw+EI9RBbXXZ2tgoLC/Xpp58qPz9fw4cPV35+vsrLy1VYWBhxYSMAAAB+GZPX6/WGehBH4vV6ddNNN+m5557Tpk2bdOqpp/7s52zevFnnnXee3nnnHVksFq1bt04jR45URUWFevToIUlasmSJbr31Vn399deKj4//2a9ZU1OjxMREVVdXE8IBAKDD20utVqvS09NVVFQUcMqnx+ORzWZTeXm5li1bFpErwNxut1wul6qqqpSUlCSLxRKR8wQAAEDzgs2K2vSKt/z8fC1btkxPPPGEOnfurMrKSlVWVurgwYOSpE8++UR33HGHtm7dqs8++0wvvPCCrrnmGmVnZ/vrqwwdOlT9+vXT1VdfrXfeeUf//e9/ZbPZlJ+fH1ToBgAAmnK5XKqsrJTVag0I3SQpJiZGVqtVFRUVcrlcIRohAAAAEHptusbbokWLJEkXXnhhwPWlS5fquuuuU1xcnF566SXdf//9OnDggHr37q0xY8bIZrP5+5rNZq1Zs0a5ubnKysrScccdp2uvvVZz5849llMBACCiVFVVSZLS0tKabfdd9/WLJNFU1w4AAAC/TJsO3n5uF2zv3r31yiuv/OzXOemkk7R27drWGhYAAFEvKSlJklReXq6MjIwm7eXl5QH9IoWvrl1WVpZmz54dcLhCQUEBdd4AAAAQoE1vNQUAAG2TxWJRcnKy7Ha7PB5PQJvH45HdbldKSoq/9EMkcLvdKikpUVZWloqKipSRkaGOHTsqIyNDRUVFysrK0qJFi+R2u0M9VAAAALQRBG8AAKDFzGaz8vLy5HQ6ZbPZVFZWptraWpWVlclms8npdCo3NzeiDhygrh0AAABaqk1vNQUAAG1Xdna2CgsLVVJSovz8fP/1lJSUiNxyGc117QAAAHB0CN6AEKuvr9eqVau0a9cupaamavTo0YqLiwv1sAAgKNnZ2TrjjDM0bdo0VVdXKzExUX/72990/PHHh3pora5xXbtevXpp1qxZ2r17t3r27Kl58+bpq6++CugXifbv36/58+f7f2bNnDlTnTp1CvWwDOV2u+VyuVRVVaWkpCRZLJaIWskJIPLt2bMn4Of0P/7xj4j8OR3tovHnVXV1dZP3Y4mJiaEeVhMm78+dYADV1NQoMTFR1dXVSkhICPVwEEEWL16sFStWBNQDMpvNGjdunKZOnRrCkQFAcK644opmV3glJSVp5cqVIRiRcdxut6xWq/bu3au6urom7fHx8UpKStKyZcsi8o3u1KlTtX379ibX+/btq8WLF4dgRMbjBFsA4W7kyJHav39/k+udOnXSmjVrQjAiGCEaf15ZrVbt3LmzyfUTTjhBdrv9mIwh2KyIGm9AiCxevFjLly9XQkKCbrnlFj377LO65ZZblJCQoOXLl0fsLzEAIkfj0K1fv36699571a9fP0mHt1teccUVoRxeqzObzaqvr/eHbj+ec11dnerq6iI6dDOZTBo6dKgefvhhDR06VCaTSdu3b4/IPxb5TrBNT09XcXGx1q5dq+LiYqWnp6ugoEAOhyPUQwSAn9Q4dDv55JN155136uSTT5Z0eAXzyJEjQzg6tJZo/HnVOHQ755xz9I9//EPnnHOOJGnnzp2yWq2hHF4TrHgLAive0Nrq6+uVk5OjhIQErVixQrGxP+z6PnTokMaNG6eamhqtW7eObacA2qTGwdqaNWsCths2fjO/cuXKiNl6WV1drdGjR0uSunXrpm+//dbf1r17d33zzTeSpFWrVrXJbQ5Hy/d4mkwmrVmzRh9++KF/G8tpp52mkSNHyuv1NnkehDPf6sb09HQVFRUFHKbh8Xhks9lUXl4esasbAYS/PXv2aNy4cZKkF154IeD32JqaGo0aNUqStGLFCradhrFo/HnV+P3Y2rVr1bFjR39bbW2thg8fLunYvB9jxRvQhq1atUput1uTJk0KCN0kKTY2VhMnTpTb7daqVatCNEIA+GkzZsyQdHjV14/Dlk6dOumMM84I6BcJZs2aJenwX1affvppLVy4ULNnz9bChQv11FNP6be//W1Av0gxf/58SZLFYtHEiRM1ffp03XHHHZo+fbomTpyo/v37B/SLBJxgCyDcTZs2TdLhlW4/DgQSEhJ00kknBfRDeIrGn1eN3481Dt0kqWPHjm3y/RjBGxACu3btkiRlZWU12+677usHAG2Nb7XXpEmTmm2//vrrA/pFgt27d0uSrrnmGpnNZmVmZmrIkCHKzMyU2WzW1VdfHdAvUvh+Fr3zzjvat29fQNu+ffv8b+Yj6WcWJ9gCCHfV1dWSpClTpjTb7vv57euH8BSNP68avx9rTlt8P0bwBoRAamqqJMnpdDbb7rvu6wcAbU23bt0kSY888ojcbre2bdumDRs2aNu2bXK73Vq6dGlAv0jQs2dPSdK//vWvZtsff/zxgH6RIiUlxf/vX//61wH1Y37961832y/cNT7Btjm+65GyjRpA5PFtsVuyZEmz7Y888khAP4SnaPx5FY7vx6jxFgRqvKG1UeMNQLhrXOOtS5cuASuhGt+O1Bpvq1ev1scff+yvdXbKKafosssukxR5Nd5ee+012Ww2ST9dS6WoqEjnnXdeSMbY2hrXzCksLNR7773nf6zPPPNMFRQURFzNHACRhRpv0YEab+FR4y32iC0ADBMXF6dx48Zp+fLlGjdunCZOnKisrCw5nU49+uij2rt3r8aPH0/oBqDNSkpKUqdOnbR///5mtx9Kh2u9RUroJh1eFXDCCSdo586d/pDtx0444YSICt0kaceOHf5/jxgxQhdffLHGjRunFStW6KWXXgroFynBm9lsVl5enm6//XaNHDnSf5KtJMXHx6uurk5z586NmF9iAESe448/3v9zetSoUTrppJM0adIkPfLII/r8888lHf45TegW3nw/rwoKCmSz2WS1WpWWlqby8nLZ7XY5nU4VFhZG1M+rxu/Hhg8frt/+9re6+uqr9fjjj2vLli2S2t77MYI3IESmTp0q6fBfme69917/dbPZrPHjx/vbI5Xb7ZbL5fKvILBYLBH1A6E50ThnRC632y2Px/OTfTwej9xud0Q9z2+88UbdfvvtP9keqXr37q0vv/xS69ev1/r165tcj0Qmk6lF1wGgLVmzZo1Gjhyp/fv36/PPPw/4+dWpUyetWbMmhKNDa8nOzlZhYaFKSkqUn5/vv56SkqLCwkJlZ2eHcHTGsNvtslqt2rlzp7Zs2eIP3KTDoZvdbg/h6Jpiq2kQ2GoKI9XX12vVqlXatWuXUlNTNXr06Ihf6eZwOFRSUqLKykr/teTkZOXl5UXkDwYpOueMyLZlyxbdeuutMplMau6thO/6ggUL/KdLhTvfdo6YmJhmDxJITU2V1+uNqO0ckrR161bdfPPN6t+/v+bNm6e7777b/zPrtttu06xZs/Tuu+/q3nvv1dlnnx3q4bYKtpoCiCR79uzRtGnTVF1drcTERP3jH/9gpVsEisY/8ldXV2vWrFnavXu3evbsqXnz5h3TlW7BZkUEb0EgeANaj8PhUEFBgbKyso64FDrSgqhonDMi37x58wJWPZ1zzjm65ppr9K9//Uv/+9///NcvueSSNnWc+y+xbds2TZ8+XZLUtWtXTZo0yV8m4JFHHtHevXslSQsXLlRmZmYoh9qq3G63xowZo3379ikrK0tXXXWV/3Vs2bJlcjqd6tq1q5555pmIeYPve6yLi4uVkZHRpL2srEz5+fkR91gDAIDgBZsVcaopgGPG7XarpKREWVlZKioqUkZGhjp27KiMjAwVFRUpKytLixYtktvtDvVQW000zhnRoaamxv/v1atX68orr9Tu3bt15ZVXavXq1c32C3dff/21pMOHR6xYsUIjR45Ut27dNHLkSK1YsUJdunQJ6BcpzGazZsyYIZPJpLffflv5+fkaPny48vPz9fbbb8tkMmn69OkRE7pJhw8PkaS0tLRmT+1NS0sL6AcAAHAk1HgDcMy4XC5VVlZq9uzZASfuSFJMTIysVqvy8/PlcrkiZgVBNM4Z0eGzzz6TdPiwmMmTJzfZRt2uXTs1NDT4+0WCDz74QJI0fPjwgNOoJSk2NlY5OTl68skn9cEHH2jYsGGhGKJhGtePafxYJyUlKTc3N+JW7foOBXnuuee0evXqJs9v3+EakXR4CAAAMAbBGxBiBw8e1IMPPqivvvpKvXr10o033qgOHTqEeliGaLyCoDmRuIIgGueM6OBbpVlfX6+DBw8qNTVVdXV1io+P14EDB9TQ0BDQL5J8+OGHOnDggB566CH/a/fkyZP10UcfhXpohsrOztbAgQOjoi6pxWJRly5d9NBDDykrK0uzZ88O2F770EMPqUuXLrJYLKEeqiGisU5QNOJxBoBjg+ANCKFZs2Zp8+bN/ttvvfWWnn/+eQ0aNEjz5s0L4ciM4VsZUF5e3mzNnPLy8oB+kSAa54zo0LNnT33zzTeSDhe2ra6uPmK/SHHCCSdIOvxaPWLECP9132v3j/tFmuYOiXn22Wej9pCYSD3ZlMOAogOPMwAcO9R4A0LEF7q1a9dOEyZM0LJlyzRhwgS1a9dOmzdvjphi5I1ZLBYlJyfLbrfL4/EEtHk8HtntdqWkpETUCoJonDOiw5VXXtmq/cLB6NGjW7VfOPEdEpOenq7i4mKtXbtWxcXFSk9PV0FBgRwOR6iH2KpcLpf27dunyZMnq7y8PKCu3WeffaYbbrhBe/fulcvlCvVQW1W0Pc6NNVfLL1JF8+MMAKHAqaZB4FRTtLaDBw8qJydH7dq107///e+AbTr19fUaMWKEGhoatG7duojbdhqNJ3xG45wR+VavXq17773XfzsxMVEdO3ZUbW1twOq3m2++2V8PK9z5XrslqXPnzsrJyVFqaqp27dqldevW6bvvvpOkiHvtdrvdslqtSk9PV1FRUUC9So/HI5vN5t+CGSnb1DZs2KA77rhDa9euVXx8fJPteHV1dRo+fLhmz56tIUOGhHq4rSIaH2efaFr9Fc2PMwC0Nk41BdqwBx98UJI0bty4JrVx4uLiNHbs2IB+kcRXoPvTTz8NWEFQXl4esQFUNM4Zke/ZZ5+V9MN2u+rqalVUVPhDN991X79I4HtNPuOMM1RbW6unn35a999/v55++mnV1taqb9++Af0ihe+QGKvVKq/XG7AqyOv1ymq1qqKiIqJWfzUuE2A2m5WZmakhQ4YoMzNTZrM5IssENH6cj3QYUKQ9zlL0rf6K1scZ0ae+vl4rVqzQAw88oBUrVqi+vj7UQzJcNM45XFDjDQiBr776StLhk/GaM3z4cD355JP+fpEmmgp0+0TjnBHZ9u/fL0nyer1KSEhQbW2tDh06pNjYWHXs2FE1NTUB/SKB7zV51qxZ6tatW5ODcb755htdffXVEffa7Tv8ZdeuXbrjjjuarAqaNGlSQL9I0LhMQHOrgiKxTEA0HgbkdrtVUlKirKysgMc5IyNDRUVFstlsWrRokQYNGhQxq7+i8XFG9Fm8eLFWrFgRsGV88eLFGjdunKZOnRrCkRknGuccTgjegBDo1auX3nrrLa1du1ZTpkxp0r527Vp/v0gUjQW6o3HOiGw9evTwH67gC9kk6dChQwG3e/TocczHZhTfa/fixYv10Ucfaffu3ZIOH67gdDp1yimn+PtFEt+qrjvvvLPJCZ92u1133nlnQL9IYDablZeXp4KCAtlstiOWCYiUMEaKzsOAfKu/Zs+efcTVX/n5+XK5XMrMzAzRKFtXND7OiC6LFy/W8uXL1bVrV02aNElZWVlyOp165JFHtHz5ckmKuCAqGuccbthqCoTAjTfeKEnNLgGur6/XM888E9AvkkTblg4pOueMyDdw4MBW7RcOfK/Jr732mvbt2xfQtm/fPv8p1ZH22p2RkSGz2awuXbqooKBA9fX1cjqdqq+vV0FBgbp06SKz2dzsL/HhLNrKBETjYUDRuPorGh9nRA/fVsuuXbtqxYoVGjlypLp166aRI0cGXI+kLZjROOdwRPAGhECHDh00aNAgNTQ0aMSIEXrwwQf15Zdf6sEHH/QfrDBo0KCIKs4tNd3SkZGRoY4dO/q3dGRlZWnRokURdZJYNM4Z0aHx6s3W6BcO4uLiFBt7eLNAXV2devXqpTPOOEO9evVSXV2dJCk2NjbitpCXlZXJ7XZr7969GjVqlKZPn6477rhD06dP16hRo7R371653W6VlZWFeqitLjs7W0uXLtXll1+u3/zmN7r88sv16KOPRlzoJv2wys/pdMpms6msrEy1tbUqKyuTzWaT0+lUbm5uxK7ya642UiSu/orGxxnRU/tr1apVcrvdmjRpkjweT8CcPR6PJk6cKLfbrVWrVoV6qK2m8Zx971F8YmNjI3LOjYXLidRsNQVCZN68eZo1a5Y2b96sJ598Uk8++aS/bdCgQZo3b14IR2eMaNzSEY1zRnTYunVrq/YLB6Wlpf46docOHWpSy81sNuvQoUMqLS3V2WefHaJRtr5gV/tE0qognx/XzHnrrbe0evXqiK2Z41vlV1JSovz8fP/1lJSUiF7lN2/ePFVUVMjr9frbSkpKlJKSEpGrv6Ltcf4xt9vd5KTiSA4ao6n2165duyRJH330kRYuXNhkziNGjAjoFwl8c8nKymq23Xc9kubsE04nUhO8ASE0b948HTx4sEmB7khb6eYTjVs6onHOiA61tbWt2i8clJaWSjpcx645vjf4kRa8denSRZLUv39/LViwQKtXr/YfEnPZZZfp1ltv1bvvvuvvFymitWZOdna2Bg0aFBXBhNlsVp8+ffzbxBvzer3atWtXRB2s0Fg0Pc6NhdMv6q0h2l7HUlNTJR1eBdbcnF944YWAfpHANxen06mRI0c2aXc6nQH9IoWvlM/AgQP1hz/8Qe3bt9f333+v//3vfyooKGhzf0QgeANCrEOHDvrzn/8c6mEcE9FY0Dca54zo0K5du1btFw4aB24DBgzQNddc4y+4/69//Utvvvlmk36RpLq6Wtddd12TQ2IibWutFFgzZ/ny5Xr//fdVWlqqE044QcuXL9f48eO1YsUKTZw4MSLnbzabo2IVtq9e4U/x1TPkcQ5/vl/Umzskpi3+ov5L/bj2l28b4siRI3XppZdq3LhxEfc6lpOTo+LiYplMJj355JNq3769pMNzvvjii5WTkyOv16ucnJwQj7T1jB49WosXL9YjjzyiSy+9NGC76aFDh/Too4/KbDZr9OjRIRxl6/KV8jnttNP06aefBryO9+zZU6eddlqbO5GaGm9AiIXLvvTWEI0FfaNxzogO0Ri8ffbZZ5IOz2nu3LkBhwzMnTvXP1dfv0jhO0jiiy++UF1dnW655RY9++yzuuWWW1RXV6cvvvgioF8k8NXMOf/883XttdcG1LW79tprdf7551MzJwI899xz/p/NAwcO1J/+9Cf95S9/0Z/+9Cf/wTAej0fPPfdcKIeJVhCNNXejsfbXunXrJB1esXrllVeqpKREzz33nEpKSnTllVf6t5P7+kWCuLg4jRs3Tnv37tW4ceO0evVqffPNN/6yCL7rkRKuSj+U8tmxY4f69OkTcHhdnz59tGPHDlVUVMjlcoV6qH6seANCKNqWu/sK+hYUFMhms8lqtQb8tdHpdKqwsLDN/GWiNUTjnBEdqqurA2737t1bJ598sj777DN9+eWXR+wXzr799ltJUkNDg0aNGuU/UEGS4uPj1dDQENAvUvi2kJ544omqq6vTX//6V39bcnKyTjzxRH3xxRcRtdXUVwtn9erVzW5jWb16dUC/SBJN7018v5T17dtXd955Z0At1tGjRysvL0/bt2+Xy+XSH/7wh1ANE60gGmvuRmPtL99cfvvb32rLli16+umnA9p/85vf6K233oqoOUs/bBdesWKF7r33Xv91s9ms8ePHR9R2Ykn65ptvJB3efVBUVOT/P+0L0mfOnKk333zT368tIHgDQiTalrv7RGNB32icMyLfj1cFfPnllwGB25H6hbPOnTv7/904dPvx7cb9IkliYuIRa7xFmuTkZElSjx49mt3G0qNHD+3evdvfL1JE23sT3//b/v37NxvGnHnmmdq+fXuT/++RIpoOGYjGmrvRWPvLN5ctW7Zo4MCBOuGEE1RXV6f4+Hjt3LlTb7zxRkC/SDJ16lRNnDhRq1at8v+MHj16dEStdPPxrbA///zzm33tPu+88/Tmm2+2qZX4BG9tWH19fVT8x2msqqpKM2bM0Lfffqtu3brpvvvui8jaV42Xu2dkZASEMZMnT5akNrcvvTVlZ2crPT1dN9xwg/+H4YIFC9SrV69QD80w0ThnKTpfx6qrqzVr1izt3r1bPXv21Lx585SYmBjqYbXY999/799C2JyOHTv6V7P5Tvn0aXy7Y8eO+vDDD3/yvk488UR/HZa2bOzYsUGd0jp27NhjMJpjx/fG9d1339Xw4cMDts0vWrTIf7stvcH9pdLT0yVJu3fvVr9+/bR7925/W7du3fT+++8H9IsEjd+b3HDDDZo8ebLcbrfMZrMeeughSZH33uS0007TW2+9pXXr1mngwIG6+eab/W333nuv/vOf//j7RRqHw6EHHnggYIVut27d9Kc//SmiwlWfxjV3U1JSmvy+UVFREdAvEjSu/ZWenq68vDx/W0lJSUTW/ho5cqSKi4vVrl07nX/++VqwYIG/7dZbb9XWrVvV0NDQbBAZCd5++20VFxf7b/fu3du/bT6S+FbYv/rqq3r//fe1du1af9vw4cP9r2ttaSW+ydv43Gw0q6amRomJiaqurlZCQsIxuc/mjn02m80ReeyzzxVXXNHsX5mSkpK0cuXKEIzIONu2bdP06dN/tt/ChQsjZrl7Y5dccol/S1Zj7dq10/r160MwIuNF45yj8XXMarVq586dTa6fcMIJstvtIRjR0fvwww81ZcqUY3JfS5YsCYtfbLds2RLU6q4FCxbot7/97TEY0bERjT+z1q9fr3nz5v1sv1mzZumSSy45BiMyXjQ+zlu3bg0I247k3nvvjaiTih0Oh26//fYjts+dOzfiwje32y2r1apvv/32iO/HunfvrmXLlkVMsCz9cKrpkUTaNsRofB3zufDCC4/YtmnTpmM2jmOhLT3OwWZFrHhrg3wvkF26dNHQoUOVmpqqXbt26cUXX4zIY5+lI4du0uFVcFdccUVEhW/NzTU+Pr7JVoZIWu7u0ziASkpK0o033qgHH3xQVVVVamho0CWXXBJxQVQ0zjnajq+Xjhy6SdLOnTtltVrDKnw78cQTtWTJkiO219fXa9q0aT/7df7xj3/87CrHE088scXjC4Vgi/S6XK6ICt6aO5H5l/QLB8Gu3oukVX4/fs8RHx+v6667To899ljA+5NIem/yq1/9qlX7hQO3290kdDv77LMDVvPefvvt2rBhQ0QFUGazWfv37282dJMO1+787rvvImrOkn4ydPO1R9L7sWBfnyLpdUxqGrr16dNHn3zySUB7JIVvwR5K15YOryN4a2N8xz4fd9xxio+PDygI2bNnTx133HERd+xzVVXVz774+fpEyvLvbdu2+f9tMpnk9Xr9b2p9t339hgwZEpIxGmHXrl3+NzwrV670P57Dhg3zB6wNDQ3+bYmRIBrn3Pj4+uXLl+v9999XaWmpTjjhBC1fvlzjx4+PuNex6upqf+gWGxur/v37q3v37vrmm2/07rvv6tChQ9q5c6eqq6vDZttp+/btf3YV2qBBg7R58+afbD/zzDNbe2gh88ILLwTdb9KkSQaP5tiZPXu2/98nnniibrvtNn/tr7vvvtu/JXn27Nm6+/9j787jatr+/4G/TqF5QpKhSV2kIjK7GSJcnxtyjRkzX2Pmqcg865olU6aEzLPIkClUuEkUCpmFNGjYvz/6tb8dJzrcs886Z+31fDw8Ps4+++a9Pvu0z97vvdb7vWgRqTAVqmhCLSAgABEREXj27BmqVKmCFi1aYOzYsTL7qbuvX7/yfw8JCeHr1/Xs2RMvX75Ejx49ZPZTd3fv3uX/XvT669vXd+/epSb5VtgYBAD/PVWYdCt8Xbhfp06dSIQoiPfv3yM9Pf2H+6Snp1N1v1G0zMPmzZtx69Yt/nqzXr168Pb25vdTh1nn8ig65smTJ+PYsWN86Y8OHTrw31EJCQnU3GMV1q0DABMTE3z48IFPuhW+LtyPlmWny5cv5/9etWpVeHp68pNYwsLC+JrDy5cvV5k6tGypqRyUudR07969/Lrsb2dAFX09YsQIdO3aVdBYlKVfv354+vRpiftZWlpi27ZtSohIeEWfShgZGcHZ2Rk6OjrIzMxEdHS0VBdAmp5O/O9//0N6ejrKli2LkJAQmdpfPXr0wPv376Gvr4+jR4+SDlchxDjmwvOYh4cHbty4IdMZr0GDBjh8+DBV57Hhw4fj/v37Je5Xs2ZNrFu3TgkRKc/06dOLTb41bdpUrqV66uTbc3fbtm35WemnTp2i9txddNwVK1aU+p02NzfnayMB9Iy76Jh/dD0G0DPmVq1aIT8/HxoaGjh79qxUwer8/Hy0bt2af//cuXMEI1Wcose5QoUKeP36Nf/azMxMqrYfLce56JgbN26MBg0a8J/pGzduSDUSoWXMANC/f388efKkxP2srKywdetWweNRhsJjraGhgTNnzsg00mjTpg1fo5OWY/2j5ZbfonHMYvm+UqXrErbUVE0VXab0bU606OvvLWdSR0V/MRSxn7r5+PEjNSfBkmRmZgIAbG1t0a5dO5kC3XXr1sX79+/5/WggxjEXtmg/fPgwtLS0pN778OEDP2uIplbujx8/Vuh+6mTevHnIzMzEokWLEBERgRYtWmDy5MnQ0dEhHZqgatasiebNm/Mzv5KTk6WeOtOq6DkMoKtrrdgVHtv8/HzMmDEDXl5eUl1Ni75PGxcXFyxatEgmMTF+/HjExMSQDk8Q+vr6ePz4sVSirWLFitDT08OXL18IRiaMoklUReynTho3bgwvL69iH4SK4XtLTJydndGwYUNoa2sjKysL169fp/4YBwUFYcGCBfzEhqlTp6pk8wyWeFMx8l7M0HTRI++SBZqWNoiVjo4O0tPTcePGDZn38vPzcfPmTX4/WohxzIXLk4AfP0Aoup+6k7cmDG21Ywrp6OigV69eiIiIQK9evaj6PH9PdHS01MXst0lmWhUuQ/veaxp9W3/129e00NTURF5eHkqVKoWkpCSpjuvm5uZ8t2Iaz2M3b96EpqamTBFuWpNuQMGyym+vrd+/f0/t9ba8v7c0/n5HRkaidOnSUtvevXsnlYhj6PD48WOpaxMzMzOC0ShH0STb48ePVTLpBgAaJe/CKJOenh7/dwcHB5ibm8PAwADm5uZSdXKK7seon5o1ayp0P3Wxdu1ahe6nDsQ4ZisrK/7vtWrVQtmyZaGtrY2yZctKFV8vup+6q1KlikL3Y8jIyspCQkLCd/8UlZub+8PXP/o5CQkJyMrKEnw8itK+fXv+798++Cv6uuh+6q5o0kkR+6mDTZs2ASj4LC9YsABNmzaFtbU1mjZtivnz5/Of8cL9aFD0+N24cQP9+/fHn3/+if79+0s9MKPpOPfr14//+7dJtqKvi+5HAzFObli/fj3/92+bShR9XXQ/dWdvby/12s3NDX///bdMPbdv91NnLVu25P/+7YzNoq+L7qfuOnTooND9lIHNeFMxb9684f9++/Zt/u+fP3+WWmpZdD9G/ZiYmCh0P3Vx5coVufdTly6HJRHjmIt2fizaSCQrK0uqkcqdO3fQsGFDpcYmFIlEotD9GDKSk5MxZMgQufb9donlt69L+jmBgYFqU8y6devWOHHihFz70ULemr5C1/5VJisrK76hwIABA/jtjx8/5us4SiQSqh6aeHp68rWVJ02axG///Pmz1GtPT0+lxyYUXV1dhe7HqC55lwzTtLS4aK1VAAgPD0dCQgJfbP97+6kzeZuz0dLEDQBGjhyJY8eOybWfqmCJN4YhQIxP3QDg8uXLcu9X2D1N3V26dEnu/WgZc9Hi1IrYTx0UdoxS1H4MGRYWFggMDPzu+7m5uRgxYoTMEuqiJBIJ1qxZg1KlfnyJpU6Jdnnrw1y7dg316tUTOBrl+Pfff+Xer23btgJHozxNmjT5YafiJk2aKDEa4WlqakJfX/+H3S719fWpWl4rb8KBpsSEWEVFRcm9n7qcu7OysvhO2sUp7jrr26Rb4X7fzmQvysLCAtra2r8WpJIZGBgodD91sHr1arn3U5WupizxpmKMjIwUuh+jmooW0v9R9xmaCu4D4kxOyFs/g6Y6G2K8AGC1Kumgra1d4iy07t27IyQk5Ifv07SEBcAPEzHf7kfLkrzCBwMaGhqYM2cOpk+fzr83b948+Pr6Ij8/n6oHCJmZmXwtqJUrV+Lvv/8Gx3GQSCRYu3YtRo8ejcjISGRmZlJTx/H9+/c/TLoBBbXQChsu0KBog7aaNWtKdeQu+pqmRm5iVVx94e/tN2zYMIGjUYyfmZn+IxkZGT/8Oeo0K12MyfQLFy7IvR9LvDHFkre7ZUREBEaNGiVsMIxgihaj/lHRZtqKVsvbxZKmbpfv3r1T6H7q4MyZM3LvN3r0aIGjUY5Pnz4pdD9GdRXenISGhkrNStbQ0EC3bt3U5ublZxRdIq6I/dRB4Vjy8/Olkm4ApF7TNOYNGzYAKOjCPXLkSH5mJ8dxGDlyJOzs7BAfH48NGzZg7NixBCNVHB8fH/7vDRo0QNWqVZGdnQ0tLS2kpKTwiQsfHx9s27aNVJgK9ejRIwAFs3OLJt0A4P79+/xy48L9GPVF43V3STPTd+zYgYsXLwIomNFav359XLt2DY0aNUJUVBRfFsLV1RW9e/f+4b+jLuQtQUVTqaqSHpj87H7KwBJvKkaMN+li9G0tIGNjY5iamuLNmzdIS0v77n7q7kfLs35lP0Y1ff78WaH7qQN5f1dp+50Wq2HDhsHb2xtBQUEIDQ1Ft27dMGjQIJQpU4Z0aIIQ4+e7fPnyP1yGVHQ/Wjx79gzA/yVfisrPz0d8fLzUfjQonG1ubGyMp0+fSs0QMjMzg5GRET5+/EjVrPTC39PvXWsVbqfp91ms5G3io07NfkqamT516lQ+8ZaXl8eXSvi2ZMLUqVOpmbn7beOM/7ofIwzW1ZRhCLC0tJR6nZaWhocPH0ol3Yrbj2EYhlENZcqU4ZsJtG7dmtqkG1BQ40qR+6kDeZcL07Ss2NzcnP976dKlpd4r+rrofuquMMGYlpZWbDfAwqVZNDXGkffakl2Dqj8NDflu9eXdTx3o6OigadOmP9ynadOm1CTdAODBgwcK3U8dyFt/T5Xq9NHzW8YwDMMwDMMonBg7432bhPmv+6kDMzMz/u+5ublS7xV9XXQ/ddegQQOF7qcO2OoD8dDS0lLofupi3rx5302+NW3aFPPmzVNyRMKStzQRTSWM1HEmPltqygiupO4zP4OW7jNi7PrIMAx5RWdwKNrTp0+l/lcoRkZGVN34qwMxNg+R93Ms9OddmYrW+/q2q3rR19/WBVNn1atX55ellbQfLWj8bCvyXgOg535DzEsQ582bh8zMTCxatAgRERFo0aIFJk+eTNVMt0LyzsilaeauOn62WeKNEZyius8AoKb7jLwnfXX6cmAXPQyj2l69eoXeffoi52t2yTv/B0I/SS5dRgs7tgez5JuCsHN38eSp7/Yz+6kDeTup09RxPTExUaH7qQMaj7Mi7zUAeu43vp25+l/3Uzc6Ojro1asXIiIi0KtXL7W6r/oZ5cuXR2pqqlz7MeSwxBsjuJK6z/z9999ynfBLlSqFtWvX/vDfURdmZmaIi4uTaz91IcaLHnbDyqiTjx8/IudrNjJtmiNf24h0OL9EI+sjkHQBHz9+VKvzoyoT47lbHmK8YTUyku+8IO9+6iApKUmh+6kDfX19uTpsq1PNxpLuNQBg6NChci2flUgkfIff7/1bDKNK5F3JINSKB0Y+LPHGCK6k7jPBwcHo1atXiT8nODgYlSpVUmRoxNBYL0eei56fubn70c9SlYsedsPKqKN8bSPk67GnnkwBec7d06dPx5s3b/jXOjo6yMzM5P+3kKmp6Q9nPKrKuVsempqaciXVNDU1lRCNcjx58kSh+zGqSd7PrDp9tku61wCAnTt3ynW/sXPnTmruN76loaGB0qVLIycnR2Y5OaO+MjIyFLqfOihVqpTUd7S+vj7MzMzw6tUrpKenS+2nKlQnEka0KlWqxH8JfE/p0qWp+hKksfuMPBc9gYGBciWq1CXJJM8N6+TJk/Hhw4cSf5aJiQkWLVr0w3+LYRhG0eQ5d2/YsAGenp7868Jk27dL0TZs2ICyZcsqPkgCsrPlW5It737q4PHjxwrdTx2IMdmYkpKi0P3UhRjvN76Vn59P1TmLoVdJq4rMzc2lzlHp6elSCbei+5VUEkJZq4pY4o1RCWfOnEGbNm2K/TIsXbo0zpw5QyAq4RR3Yvgv+6kLeZNp6pB0A+S7Yd20aZPUDeuP9qPlhpVhVAlrKPHflS1bFmXLlsX79+9L3IdhGEZV0Xa/wRrYMd+qUaMGvn79ik+fPsHQ0BBlypRBfHw86bB+mqJWFaWkpJT4c5Q14YMl3hiVcebMGbx48QKDBg1CRkYGdHV1ERQUROWTJ3VsgawohZ2FfvQ+TdgNKx1ourjVyEwT9OcL6WdjZw0lFCcsLAyenp7FnsvKli2LsLAwAlExDMP8HJruN1gDO3H4mWvQokm2t2/fyrxP+hpUXiWtKsrPz8fIkSN/WBKiVKlSWL16NTQ0NEr8t5SBJd4YlVKpUiUEBARgyJAhCAgIUMsvQaZkERERSEhIkPqSp/lLnd2wqj+aLm51Hl8U9OerEtZQQrHCwsLw/v17jBw5Ei9evEClSpWwevVq9uCAYRi1Qsv9RknJiQkTJsjVSMPQ0BBLly794b/DkEPTNai85FlV5OfnBz8/vx++X6NGDUWH9stY4o1hGCJ+++03vuabKp3ohcJuWNVbSRe3L168wKxZs0r8ObNmzfrhBb4yLm4zrV2Rr2Ms+L8jBI3MtF9KHLKGEopTtmxZzJo1C0OGDMGsWbNEdQ6rU6cOYmJiSIfBCMzAwACfP38mHQbDlKik5MTWrVvlKneydetWUZ3L1U1J16AjR47E169fS/w5ZcqUwerVq3/476gTV1dXzJ49G6tXr8br16/57WZmZhgxYgRcXV0JRieLJd6UjKblSgzD/BxabljFeB4r6eJW3sTxj5ZZK0u+jjFLQjGi9yvnse8l3dTlPMbIhyXdGFqoQ7kTIeuwAsqpxSp0HVZ5EqzydOzdunWr2s7u/B5XV1c0bdoUx48fx7JlyzB+/Hj88ccfKtmVmSXelEyMU0UZhqELO48VT13qF2pkCXeBK7RfjV1Mde0Y+bDzmDiI8UERwxSlyuVOlFWHFRC2FivpOqxi79irqamJ6tWrAwCqV6+ukkk3gCXelK6kqaIvX7784VrlQrNnz0bFihV/+O8IiXWJYxjxKuk89jM3sz/6Oeo25R0oSK4lJSVh0KBByM/Ph4aGBoKCgmBjY0M6NBgZGaF0GS0g6QLpUP6T0mW0YGT0c/XaxFTXDmAzCOTBzmPiwBKs6oudxxRHVcudsDqsikNbx14ascSbksmzXEkikYDjuO/uI5FIiK5ZZl3iSqasJ6yAsE9ZxXjRI8Yx/6ySzmNr167F33//XeLPWbt2LZU3KjY2Nli/fj2GDBmC9evXq0TSDSioebFje7CgD03mzZuH6dOnw9LSUpB/A/i1z7eY6tqxGQTyKek8Nm3aNMyfP7/EnzNt2jS1OY+JcfaXGBOsNFyDsvOY4qlyuRNWh1UxaOrYSyOWeFNB58+fR8uWLYtNvkkkEpw/f55AVP+HPZ0ombKesALCPWUV40WPGMcsBHt7e4XuJxQxztw1MzMT/HNhaWmpcokIMdW1Y9/RiuHu7i5X4s3d3V0J0SiGGGd/lZRgDQ4ORt++fUv8OcHBwSqVXPsRGq5BxXoeYw9/mf9KlTv2ivG6uyiWeFMAIT5EGzZswMuXLzFr1ix+udKsWbNQsWLFEp8+/axf/QCxpxPfp6wnrIX/lhDEeNEjxjELRdXrnbGZu+Iixrp27Dv6v1P189jPEuPsr5JYWFhAQ0MD+fn5391HQ0ND7cb0o+MTFhaGkydPlvhz2rVrV2JHTKH/fxHTeUzMD3/VuZbpr8YutiQUu+5mibf/TFkfovz8fLlqv/0KduOmeCU9Yd28eTO8vb1L/DmbN28mv0ztB8ueVd6vxi6yMQv15R8YGIikpCQsXLiQ3zZlyhTY2NgQf4DAkqziIOa6dmK7kRHyPHbx4kXs2LGD39a7d2+4uroSP4/9rJKuTWbMmIG5c+eW+HNmzJhBdEaboo/1+vXrMXTo0O+uNFm/fr1aHeuSjvOUKVPkSrxNmTJFkWExJRDzdYkY67CKLQkl5s93IVEl3tasWYMlS5bg5cuXqF27NlatWoUGDRr8p5+p7h+i//IBYhf1wsvNzVXoxd6vXOiJ7csQENeYlfmEFYBUEk6RfvkBgsiSrGIj5rp27DwmnB07dkgl4hTlV85jirw2kXf2koWFhcKuTX6lDqsyjzXHcQpbtlnUzx5rRV+DBgYGlrhcWBWSjWK71wDENcuvkJjqsAL/lz/IqlwXXBl9gSITluRrOvD89s/nENT52vU/xi6axNuePXswbtw4rF+/Hg0bNkRAQADatm2LBw8eoEKFCv/9H1DXD9F/iJtd1AtP0Rd7v3JRL7YvQ0BcYxb1lz/EdR4TK7HWtWPnMfXyK+cxGq5Nfva6RN0feAM//9CbxHFWhWQjIM7vaFEmG0VUh7Uo7ee3SYegdGL8nS4kmsTb8uXLMXjwYAwYMABAwbTyY8eOYfPmzTJTqbOzs5Gd/X9fbp8+fSrx54vxQyT3BS6XB8nXDMHj4croAhJNufaVfE3/qZNd4YXe1/J24ErryhFMPiS5WfL98C8Z0Mx8DgkADkCeTmVAT45/o/CfKqUNSDRK3E+SkwG8ffjzyQmJRL798nOhkZ0u/8/9D/K19AENOU5f8sb+q/8dRWMW45c/IK7z2M/62c54/6WmiKp0QaRqzOw8Rj1Br03evoQmPv/ftQkMgPIV5fpPBb8uASDJ/gwNeR4eq+i5+2cIepz/I6GPtap9RwPyH+tf/Y4W4z3lT9UyVdJ3lrzfV/+lhqyqfb6VcQ2qamMGhP+dLiSKxNvXr19x69YtTJ06ld+moaGB1q1b4+rVqzL7L1iwAP7+/nL9bCMjI5QqXQa5OV8VFq+ylSpd5qdqx/A1c9T8AvdnauYYGRlBQ0MTZd4+FDgqQDPzOZApzM/W0ND8qTGLrTaSWMes7ucwgJ3HhPCrnfF+paaIqnRBpGHM7Dymvn7lPKa0axN8Bt5+VvjP/ZnrEuD/xqzuSdafvR5T1nEW0i9dg6r5cWbnsR8T4/cVIN7Pt9jG/C0JV1wlUcq8ePEClStXxpUrV9C4cWN++6RJk3DhwgVcv35dav/iZrxVrVoVHz9+hKGhoczP/5m6C9nZ2Xj58uUvjkR+FStWhJaWllz7/krNBXUfM/Dz446Pj0dKSopc++bk5ODt27dy/+z/onz58ihdurRc+1atWhU1atSQ+2er4nEGhP18szGXTBV/p9l5TPF+dvbXf6GuM97+CyHHrIqfbYCdx0ryK7/PqnhtIuR1CaD+YwZ+ftyqOGaAXYOWhJ3HSibGMQOq+fkW+hpUFccM/Pdj/enTJxgZGX03V1SIJd6KSbx9S97/MxmGYRiGYRiGYRiGYRj6yZsrKnlRPgXKly8PTU1NvHr1Smr7q1evULGifPUqGIZhGIZhGIZhGIZhGOZniCLxVqZMGdSrVw/h4eH8tvz8fISHh0vNgGMYhmEYhmEYhmEYhmEYRRFFcwUAGDduHPr16wcXFxc0aNAAAQEB+PLlC9/llGEYhmEYhmEYhmEYhmEUSTSJt+7du+PNmzfw8/PDy5cvUadOHZw8eVKwotQMwzAMwzAMwzAMwzCMuImiucJ/xZorMAzDMAzDMAzDMAzDMIVYcwWGYRiGYRiGYRiGYRiGIYgl3hiGYRiGYRiGYRiGYRhGACzxxjAMwzAMwzAMwzAMwzACYIk3hmEYhmEYhmEYhmEYhhEAS7wxDMMwDMMwDMMwDMMwjABY4o1hGIZhGIZhGIZhGIZhBMASbwzDMAzDMAzDMAzDMAwjAJZ4YxiGYRiGYRiGYRiGYRgBsMQbwzAMwzAMwzAMwzAMwwiAJd4YhmEYhmEYhmEYhmEYRgAs8cYwDMMwDMMwDMMwDMMwAmCJN4ZhGIZhGIZhGIZhGIYRAEu8MQzDMAzDMAzDMAzDMIwAWOKNYRiGYRiGYRiGYRiGYQTAEm8MwzAMwzAMwzAMwzAMIwCWeGMYhmEYhmEYhmEYhmEYAbDEG8MwDMMwDMMwDMMwDMMIgCXeGIZhGIZhGIZhGIZhGEYALPHGMAzDMAzDMAzDMAzDMAIoRToAdcBxHADg06dPhCNhGIZhGIZhGIZhGIZhSCvMERXmjL6HJd7k8PnzZwBA1apVCUfCMAzDMAzDMAzDMAzDqIrPnz/DyMjou+9LuJJScwzy8/Px4sULGBgYQCKRKPXf/vTpE6pWrYqUlBQYGhoq9d8mhY1ZHGMGxDluNmY2ZlqxMYtjzIA4x83GzMZMKzGOGRDnuNmY2ZhpRXLMHMfh8+fPqFSpEjQ0vl/Jjc14k4OGhgaqVKlCNAZDQ0PR/OIUYmMWDzGOm41ZHNiYxUGMYwbEOW42ZnFgYxYPMY6bjVkc2JiV50cz3Qqx5goMwzAMwzAMwzAMwzAMIwCWeGMYhmEYhmEYhmEYhmEYAbDEm4rT0tLCzJkzoaWlRToUpWFjFg8xjpuNWRzYmMVBjGMGxDluNmZxYGMWDzGOm41ZHNiYVRNrrsAwDMMwDMMwDMMwDMMwAmAz3hiGYRiGYRiGYRiGYRhGACzxxjAMwzAMwzAMwzAMwzACYIk3hmEYhmEYhmEYhmEYhhEAS7wxDMMwDMMwDMMwDMMwjABY4o1hGIZhGIZhGIZhGIZhBMASbwzDMAzDMAzDMAzDMAwjAJZ4Y1RCcHAwsrOzZbZ//foVwcHBBCJihGBjY4N3797JbE9LS4ONjQ2BiBhGcWbPno2MjAyZ7ZmZmZg9ezaBiIQ3c+ZMPH36lHQYRHz9+hUPHjxAbm4u6VAYRqFyc3Nx9uxZbNiwAZ8/fwYAvHjxAunp6YQjY5j/Rozf0wzDqAYJx3Ec6SAYac7OzpBIJDLbJRIJtLW1YWtri/79+6Nly5YEohOGpqYmUlNTUaFCBant7969Q4UKFZCXl0coMuVLTEzE4MGDce7cOdKhKJyGhgZevnwpc5xfvXoFCwuLYpOvNMjLy8PWrVsRHh6O169fIz8/X+p9Go+1iYmJXOexAQMGEIhOGGI8j9WpUwf37t1D8+bNMXDgQHTp0gVaWlqkwxJURkYGRo0ahW3btgEAEhISYGNjg1GjRqFy5cqYMmUK4QgVY+XKlXLvO3r0aAEjIScqKgrnz58v9ry9fPlyQlEJ6+nTp2jXrh2Sk5ORnZ3Nf77HjBmD7OxsrF+/nnSISvPq1Sts2LABfn5+pENRuGfPnsHY2Bj6+vpS23NycnD16lW4uroSikxYYvyejoqKQn5+Pho2bCi1/fr169DU1ISLiwuhyIQVHh7+3evuzZs3E4pKWA8fPvzudxaN5zF1U4p0AIysdu3aYd26dXB0dESDBg0AFJw079y5g/79+yMuLg6tW7dGWFgYOnbsSDhaxeA4rtib9GfPnsHIyIhAROSkp6fjwoULpMNQqMOHD/N/P3XqlNQxzcvLQ3h4OKysrAhEphxjxozB1q1b0aFDBzg4OBT7WaeNn58f5s2bh/bt2/PnsRs3buDkyZMYMWIEHj9+jOHDhyM3NxeDBw8mHK1ifO88Fhsbi7JlyxKISHgxMTGIjo7Gli1bMGbMGIwYMQI9evSAt7c36tevTzo8QUydOhWxsbGIiIhAu3bt+O2tW7fGrFmzqEm8rVixQq79JBIJlYm3+fPnY8aMGahevTrMzMykfrdpPoePGTMGLi4uiI2NRbly5fjtnTt3puZcLa+XL1/C39+fqhvW1NRUdOzYEbdu3YJEIkGvXr2wdu1aPgH3/v17tGzZksoEFCDO7+kRI0Zg0qRJMom358+fY9GiRbh+/TqhyITj7++P2bNnw8XFBebm5lSfswtt3LgRw4cPR/ny5VGxYkWZ7yyazmPfm6RUnNu3bwscjfxY4k0FvX37FuPHj4evr6/U9rlz5+Lp06c4ffo0Zs6ciTlz5qh94q3wF0cikcDNzQ2lSv3fRzIvLw+PHz+WurGhQUmzCJ4/f66kSJSnU6dOAApO/P369ZN6r3Tp0rCyssKyZcsIRKYcISEhCA0NxR9//EE6FKW5fPky5s6di2HDhklt37BhA06fPo39+/fDyckJK1euVPubucLZfRKJBL/99pvUxUBeXh7S09Nl/n+gibOzM5ydnbFs2TIcOXIEW7ZsQdOmTVGjRg0MHDgQ/fv3p+oBysGDB7Fnzx40atRI6ljXqlULiYmJBCNTrMePH5MOgah//vkHmzdvRv/+/UmHolSXLl3ClStXUKZMGantVlZW1F2f3Llz54fvP3jwQEmRKM+UKVOgoaGB69evIy0tDVOmTEHLli1x+vRpmJiYAChITtFGzN/TcXFxqFu3rsx2Z2dnxMXFEYhIeOvXr8fWrVvRp08f0qEozdy5czFv3jxMnjyZdCiCK7yvVDcs8aaCQkNDcevWLZntPXr0QL169bBx40b07NmTimUOhb84MTExaNu2rdSU9zJlysDKygpdunQhFJ0wxo4dC3Nzc5mL2kJfv35VckTCK5zubG1tjaioKJQvX55wRMpVpkwZ2Nrakg5DqU6dOoVFixbJbHdzc8P48eMBAH/88QcVs4MCAgLAcRy8vb3h7+8vlWQqPI81btyYYITKwXEccnJy8PXrV3AcBxMTE6xevRq+vr7YuHEjunfvTjpEhXjz5o3MMiUA+PLliyieqouFhoYGmjZtSjoMpcvPzy92ttOzZ89gYGBAICLh1KlTBxKJpNhEU+F22n6nz549iwMHDvDLCyMjI9G1a1e0atUK4eHhAOic0Snm72ktLS28evVKppZyamqq1IQHmnz9+hVNmjQhHYZSffjwAV27diUdhlLMnDmTdAi/hM7fNjWnra2NK1euyNyoX7lyBdra2gAKLowK/67OZs6ciby8PFhZWcHd3R3m5uakQxKcpaUlFi1ahG7duhX7fkxMDOrVq6fkqJRDrDMoxo8fj3/++QerV6+m8oK2OGXLlsWRI0fg4+Mjtf3IkSP8co4vX75QcSPXr18/5ObmQiKRoFWrVqhatSrpkJTq1q1b2LJlC3bv3g0tLS307dsXa9as4b/DVq1ahdGjR1OTeHNxccGxY8cwatQoAP93kxoUFETVjdu4cePk3peGB4Hf8vHxwZo1axAQEEA6FKVyd3dHQEAAAgMDARR8vtPT0zFz5kzqZm2XLVsWixcvhpubW7Hv//vvv/jzzz+VHJWwPn78yM9sAwqSMmFhYejatStatmyJHTt2EIxOOIWrLaytrdG0aVNqE07FcXd3x9SpU3Ho0CE+4ZiWloZp06ahTZs2hKMTxqBBg7Br1y6Z1WM069q1K06fPk3tzE0aiOeso0ZGjRqFYcOG4datW3yNnKioKAQFBWHatGkACmaT1KlTh2CUiqOpqYmhQ4fi/v37pENRinr16uHWrVvfTbx97+mruhJrgW5PT0+p1+fOncOJEydQq1YtlC5dWuq9sLAwZYamFL6+vhg+fDjOnz8vVavy+PHjfHHuM2fOoHnz5iTDVJhSpUph+PDhojmPFXJ0dER8fDzc3d2xadMm/Pnnn9DU1JTap2fPnhgzZgyhCBVv/vz5aN++PeLi4pCbm4t//vkHcXFxuHLlClX1OaOjo+Xaj9aHCRMmTECHDh1QrVo12Nvbi+K8DQDLli1D27ZtYW9vj6ysLPTq1QsPHz5E+fLlsXv3btLhKVS9evXw4sULWFpaFvt+WloaVddjQEF3+Tt37sDOzo7fVqpUKezduxddu3bF//73P4LRCc/AwAD379+Ho6MjAODQoUPYsmUL7O3tMWvWrO+uRlFnS5cuhaurKywtLeHs7Ayg4CG/mZkZtm/fTjg6xSn6sCg/Px+BgYE4e/YsnJycZM7ftDwsKnqPZWtrC19fX1y7dg2Ojo4yY6bpHut7DdyK8/79e4GjkR/raqqidu7cidWrV/P1JapXr45Ro0ahV69eAAraXhd2B6SBi4sLFi1a9N2njjSJi4tDRkbGd7sI5eTk/PBCUN1YW1vLtZ9EIkFSUpLA0SjPz3Tr3LJli4CRkBMZGVnseYzW6f8tWrTA2LFj1bb2xK+YM2cOvL29UblyZdKhKFViYiIWLlyI2NhYpKeno27dupg8eTJ/M8eov5EjRyIoKAgtW7aUaa4A0HveBoDc3FyEhITgzp07/Ofby8sLOjo6pENTqAMHDuDLly/o3bt3se9/+PABhw8flqlNq84mT56MmJgYnDp1Sua93NxcdOnSBUePHqW2uUL9+vUxZcoUdOnSBUlJSbC3t4enpyeioqLQoUMHame4fvnyBTt37kRsbCx0dHTg5OSEnj17yiRn1FnLli3l2k8ikeDcuXMCR6McYr3HKuwqLw9VOn+zxBujEk6ePImpU6dizpw5qFevHvT09KTeNzQ0JBQZwzCMfEJDQzF16lT4+PgUex5zcnIiFBnDMD/LwMAAISEh6NChA+lQGEZhcnNzkZGR8d3r6tzcXDx//pyah7/fMjIywu3bt1GtWjUsWrQI586dw6lTpxAZGYkePXogJSWFdIgMw1CKJd5U2NevX/H69Wu+MH0hCwsLQhEJR0NDg/970afKhYVtaX3yVmjhwoUYNmwYjI2NSYfCCODx48fIzc2VWtoBAA8fPuS7utIoPz8fjx49KvY85urqSigq4RQ9jxUqWqCbxvNYXl4etm7divDw8GKPMy1PlYu6ffs2SpcuLaqlSgBw8+ZNhIaGIjk5WaYJEI3LLi0tLXHq1CnUqFGDdChKdfjw4WK3F66ysLW1lXuWhbq4fPkymjVrRjoMpRLjmIGCB/m3bt2CnZ0d2rRpg//9738YM2YMkpOTUb16dWRmZpIOURAPHjzAqlWr+HIYNWvWxMiRI0Vzfvv06RPOnTuHGjVqiGbMeXl5uHv3LiwtLaXqOtIsKytL5vpElSbvsMSbCnr48CG8vb1x5coVqe0037yVVBeHljpQ32NoaIiYmBiZjkO08fb2/uH7mzdvVlIkytW8eXN4e3vLTHfesWMHgoKCEBERQSYwAV27dg29evXC06dPZWrk0Hoee/r06Q/fp3EGwciRI7F161Z06NAB5ubmMsvxVqxYQSgy4YhxqVJISAj69u2Ltm3b4vTp03B3d0dCQgJevXqFzp07U7nscsuWLTh58iS2bNkCXV1d0uEojYaGRrG1Zos+RGjWrBkOHjxIzc1cmTJlULlyZfTs2RO9e/eGvb096ZAEJ8YxA+AbILVu3RoDBw5EXFwcbG1tceHCBfTr1w9PnjwhHaLC7d+/Hz169ICLiwvfAOjatWuIiopCSEgIunTpQjhCxevWrRtcXV0xcuRIZGZmonbt2njy5Ak4jqN2zGPHjoWjoyMGDhyIvLw8uLq64urVq9DV1cXRo0fRokUL0iEK4suXL5g8eTJCQ0Px7t07mfdV6n6DY1ROkyZNOFdXV+748eNcdHQ0FxMTI/WHoY++vj6XmJhIOgzBderUSepPhw4dOEtLS87IyIjr3Lkz6fAEY2BgwD18+FBm+8OHDzkjIyPlB6QEtWvX5rp27crFxcVxHz584NLS0qT+MHQoV64cd+zYMdJhKJWhoSH36NEjjuM4buHChZy7uzvHcRx3+fJlrkqVKiRDE4yjoyO3evVqjuP+7/sqPz+fGzx4MOfn50c4OmHUqVOHMzAw4PT19TkHBwfO2dlZ6g+tzp49yzVs2JA7e/Ys9+nTJ+7Tp0/c2bNnucaNG3PHjh3jLl++zNWqVYvz9vYmHarCvHnzhlu1ahXXpEkTTiKRcLVr1+YWL17MpaSkkA5NMGIcM8dxXGxsLOfg4MAZGhpys2bN4rePHDmS69mzJ8HIhGNjY8P5+vrKbPfz8+NsbGwIRCQ8MzMz/p55586dnK2tLfflyxdu7dq1XJ06dQhHJ4zKlStzUVFRHMdx3IEDB7hKlSpxDx484GbMmME1adKEcHTC+fvvv7maNWty+/bt43R0dLjNmzdzc+bM4apUqcLt2LGDdHhS2Iw3FaSnp4dbt26JZipsobS0NGzatImfBl2rVi14e3vzra9pwnEcUlJSUKFCBWhra8PAwACxsbHUz3grTn5+PoYPH45q1aph0qRJpMMRhJGRESIiIvhuUoVu3bqFFi1a4PPnz4QiE46enh5iY2Nha2tLOhSlSkxMREBAAH8es7e3x5gxY1CtWjXCkQmjUqVKiIiIwG+//UY6FKUR41IlPT09/Pvvv7CyskK5cuUQEREBR0dH3L9/H61atUJqairpEBXO39//h+/PnDlTSZEol4ODAwIDA2Wa4ERGRmLIkCH4999/cfbsWXh7eyM5OZlQlMJ5/Pgxdu3ahd27dyM+Ph6urq5ULpkvSoxj/lZWVhY0NTWpajZQSFdXF3fu3JG5Hnv48CFq166NjIwMQpEJR0dHBwkJCahatSr69u2LSpUqYeHChUhOToa9vT3S09NJh6hw2traePToEapUqYIhQ4ZAV1cXAQEBePz4MWrXro1Pnz6RDlEQFhYWCA4ORosWLWBoaIjbt2/D1tYW27dvx+7du3H8+HHSIfJKkQ6AkWVvb4+3b9+SDkOpbt68ibZt20JHRwcNGjQAUNDqed68eTh9+jTq1q1LOELF4jgOtra2+Pfff2FnZ4e4uDhUqlSJdFhEaGhoYNy4cWjRogW1iTdXV1csWLAAu3fvhqamJoCCqc8LFiygtsZKw4YN8ejRI1El3k6dOgUPDw/UqVMHTZs2BVBws1qrVi0cOXIEbdq0IRyh4o0fPx7//PMPVq9eLXdrd3Xn4uKCuXPnonXr1rhw4QLWrVsHoODm1czMjHB0wjAxMeEfEFSuXBn37t2Do6Mj0tLSqLxpA+hNrJUkMTGx2Jo4hoaGfFc8Ozs7aq9Tra2tMWXKFNSuXRu+vr4llkKhgdjGnJaWhn379iExMRETJ05E2bJlERcXBzMzMyo7dLdo0QKXLl2SuR67fPkyfv/9d0JRCatq1aq4evUqypYti5MnTyIkJARAQadibW1twtEJw8zMDHFxcTA3N8fJkyf5a5OMjAz+3oNG79+/5yeuGBoa4v379wCAZs2aYfjw4SRDk8ESbypo0aJFmDRpEubPnw9HR0eZpy+qVCRQUXx8fODh4YGNGzeiVKmCj2Vubi4GDRqEsWPH4uLFi4QjVCwNDQ3Y2dnh3bt3sLOzQ9WqVUmHRFRiYiJyc3NJhyGYhQsXonnz5qhevTp/kXPp0iW+2CuNRo0ahfHjx+Ply5fFnsdo7PA5ZcoU+Pj4YOHChTLbJ0+eTGXi7fLlyzh//jxOnDiBWrVqyRxnGovuBwQEwMvLCwcPHsT06dP5m5l9+/bJzBKihaurK86cOQNHR0d07doVY8aMwblz53DmzBm4ubmRDo9RoHr16mHixIkIDg6GqakpAODNmzeYNGkS6tevD6BgpgyN1y2RkZHYuXMn9u3bh6ysLHTs2BELFiwgHZagxDbmO3fuwM3NDcbGxnjy5AkGDx6MsmXLIiwsDMnJyQgODiYdosJ5eHhg8uTJuHXrFho1agSgoMbb3r174e/vL9VQxcPDg1SYCjV27Fh4eXlBX18flpaWfH2zixcv8o2RaDNgwAB069aNr7fbunVrAMD169epXkVnY2ODx48fw8LCAjVq1EBoaCgaNGiAI0eOqFzTQrbUVAUVdsb7dvYAR3FzBR0dHURHR8ucGOLi4uDi4kLlE/UjR45g8eLFWLduHRwcHEiHoxTjxo2Tes1xHFJTU3Hs2DH069cPq1evJhSZ8F68eIHVq1cjNjYWOjo6cHJywsiRI1G2bFnSoQlCjB0+tbW1cffuXZnutQkJCXByckJWVhahyIQzYMCAH75PY9H976F5qdL79++RlZWFSpUqIT8/H4sXL8aVK1dgZ2eHGTNmUFNkv6jCJgPfQ+M5DADi4+PRqVMnPH78mE+upaSkwMbGBocOHcJvv/2GgwcP4vPnz+jTpw/haBVj6tSpCAkJwYsXL9CmTRt4eXmhY8eOVDfVEOOYAaB169aoW7cuFi9eLFXm5cqVK+jVqxeVzRWKux4rDm3XZjdv3kRKSgratGkDfX19AMCxY8dgbGzMr0qgzb59+5CSkoKuXbuiSpUqAIBt27bB2NgYHTt2JBydMFasWAFNTU2MHj0aZ8+exZ9//gmO45CTk4Ply5djzJgxpEPkscSbChJjh08zMzNs374d7u7uUttPnTqFvn374tWrV4QiE46JiQkyMjKQm5uLMmXKQEdHR+r9wqmyNGnZsqXUaw0NDZiamqJVq1bw9vbmZzvSJCcnB+3atcP69etlEjI0E2OHz6pVq2L58uXo2rWr1PbQ0FBMmDCBynpIDEOrQ4cOSb3OyclBdHQ0tm3bBn9/fwwcOJBQZMLLz8/H6dOnkZCQAACoXr062rRpI/cNvLpp2rQpvLy80K1bN5QvX550OEohxjEDBTV3b9++jWrVqkkl3p4+fYrq1atT+YCMYcTk6dOnuHXrFmxtbVVudQ19d7kUoDGxVpLu3btj4MCBWLp0Kb9UJzIyEhMnTkTPnj0JRyeMgIAA0iEo3fnz50mHoHSlS5fGnTt3SIehdDQm1koyePBgDBkyBElJSVLnsUWLFsnM9mTUV15eHlasWIHQ0FAkJyfj69evUu/T+NCk0OvXr/H69Wvk5+dLbVe1i1tFKG52wF9//YVatWphz549VCbecnJyoKOjg5iYGLRr1w7t2rUjHZJSREZG8n/fvXs3PDw8oKenRzAi4YlxzACgpaVVbJH5hIQEfmm1WDk6OuL48eNqu4x83LhxmDNnDvT09Eq85lq+fLmSohLWypUrMWTIEGhra2PlypU/3Hf06NFKioqcZ8+eoWrVqip7D8JmvKkoMXX4BICvX79i4sSJWL9+PV/rq3Tp0hg+fDgWLlwILS0twhEyzK/z8fGBlpaWTO0v2omtwyfHcQgICMCyZcvw4sULAAVdPydOnIjRo0dT03ygbt26CA8Ph4mJCZydnX84rtu3bysxMuXw8/NDUFAQxo8fjxkzZmD69Ol48uQJDh48CD8/Pyovbm/duoV+/frh/v37+PaykbblSSVJSkqCk5MTlV3xgIJ6OQcOHEDt2rVJh0KEoaEhYmJiRNVlXkxjHjRoEN69e4fQ0FCULVsWd+7cgaamJjp16gRXV1dRPhQvVHQGoDpq2bIlDhw4AGNjY5kVNkVJJBJq6itbW1vj5s2bKFeuHKytrb+7n0Qi4Zvj0EzVz2Us8aaCiuvwGRUVhczMTCo7fBaVkZGBxMREAEC1atWorzWRmJiILVu2IDExEf/88w8qVKiAEydOwMLCArVq1SIdniD27dv33ZkiNN6kAwWNBoKDg2FnZ4d69erJPFWm5clbUd/r8BkbG0tth8+iCjtAGhgYEI5E8fz9/TFx4kTo6upi1qxZP0y80dgZslq1ali5ciU6dOgAAwMDxMTE8NuuXbuGXbt2kQ5R4WrXro1q1aph8uTJMDMzkznmqvp0WdEyMzMxdepUnDhxAg8ePCAdjiA2bdqEsLAwbN++ndoapD+i7smHXyGmMX/8+BF//fUXbt68ic+fP6NSpUp4+fIlGjdujOPHj4ti1t/3iOlzwNBJ1T/DLPGmgn7//XfY2toW2+EzKSmJug6fYnXhwgW0b98eTZs2xcWLF3H//n3Y2Nhg4cKFuHnzJvbt20c6RIVbuXIlpk+fjv79+yMwMBADBgxAYmIioqKiMGLECMybN490iIIQy5O3opydndG2bdtiO3yePn2a2iQrQz89PT3cv38fFhYWMDc3x7Fjx1C3bl0kJSXB2dkZHz9+JB2iwhkYGCA6Oprv4CoGJiYmUglGjuPw+fNn6OrqYseOHdR0//uWs7MzHj16hJycHFhaWsokImg/d6v6jZsQxDjmwgeB6enpqFu3Lt8BUszE+Dlg6KLqn2FW400F3bx5UyrpBgClSpXCpEmT4OLiQjAy4Xz58gULFy5EeHh4sfVjaJweO2XKFMydOxfjxo2TmhXTqlUrart7rl27FoGBgejZsye2bt2KSZMmwcbGBn5+flTXRRJjbbv79+8jNDRUZru3tze1SzlevXqFCRMm8Oexb59r0bgcz8bGBlFRUShXrpzU9rS0ND4ZRZsqVaogNTUVFhYWqFatGj8TPSoqitqyCG5uboiNjRVV4m3FihVSibfCZkANGzaksotroU6dOpEOgagTJ06gcuXKpMNQKjGNOTg4GN27d0fTpk2lOlt+/foVISEh6Nu3L8HomP/C09NT7n3DwsIEjER5fqZ+MI2ra741bdo0lZ6pzRJvKsjQ0BDJycmoUaOG1PaUlBQqly0BBTUXLly4gD59+sDc3JyaWkg/cvfu3WKXJFWoUAFv374lEJHwkpOT+aLzOjo6/HK8Pn36oFGjRtQmHMXI1NQUMTExMp1cY2JiUKFCBUJRCat///5ITk6Gr6+vaM5jT548KTahmJ2djWfPnhGISHidO3dGeHg4GjZsiFGjRqF3797YtGkTkpOT4ePjQzo8QQQFBaFfv364d+8eHBwcULp0aan3aZz91b9/f9IhEEHj8nB55ObmIiIiAomJiahduza0tLTw4sULGBoaQl9fn3R4ghDjmAcMGIB27drJXId8/vwZAwYMYIk3NUZrHfQfiY6Olms/MVyPAgWTWlQZS7ypIDF2+Dxx4gSOHTsm9fSJdsbGxkhNTZUphhkdHU3tk8eKFSvi/fv3sLS0hIWFBa5du4batWvj8ePHMrODaHPz5s3v1raj5clbUWLs8Hn58mVcunQJderUIR2K4A4fPsz//dSpU1IXvHl5eQgPD/9hoV91VnT5dPfu3WFhYYGrV6/Czs4Of/75J8HIhHP16lVERkbixIkTMu/R1Fzhzp07cHBwgIaGRondqGns5CpWT58+Rbt27ZCcnIzs7Gy0adMGBgYGWLRoEbKzs7F+/XrSISqcGMcMFCwZLy4J8ezZM1EmbmiyZcsW0iEonRhX1BRn06ZNWLFiBR4+fAgAsLOzw9ixYzFo0CDCkUljiTcVtHTpUkgkEvTt27fYDp80MjExUempoULo0aMHJk+ejL1790IikSA/Px+RkZGYMGECtU/cWrVqhcOHD8PZ2RkDBgyAj48P9u3bh5s3b/7UFHF1U7h8oW3btjh9+jTc3d2RkJCAV69eoXPnzqTDE4Svry8MDAywbNkyTJ06FUBBh89Zs2ZR2fURAKpWrUp9ArlQ4XI0iUSCfv36Sb1XunRpWFlZYdmyZQQiU77GjRujcePGpMMQVOHMPl9fX5iZmZEORzB16tTBy5cvUaFCBdSpUwcSiaTY32mako3fysvLw4oVK777oIjGshBjxoyBi4sLYmNjpZbNd+7cGYMHDyYYmXDENubCDtwSiQRubm5S5Xzy8vLw+PFjtGvXjmCEypGVlQVtbe1i39uwYQN15/c3b97wjXCqV68OU1NTwhEpR+GKgypVqhCORHh+fn5Yvnw5Ro0axV+LXb16FT4+PkhOTsbs2bMJR/h/WHMFFSamDp87duzAoUOHsG3bNqrHWdTXr18xYsQIbN26FXl5eShVqhTy8vLQq1cvbN26FZqamqRDVLj8/Hzk5+fzFzwhISG4cuUK7OzsMHToUJQpU4ZwhMJwcnLC0KFDMWLECL7wp7W1NYYOHQpzc3P4+/uTDlFQNHf4LOr06dNYtmwZNmzYACsrK9LhKIW1tTWioqJQvnx50qEo1YMHD7Bq1Srcv38fAFCzZk2MGjUK1atXJxyZMIp2b6XZ06dPYWFhAYlEgqdPn/5wX1o7ufr5+SEoKAjjx4/HjBkzMH36dDx58gQHDx6En58flQ9OypUrhytXrqB69epSxbmfPHkCe3t7ZGRkkA5R4cQ25sLrLH9/f4wfP15qKW2ZMmVgZWWFLl26UHkdmp+fj3nz5mH9+vV49eoVEhISYGNjA19fX1hZWWHgwIGkQ1S4L1++YNSoUQgODubrhmtqaqJv375YtWoVlfea+fn5mDt3LpYtW4b09HQABd/d48ePx/Tp06GhoUE4QmGYmppi5cqVMqsCd+/ejVGjRqlU+SY2402F6erqwtHRkXQYgil8+lTo0aNHMDMzg5WVlUz9GBq7aJUpUwYbN26Er68v7t27h/T0dDg7O8vUxFJ3np6e2Lp1KwwNDbFjxw50796dT7z16NEDPXr0IByh8BITE9GhQwcABcf9y5cvkEgk8PHxQatWrahPvNGccPu28+GXL1/4ByXfnsdonCny+PFjufZzdHTE8ePHUbVqVYEjEt7+/fvRo0cPuLi48E9Xr127BgcHB4SEhKBLly6EI1Q8T09PnD9/nvrEW9FkGq2JtZLs3LkTGzduRIcOHTBr1iz07NkT1apVg5OTE65du0Zl4i0/P7/YGYzPnj2j9vtLbGMurF1oZWWF7t27f3fWF43mzp2Lbdu2YfHixVKzGR0cHBAQEEBl4m3cuHG4cOECjhw5wpcxunz5MkaPHo3x48dj3bp1hCNUvOnTp2PTpk1YuHCh1JhnzZqFrKwszJs3j3CEwsjJySm2+WS9evX4lYOqgs14UxFi7MTyM8kG2ov9Fv4a0lj8skyZMnj69CnMzc2hqamJ1NRUaovrf0+VKlVw4sQJODo6wsnJCVOnTkXPnj1x9epVtGvXDh8/fiQdokJ8m0z/EVqS6du2bZN732+XZIqJqrd4/xnVqlWDl5eXzPKFmTNnYseOHfxMdZrMmzcPAQEB6NChAxwdHWWSyrQkY4rWLiwJjQ0lAEBPTw/379+HhYUFzM3NcezYMb5DsbOzMzXfV0V1794dRkZGCAwMhIGBAe7cuQNTU1N07NgRFhYWVNaOEuOYxcrW1hYbNmyAm5ub1HdxfHw8GjdujA8fPpAOUeHKly+Pffv2oUWLFlLbz58/j27duuHNmzdkAhNQpUqVsH79epnvpkOHDuHvv//G8+fPCUUmrFGjRqF06dIyXVsnTJiAzMxMrFmzhlBkstiMNxUhxoKetCfT5KEuxSD/ixo1amDq1Klo2bIlOI5DaGgoDA0Ni92X1tp2rq6uOHPmDBwdHdG1a1eMGTMG586dw5kzZ+Dm5kY6PIUprPslJmJOpolVampqseeq3r17Y8mSJQQiEl5QUBD09fVx4cIFXLhwQeo9iURCTeLt23PYtzXeij5YoLXGW5UqVZCamgoLCwtUq1YNp0+fRt26dREVFQUtLS3S4Qli2bJlaNu2Lezt7ZGVlYVevXrh4cOHKF++PHbv3k06PEGIccyAOGsYPn/+HLa2tjLb8/PzkZOTQyAi4WVkZBRbr65ChQrULaMu9P79e9SoUUNme40aNaj7XBdt0iaRSBAUFITTp0+jUaNGAIDr168jOTlZ5e4r2Yw3NRYZGQkXFxcqLoRSUlIgkUj4IpA3btzArl27YG9vjyFDhhCOThjfKwa5evVq+Pj4qFQxyP/iypUrGDduHBITE/H+/XsYGBgUOytKIpFQ98VQ6P3798jKykKlSpWQn5+PxYsX87XtZsyYARMTE9IhErN79254eHhAT0+PdCj/2e3bt1G6dGm+RMChQ4ewZcsW2NvbY9asWVTWjpEXTTPe/vjjD3Tt2hUDBgyQ2r5lyxaEhITg1KlThCJjFOns2bOYPHky5s+fL/UdPWPGDMyfPx9t2rQhHKEwpkyZAkNDQ0ybNg179uxB7969YWVlheTkZPj4+FDb5Cs3NxchISG4c+cO0tPTUbduXXh5eUFHR4d0aIIR45jFWMOwXr168PHxQe/evaW+i2fPno0zZ87g0qVLpENUODc3N5QrVw7BwcH8suLMzEz069cP79+/x9mzZwlHqHgNGzZEw4YNsXLlSqnto0aNQlRUFK5du0YoMsVr2bKlXPtJJBKcO3dO4GjkxxJvaszQ0BAxMTFU3Mj8/vvvGDJkCPr06YOXL1/it99+g4ODAx4+fIhRo0bBz8+PdIgKp07FIBVFQ0OD7xjHMABd57H69etjypQp6NKlC5KSkmBvbw9PT09ERUWhQ4cOCAgIIB0iMeqeeCu6BPHFixfw8/NDt27d+Ker165dw969e+Hv749hw4aRClNp8vLycPfuXVhaWlL74MDBwQHr169Hs2bNpLZfunQJQ4YM4Rtr0O7q1au4evUq7Ozs8Oeff5IOh2H+k2rVqmHlypXo0KGDVNOYlStX4tq1a9i1axfpEBXu0KFD6NevH6ZOnYrZs2fD398fDx48QHBwMI4ePUrlQ4R79+6hbdu2yM7ORu3atQEAsbGx0NbWxqlTp1CrVi3CESrehQsX0KFDB1hYWEg9LEpJScHx48fx+++/E46QYYk3NabuNzJFmZiY4Nq1a6hevTpWrlyJPXv2IDIyEqdPn8awYcOQlJREOkSFMzY2RlRUlEwzhYSEBDRo0ABpaWlkAhNQ0Y5xYpOYmIgtW7YgMTER//zzDypUqIATJ07AwsKCygsAedF0HjMyMsLt27dRrVo1LFq0COfOncOpU6cQGRmJHj16ICUlhXSIxKj7cZa3G5hEIqFyCeLYsWPh6OiIgQMHIi8vD66urrh69Sp0dXVx9OhRmTo6NNDR0UFUVBQcHByktt+5cwcNGzZEZmYmocgYRftebT+JRAJtbW3Y2trC2tpayVEJS4xjBsRZwxAoeGAwe/ZsxMbG8rMb/fz84O7uTjo0wWRkZGDnzp2Ij48HUNB9nPYZnS9evMCaNWukxvz333+jUqVKhCNjAFbjjVEROTk5/JLZs2fP8oUha9SogdTUVJKhCaZPnz5Yt26dTDHIwMBAeHl5EYpKWJaWlrh06RI2bNiAxMRE7Nu3D5UrV8b27dthbW0tM7OAFhcuXED79u3RtGlTXLx4EfPmzUOFChUQGxuLTZs2Yd++faRDZBSA4zi+bf3Zs2fxv//9DwBQtWpVKmewiknhcRWrffv2oXfv3gCAI0eO4MmTJ4iPj8f27dsxffp0REZGEo5Q8erXr49x48Zh+/btfK2gV69eYeLEiWjQoAHh6BRL7E0lOnXqJFPPD/i/Gn8SiQTNmjXDwYMHqZnhKcYxA+KsYQgUrCw6c+YM6TCUSldXV6qLqxhUqlSJ2u6lPysxMRGDBw9WqaWm8j3CZRiB1apVC+vXr8elS5dw5swZtGvXDkBB5r5cuXKEoxPOpk2b4ODggEGDBmHQoEFwdHTExo0boaGhgXHjxvF/aLF//360bdsWOjo6iI6ORnZ2NgDg48ePmD9/PuHohDNlyhTMnTsXZ86ckarz1apVK6pqLoidi4sL5s6di+3bt/NT/gHg8ePHxRb5FZMNGzaI7v8DR0dHamY5vn37FhUrVgQAHD9+HF27dsVvv/0Gb29v3L17l3B0wti8eTN/g25rawtbW1tYWFjg+fPn2LRpE+nwFKpTp05y/encuTPpUAVx5swZ1K9fH2fOnMHHjx/x8eNHnDlzBg0bNsTRo0dx8eJFvHv3DhMmTCAdqsKIccwA0LlzZ4SHhwMoqH3l6+sLOzs79O3bF97e3oSjYxTpwYMHGDlyJNzc3ODm5oaRI0fyM8Fo9eHDByxduhQDBw7EwIEDsWzZMmrrZ5ckPT1dphkUaWypqRpT96U7RUVERKBz58749OkT+vXrh82bNwMApk2bhvj4eISFhRGOUPHUtTDkf+Hs7AwfHx/07dtX6vMbHR2N9u3b4+XLl6RDFIS+vj7u3r0La2trqXE/efIENWrUQFZWFukQiaHpPHbnzh14eXkhOTkZ48aN4zs3jxo1Cu/evaOmdsy3hXt/hMZC1fKi6bNtaWmJjRs3ws3NDdbW1li3bh06dOiAf//9F82aNcOHDx9IhygIjuNw5swZqWU7rVu3FmW5BJo5ODggMDAQTZo0kdoeGRmJIUOG4N9//8XZs2fh7e2N5ORkQlEqlhjHXBwx1DA0MTH5blOzwmXF/fv3l2kYpM7279+PHj16wMXFha93du3aNURFRSEkJARdunQhHKHiXbx4EX/++SeMjIzg4uICALh16xbS0tJw5MgRuLq6Eo5QsUq6Fn3+/DmWLl2qUuU/2FJTNUbThV+LFi3w9u1bfPr0SWpK+5AhQ6Crq8u/pqmT6/nz50mHoHQPHjwo9sRvZGREZU27QsbGxkhNTZWplxIdHY3KlSsTiopRNCcnp2Jn/yxZsgSampr8a3Xv5LpixQq59pNIJKJOvNFkwIAB6NatG8zNzSGRSNC6dWsAwPXr11GjRg3C0QlHIpHA3d0drq6u0NLSouq6679ydHTE8ePHUbVqVdKh/GeJiYkwNDSU2W5oaMjXGLazs6OqZIAYx1ycxo0b84kZWvn5+WHevHlo3749v0z+xo0bOHnyJEaMGIHHjx9j+PDhyM3NpWZp5qRJk/hmEkXNnDkTkyZNojLxNmLECHTv3h3r1q3jrznz8vLw999/Y8SIEdTNTh87dizMzc2lVhIV9fXrVyVHVDKWeFNjtE1W1NTUlKkjYWVlJfW6ffv21HRA/NanT59w7tw51KhRg9obmYoVK+LRo0cyx/Xy5ctUHtNCPXr0wOTJk7F3715IJBLk5+cjMjISEyZMQN++fUmHR5SlpSVKly5NOgxBFbayLzR06FA0bNhQbT/zjx8/Jh0Co2SzZs2Cg4MDUlJS0LVrV/7hl6amJqZMmUI4OmHk5+dj3rx5WL9+PV69eoWEhATY2NjA19cXVlZWGDhwIOkQiXry5AlycnJIh6EQ9erVw8SJExEcHAxTU1MAwJs3bzBp0iTUr18fAPDw4UMqkoyFxDRmsdcwvHz5MubOnSvTcXvDhg04ffo09u/fDycnJ6xcuZKaxFtqamqx19e9e/fGkiVLCEQkvEePHmHfvn1SD3o1NTUxbtw4BAcHE4xMGJaWlli0aBG6detW7PsxMTGoV6+ekqMqAccwakRfX59LTEwkHYZCdO3alVu1ahXHcRyXkZHB2dnZcaVLl+ZKlSrF7du3j3B0wpg/fz5nb2/PXbt2jTMwMOAuXbrE7dixgzM1NeVWrlxJOjzBZGdnc4MGDeJKlSrFSSQSrnTp0pyGhgbXu3dvLjc3l3R4grC2tubevn0rs/3Dhw+ctbU1gYhUB03nMeb7xHicHRwcuOTkZNJhKIS/vz9nY2PD7dixg9PR0eGPZUhICNeoUSPC0ZFH0+f7/v37XPXq1bkyZcpw1apV46pVq8aVKVOGq1GjBvfgwQOO4zjuwIEDXHBwMOFIFUdMY5ZIJHL90dDQIB2qIPT09LiHDx/KbH/48CGnp6fHcRzHPXr0iNPV1VV2aIJp3749t3nzZpntmzdv5tzd3QlEJLwmTZpwBw4ckNl+4MABrmHDhsoPSGBdunThJk2a9N33Y2JiOIlEosSISsZmvKmY48ePIywsDGXLloW3t7fUzKcPHz6gS5cu1NT7EruLFy9i+vTpAIADBw6A4zikpaVh27ZtmDt3LpXToKdMmYL8/Hy4ubkhIyODX74zYcIEjBo1inR4gilTpgw2btwIPz8/3L17F+np6XB2doadnR3p0ATz5MmTYusqZGdn4/nz5wQiYoTy7NkzHD58GMnJyTJT+7/t2szQjaZZUMHBwQgMDISbm5vUTJHatWtTX6BbbGrUqIG4uDicPn0aCQkJAIDq1aujTZs20NAo6EPXqVMnghEqnpjGLPau1GXLlsWRI0fg4+Mjtf3IkSMoW7YsAODLly8wMDAgEZ4gPDw8MHnyZNy6dQuNGjUCUFDjbe/evfD395eaBUnLLMfRo0djzJgxePTokdSY16xZg4ULF+LOnTv8vk5OTqTCVJjZs2cjIyPju+/b29ur3AoN1lxBhezatQt9+/ZFu3bt8PHjR9y8eRNBQUHw8vICUNDGvlKlSipVJFDZaCpWraOjg4SEBFStWhV9+/ZFpUqVsHDhQiQnJ8Pe3h7p6emkQxTM169f8ejRI6Snp8Pe3h76+vqkQ1KqvLw83L17F5aWljLLq9Vd4cVMp06dsG3bNhgZGfHv5eXlITw8HGfOnMGDBw9IhUgcTeex8PBweHh4wMbGBvHx8XBwcMCTJ0/AcRzq1q0r6gdFNB1nedE0Zh0dHcTHx8PS0lJqXHFxcWjQoAHV39HyoOVY5+TkQEdHBzExMXBwcCAdjlKIccw/i6Yahhs3bsTw4cPxxx9/8DXeoqKicPz4caxfv57vfnnjxg3s2bOHcLSKUZg8LolEIqHmvrqkMUskEnAcR9WYf4Yq1IlnM95UyJIlS7B8+XK+GHVoaCi8vb2RlZUl+loiNKpatSquXr2KsmXL4uTJkwgJCQFQMLPx25pQtClTpgzs7e1Jh6E0Y8eOhaOjIwYOHIi8vDw0b94cV65cga6uLo4ePYoWLVqQDlFhCp+QSyQS9OvXT+q90qVLw8rKCsuWLSMQGSOEqVOnYsKECfD394eBgQH279+PChUqwMvLC+3atSMdHlEbNmyAmZkZ6TCYX2Rvb49Lly7B0tJSavu+ffvg7OxMKCpG0UqXLg0LCwtR3YiKccw/i6bZu4MHD4a9vT1Wr16NsLAwAAWzGy9cuMB3tR0/fjzJEBVOjLMcVW12l6pRhTrxLPGmQh4+fCjVyrpbt24wNTWFh4cHcnJy0LlzZ4LRqQaaOoqNHTsWXl5e0NfXh6WlJZ98uXjxIhwdHckGp0Cenp5y71t4QUCbffv2oXfv3gAKpvYnJSUhPj4e27dvx/Tp0xEZGUk4QsUpvNixtrZGVFQUypcvTzgiRkj379/H7t27AQClSpVCZmYm9PX1MXv2bHTs2BHDhw8nHKFilNS2vqjCh2e9evUSKhxGCfz8/NCvXz88f/4c+fn5CAsLw4MHDxAcHIyjR4+SDo9RoOnTp2PatGnYvn07v/SOdmIcsxjl5ORg6NCh8PX15b+rxebZs2eoVKmS3LPg1NW3D4kYaaqwyJMl3lSIoaEhXr16BWtra35by5YtcfToUfzvf//Ds2fPCEanGlThl0ZR/v77bzRo0AApKSlSNTVsbGwwd+5cwtEpTtGlhhzH4cCBAzAyMoKLiwsA4NatW0hLS/upBJ26efv2LSpWrAigoI5jt27d8Ntvv8Hb2xv//PMP4eiEUdyTt7S0NBgbGys/GBVDUydXPT09vq6bubk5EhMTUatWLQAFn3tarFixQq79JBIJn3hj1FvHjh1x5MgRzJ49G3p6evDz80PdunVx5MgRtGnThnR4xNE0o3P16tV49OgRKlWqBEtLS+jp6Um9f/v2bUKRCUeMYxaj0qVLY//+/fD19SUdCjH29vbEZzopm6GhoejGrA5Y4k2FNGjQACdOnOALIhZq3rw5jhw5gv/973+EIlMdnz9/Jh2CQrm4uPAJqEIdOnQgFI0wtmzZwv998uTJ6NatG9avX8+3u87Ly8Pff/8NQ0NDUiEKzszMDHFxcTA3N8fJkyexbt06AEBGRoZU22+aLFq0CFZWVujevTsAoGvXrti/fz/Mzc1x/Phx1K5dm3CEimdjY4OoqCiUK1dOantaWhrq1q2LpKQkAMC9e/dIhCeIRo0a4fLly6hZsyb++OMPjB8/Hnfv3kVYWJjMd5k6Y0s4xOn333/HmTNnSIchOLHP6KSlicDPEOOYxapTp044ePCgTHMFsaBp0oa8xDhmdcASbyrEx8cHV65cKfa9Fi1a4MiRIwgODlZyVMITUyfXcePGYc6cOdDT08O4ceN+uC+N3QA3b96My5cvSyWbNDU1MW7cODRp0gRLliwhGJ1wBgwYgG7dusHc3BwSiQStW7cGAFy/fl3q806T9evXY+fOnQCAM2fO4OzZszh58iRCQ0MxceJEnD59mnCEiifGTq7Lly/ni8z7+/sjPT0de/bsgZ2dHZXnMObHaJoFVVR6erpMzSCaHhaJfUbnzJkzSYegdGIcs1jZ2dlh9uzZiIyMRL169WRmN9L4O80wqogl3lRI8+bN0bx58+++37JlS7Rs2VKJEQmvaCfXBw8eYNWqVVKdXL9+/YoLFy4QjlJxoqOj+WKt0dHR392Pplp2ReXm5iI+Ph7Vq1eX2h4fH091IdRZs2bBwcEBKSkp6Nq1K99RR1NTE1OmTCEcnTBevnzJdwM7evQounXrBnd3d1hZWaFhw4aEo1Osom3pT506VWwnVysrKwKRCa/oMgY9PT2sX7+eYDTK8+zZMxw+fBjJycn8UttCtCQcxT4L6vHjxxg5ciQiIiKQlZXFb6exKxyb0ckw9Nq0aROMjY1x69Yt3Lp1S+o9WpPpRU2bNk10dQx79+5N1cMhRVCFe2sJx+YiqpzWrVujd+/e8PT0pP6XxtnZGQMGDJDp5PrPP/9g4MCBePXqFSpVqkTVBa6YjRs3DsHBwZg2bRrf0vz69etYuHAh+vTpQ80N66+iqX19pUqVsG/fPjRp0gTVq1fH3Llz0bVrVzx48AD169fHp0+fSIeoMIX1GQtbtRdVtJMrjeUCoqKikJ+fL5NMvX79OjQ1NWWW0tMgPDwcHh4esLGxQXx8PBwcHPDkyRNwHIe6detSM0O7aL3ZH5FIJPwyapo0bdoUHMdhzJgxMDMzk7lo/9GDUka95OXlYcWKFQgNDS02mf7+/XtCkQlHjGP+VlZWFrS1tYt9b9euXejYsaPM7DCGYdSTgYEBYmNjWVdTRlqtWrUwdepU/P333+jQoQN69+6NP/74g5pi3EWxTq7isnTpUlSsWBHLli1DamoqgIKC7BMnTqSulfmvoKl9vaenJ3r16gU7Ozu8e/cO7du3B1Aw09PW1pZwdIol5k6uI0aMwKRJk2QSb8+fP8eiRYtw/fp1QpEJZ+rUqZgwYQL8/f1hYGCA/fv3o0KFCvDy8kK7du1Ih6cwYp8FFRsbi1u3bsnM0BYDMczoLMrf3x9BQUEYP348ZsyYgenTp+PJkyc4ePAg/Pz8SIcnCDGOGSj4vp43bx7Wr1+PV69eISEhATY2NvD19YWVlRUGDhwIgK7Zu2Jz5swZXL58Gc2bN0erVq1w8eJFLFiwANnZ2ejTpw8GDBhAOkTBhIeHY8WKFbh//z4AoGbNmhg7dixf4oZGmZmZ4DgOurq6AICnT5/iwIEDsLe3h7u7O7+fStSJ5xiVlJeXx506dYrr168fZ2hoyJmYmHCDBw/mIiIiSIemUObm5tzVq1dltkdERHD6+vrc9OnTOQ0NDQKRCS89PZ2bMWMG17hxY65atWqctbW11B/affz4kfv48WOx712+fJnLyspSckTk6evrc4mJiaTDUIivX79yS5Ys4UaPHs3dvn2b3758+XJu48aNBCNTrg8fPpAOQVB6enrFfmaTkpI4fX19AhEJT19fn3v06BHHcRxnbGzM3bt3j+M4jouJieEsLS0JRsYoUosWLbgzZ86QDkPpzp49y+nq6nIODg5cqVKluDp16nDGxsackZER17JlS9LhCcLGxoY7evQox3HSv9///PMP17NnT5KhCUaMY+Y4jvP39+dsbGy4HTt2cDo6Ovz3V0hICNeoUSPC0QknJSWFW7NmDTd58mTOx8dH6g9Ntm/fzpUqVYqrW7cup6+vz23ZsoUzNjbmBg0axHl7e3NlypTh9u7dSzpMQaxZs4YrVaoU16NHD+6ff/7hf5dLly7NrV69mnR4gmnTpg23bt06juMKrrnNzMy4KlWqcNra2tzatWsJRyeNJd7UQGZmJhcaGsrVrl2buiRUx44dOT8/v2LfO3/+PKenp0fdmAv16NGDMzc35yZNmsStWLGCCwgIkPojZgYGBtQkoH4GTYk3MVq4cCEXEhLCv/7rr784iUTCVapUiYuJiSEYmXDKli3LXblyRWZ7ZGQkZ2xsTCAi4ZmZmXFxcXEcx3FczZo1uUOHDnEcV5B409PTIxmaoMRy41bo0aNHXOvWrbmtW7dyN2/e5GJjY6X+0Kp+/fr8dVnhd9Lnz585Dw8PlbuJURRdXV3u6dOnHMdxXMWKFblbt25xHMdxiYmJnKGhIcnQBCPGMXMcx1WrVo07e/Ysx3HS11z379+n9jtLTMn0OnXqcP/88w/HcQXj1tHR4ZYvX86/v3TpUq5p06akwhNU5cqVuVWrVslsX716NVepUiUCESlHuXLl+AegGzdu5JycnLi8vDwuNDSUq1GjBuHopLGlpiru5cuXCAkJwY4dO3Dnzh2+LhYtxNrJFQBOnDiBY8eOoWnTpqRDUTkcKz1Jhe3bt2PDhg1ISkrC1atXYWlpiYCAAFhbW6Njx46kw1M4MXZydXd3x9SpU3Ho0CG+qURaWhqmTZuGNm3aEI5OGI0aNcLly5dRs2ZN/PHHHxg/fjzu3r2LsLAwNGrUiHR4giiprh2N3rx5g8TERKllSYV1HGlrrlDU/fv3sXv3bgBAqVKlkJmZCX19fcyePRsdO3bE8OHDCUeoeFWqVEFqaiosLCxQrVo1nD59GnXr1kVUVBTfDIk2YhwzUFAGobhyF/n5+dSU+viWWMojANIljNzc3JCbmws3Nzf+/Q4dOmDBggWkwhNUWlpascfT3d0dkydPJhCRcmRkZMDAwAAAcPr0aXh6ekJDQwONGjXC06dPCUcnTYN0AIysT58+YcuWLWjTpg2qVq2KdevWwcPDAw8fPsS1a9dIh6dQzZs3x9SpU7/7fsuWLbFlyxYlRqQ8JiYmouuyw4jHunXrMG7cOLRv3x5paWn8TaqxsTECAgLIBieQ73VynTRpEqKioghHJ4ylS5ciJSUFlpaWfOdta2trvHz5EsuWLSMdniCWL1/O17Tz9/eHm5sb9uzZAysrK2zatIlwdMIovHG7e/cutLW1sX//fqSkpKB58+bo2rUr6fAE4e3tDWdnZ1y9ehVJSUl4/Pix1P/SSk9Pj6/rZm5ujsTERP69t2/fkgpLUJ07d0Z4eDgAYNSoUfD19YWdnR369u0Lb29vwtEJQ4xjBgB7e3tcunRJZvu+ffvg7OxMICLh3b9/H3379gUgm0xftGgR4egUq3Tp0lJ1KbW0tKCvry/1OjMzk0RogvPw8MCBAwdkth86dIjK5l6FbG1tcfDgQaSkpODUqVN8XbfXr1+rXJNKNuNNBZmZmcHExATdu3fHggULqOwK9y0xdXItNGfOHPj5+WHbtm18QUiGocWqVauwceNGdOrUCQsXLuS3u7i4YMKECQQjE46JiQlSUlJQtWpVnDx5EnPnzgVQMIOT1tkxlStXxp07d7Bz507ExsZCR0cHAwYMQM+ePalsCARAqiOWnp4e1q9fTzAa5RDjLKinT5/i8OHD1DWDKYkYZ3QW/Y7q3r07LCwscPXqVdjZ2Uk1AKOJGMcMAH5+fujXrx+eP3+O/Px8hIWF4cGDBwgODsbRo0dJhyeI4pLptWrVAkBfMt3W1hbx8fF8U5znz5/zs6EAIDExEVWqVCEVnsKtXLmS/7u9vT3mzZuHiIgING7cGABw7do1REZGUt3Azs/PD7169YKPjw/c3Nz4sZ8+fVrlkuks8aaCDh8+DDc3N2ho/HhCYmRkJFxcXKiYEi6WTq7Ozs6QSCT860ePHsHMzAxWVlYyY719+7ayw2MI27BhA8zMzEiHoRCPHz8u9gtPS0sLX758IRCR8MTUybUoPT09DBkyhHQYShMVFYX8/HyZTq7Xr1+HpqYmlQ/LxHTjVqhVq1aIjY2l+ne3OMuXL0d6ejqAghmd6enp2LNnD+zs7KjsaFqcxo0b8zdvYiGWMXfs2BFHjhzB7NmzoaenBz8/P9StWxdHjhxh5REoMG3aNJiYmPCvv53McfPmTXTr1k3ZYQlmxYoVUq9NTEwQFxeHuLg4fpuxsTE2b96MGTNmKDs8pfjrr7/QrFkzpKamonbt2vx2Nzc3dO7cmWBksiQcK6aktgwNDRETEyP19F2d5efn4+zZs9i1axcOHDgATU1N/PXXX/Dy8kLz5s1Jh6cQ/v7+cu87c+ZMASNRbTR8tos+hSrJ6NGjBYyEDHt7eyxYsAAdO3aEgYEBYmNjYWNjg1WrVmHLli1UJpZzcnLwzz//ICUlBf379+cTjytWrICBgQEGDRpEOEJhJCYmIiAggG9fb29vjzFjxqBatWqEIxNGgwYNMGnSJPz1119S28PCwrBo0SJcv36dUGTC6dSpEzp06IDBgwdjwoQJOHToEPr374+wsDCYmJjg7NmzpENUuMDAQMydOxfe3t5wdHSUeTjm4eFBKDJGEQ4fPiz3vrQcazGOuajc3FzMnz8f3t7eVM16KklSUhLS09Ph5OSEL1++YPz48bhy5QqfTLe0tCQdIsOIAku8qbGiN7O0ycrKwpEjRzBv3jzcvXuX2mVaTPFo+GxbW1tLvX7z5g0yMjJgbGwMoKAIqq6uLipUqEBlvaCgoCDMmjULy5Ytw8CBAxEUFITExEQsWLAAQUFB6NGjB+kQGQU4deoUPDw8UKdOHb5RTGRkJGJjY6mdQaCvr487d+7InJ8eP34MJycnfP78mVBkwhHjjduPVh3Q3FxBLDM6S1pVUoimYy3GMX9LX18f9+7dg5WVFelQGIZRgKysLKxatQrnz5/H69evkZ+fL/W+Kj3oZ0tNGZVDeyfXQn5+fmjZsiUaN24MbW1t0uEoTW5uLiIiIpCYmIhevXrBwMAAL168gKGhIV8AlYYb18ePH/N/37VrF9auXYtNmzbxdScePHiAwYMHY+jQoaRCFNSgQYOgo6ODGTNmICMjA7169UKlSpXwzz//UJ10E1sn1ylTpsDHx0eqXlDh9smTJ1OZeNPS0sKrV69kEm+pqakoVYrOyyox1rX79uJdLEaMGIFJkybJJN6eP39O1YxOMR5fMY75W25ubrhw4QJLvFHqxo0bqFevHjQ1NQEUNLpasmQJHj16BHNzc4wePZpvNCEWKSkpmDlzJjZv3kw6FEEMHDgQp0+fxl9//YUGDRpIlXRSNWzGmxqjYVZQoU+fPmH//v3YtWsXIiIiYGNjAy8vL3h5eVG7XKlNmza4evUqcnNzUb9+fTRv3hwtWrRA06ZNoaOjQzo8QTx9+hTt2rVDcnIysrOzkZCQABsbG4wZMwbZ2dnU3sxVq1at2I5Zt27dwl9//SWVpKNRRkYG0tPTUaFCBdKhCGrdunXw8/PD2LFjMW/ePNy7dw82NjbYunUrtm3bhvPnz5MOUeG0tbVx9+5d2NnZSW1PSEiAk5MTsrKyCEUmnJ49eyI1NRWHDh2CkZERgIIZrJ06dUKFChUQGhpKOELFE8ssqF/h6OiI48eP8x2N1Z0YZ3TKi7ZjLQ/axrx+/Xr4+/vDy8sL9erVg56entT7tCyxNTExkTsB8f79e4GjUR5NTU2kpqaiQoUKOHLkCDp16oTevXujYcOGiI6OxtatWxEaGqpytb+EFBsbi7p161I7i9XIyAjHjx/nV12oMjofzTJqR4ydXM+cOYPc3Fxcv34dFy9exIULF7By5UpkZ2ejfv36uHz5MukQFW7MmDFwcXFBbGwsypUrx2/v3LkzBg8eTDAyYaWmpiI3N1dme15eHl69ekUgIuG1atUKYWFhMDY2hq6uLt+599OnT+jUqRPOnTtHOELFE2MnV1NTU8TExMgk3mJiYqhNtC5duhSurq6wtLTkk+kxMTEwMzPD9u3bCUcnDLHMgvoVT548QU5ODukwFEaMMzrlRduxlgdtY/77778BoNhGITQtsQ0ICCAdAhFF5xMtXrwYkyZNwoIFC/ht1tbWWLx4MVWJt5JqN9JYzqaoypUrS3WuVWXi/gZVc6o8lfJnibGTKwCUKlUKTZs2hampKcqWLQsDAwMcPHgQ8fHxpEMTxKVLl3DlyhWUKVNGaruVlRWeP39OKCrhubm5YejQoQgKCkLdunUBFMx2Gz58OFq3bk04OmFERETwXRCLysrKwqVLlwhEJDwxdnIdPHgwhgwZgqSkJDRp0gRAwXl60aJFGDduHOHohFG5cmXcuXMHO3fuRGxsLHR0dDBgwAD07NmTuk7cheLi4vhzV1HOzs5S3dMY9efu7o6pU6fKzOicNm0alUvHGXERy3Lbfv36/fR/s3DhQgwbNoyvRazuEhISZBKQXbp0wZIlS8gEJJBOnTpBIpHgR4sYacoZfGvZsmWYPHky1q9fr/L1ZlniTY3RtEpY3ou59u3bq323y0KBgYGIiIjAhQsXkJ2djd9//x0tWrTAjBkz4OTkRDo8QeTn5xf7NPHZs2dq87TiV2zevBn9+vWDi4sLf2Oem5uLtm3bIigoiHB0inXnzh3+73FxcXj58iX/Oi8vDydPnkTlypVJhCY4a2trxMTEyHzxnzx5EjVr1iQUlbB8fX1hYGCAZcuWYerUqQCASpUqYdasWVR26y2kp6eHIUOGkA5DadgsKPEQ44xOhmGA+fPno1u3bmqfeCu89tTR0Sk20VrcChR1Zm5ujrVr1363jnBMTAzq1aun5KiUx8XFBVlZWbCxsYGurq7MA1BVWkrNrpZUlFgK0P8smpKNw4YNg6mpKcaPH4+///6bP640c3d3R0BAAAIDAwEUPIFJT0/HzJkz8ccffxCOTjimpqY4fvw4EhIS+NmMNWrUwG+//UY4MsWrU6cOJBIJJBIJWrVqJfO+jo4OVq1aRSAy4Y0bNw4jRoxAVlYWOI7DjRs3sHv3br6TK40kEgl8fHzg4+PDfyfRnEQvlJiYiICAANy/fx8AYG9vjzFjxlBbk5TNghIPMc7oZMRj9uzZP3zfz89PSZGoHlrusdzc3PixREZGon79+vx70dHRsLCwIBWaIOrVq4dbt259N/FW0mw4ddezZ088f/4c8+fPh5mZmUrP7mPNFVSQWAvQy4OmhhIHDx7ExYsXERERgfv378PZ2RktWrRAixYt0KxZM74mFk2ePXuGtm3bguM4PHz4EC4uLnj48CHKly+PixcvUlsTSkyePn0KjuNgY2ODGzduwNTUlH+vTJkyqFChAt9tikY7d+7ErFmzkJiYCKBg9pe/vz8GDhxIODJGUU6dOgUPDw/UqVOHL+YbGRmJ2NhYHDlyhMpE1PPnz+Hq6op3797JzII6c+YMNYXXfwVN1yXMj4nxWNM25m/LQeTk5ODx48coVaoUqlWrhtu3bxOKjDwajvXTp0+lXuvr60vVlA4ODgYAqjqbXrp0CV++fEG7du2Kff/Lly+4efMmmjdvruTIlENXVxdXr15F7dq1SYdSIpZ4U0GdOnWCgYEBNm3ahHLlyvEnwYiICAwePBgPHz4kHSIxNHwpFOfjx4+4dOkS9u7di927d0NDQ4PKboBAwWzOkJAQ3LlzB+np6ahbty68vLyo7eQKFCyx3Lp1K8LDw/H69WuZqe80NhoQO5o7uTo7O8v9RJHGmxhnZ2e0bdtWqoEGAEyZMgWnT5+mcsxAwcV70VlQTk5ObBYU6LwuEduMTnnReKxLIoYxf/r0Cf3790fnzp3Rp08f0uEQI4ZjzdCnbt26WLt2LRo1akQ6lBKxpaYqSKwF6MXo3bt3uHDhAiIiIhAREYF///0XJiYm+P3330mHJphSpUqhd+/epMNQqjFjxmDr1q3o0KEDHBwcVHoatKLFxcUhOTlZptGCh4cHoYiEI5ZOrp06dSIdAlH3799HaGiozHZvb2+qO8mJra6dvDZs2AAzMzPSYSjM92Z01qpVi9oZnfKi7VjLQwxjNjQ0hL+/P/78809RJ95o1aFDBwQFBcHc3Jx0KEqze/dueHh4QE9Pj3Qoglu4cCHGjx+PefPmwdHRUeZhoKGhIaHIZLHEmwoSawF6edCUsHB0dMT9+/dhYmICV1dXDB48GM2bN6eusUJJba6LojEZAwAhISEIDQ2luo7dt5KSktC5c2fcvXtXqr5E4e9wcec4dSeWTq4zZ8786f+GpotAU1NTxMTEwM7OTmp7TEwMlTMcC4lhFtTKlSvl3reweUivXr2ECoeIKVOmwMfHp9gZnZMnT6Ym8SbGYy3GMcvr48eP+PjxI+kwGAFcvHgRmZmZpMNQqqFDh6Jhw4aimL1YuMS2VatWUnkCjuMgkUhU6n6DJd5UkFgL0MuDppXRw4YNQ/PmzeHg4EA6FEHJOztG1U6OilSmTBnY2tqSDkOpxowZA2tra4SHh8Pa2ho3btzAu3fvMH78eCxdupR0eAol5k6u8qLpInDw4MEYMmQIkpKS0KRJEwAFM4IWLVqEcePGEY5OGGKZBbVixQq59pNIJNR27RXLjE4xHmsxjvlb3yYfOY5Damoqtm/fjvbt2xOKSjX8/vvvVJd9EROa7pdLcv78edIhyI3VeFNBYi1AL08nVzEyNDRETEwMFTesYrVs2TIkJSVh9erVVM3a/JHy5cvj3LlzcHJygpGREW7cuIHq1avj3LlzGD9+PKKjo0mHqDAaGhr8cS3uK7Wwk6u3t7eyQ1MZNNWO4TgOAQEBWLZsGV68eAGgoInGxIkTMXr0aCp/x8Va106MqlatiuXLl6Nr165S20NDQzFhwgQkJycTioxh/jtra2up1xoaGjA1NUWrVq0wdepUalYWffr0Se59VWkpniLk5uZi165daNu2LczMzODg4IATJ06IqgkQTddc8sjKysKdO3eKraOtSqupWOJNRYmtAD3r5Pp9Yjt50qhz5844f/48ypYti1q1asnUHwgLCyMUmXBMTExw+/ZtWFtbo1q1aggKCkLLli2RmJgIR0dHZGRkkA5RYcTeyVUetJ7HPn/+DADU3Kx9j7a2Nu7evSuzvDYhIQFOTk7UNgMSo9mzZ2PFihWYMmVKsTM6fX19CUfIMExJij4QLAmNq010dXVx//59WFpakg5FKXJycqCjo4OYmBg4ODjg8uXLqF+/PrS0tEiHJriTJ0+ib9++ePv2rcx7qraaii01VVFiK0A/ZswYuLi4IDY2Vqrtc+fOnTF48GCCkTGK9L36IhKJBNra2rC1tYWrqyt1SQpjY2N07tyZdBhK5eDggNjYWFhbW6Nhw4ZYvHgxypQpg8DAQOqSL4UXdt8+ZWPoR3vCrZBY69o9e/YMhw8fLrZBzPLlywlFJSxfX18YGBhg2bJlmDp1KoCCGZ2zZs2idvkhIM5jLcYxBwcHo379+qhZs6bU9qysLISGhqJv376EIlOsosvvnjx5gilTpqB///5o3LgxAODq1avYtm0bFixYQCpEQTVo0AAxMTGiSbyVLl0aFhYWfJKpWbNmhCNSnlGjRqFr167w8/NT+UYwbMabihB7Afpy5crhypUrqF69utTMiCdPnsDe3p6q2TE/i6aZItbW1njz5g0yMjJgYmICAPjw4QN0dXWhr6+P169fw8bGBufPnxfVlHAanTp1Cl++fIGnpycePXqE//3vf0hISEC5cuWwZ88etGrVinSIghFTJ1d5qft5zNnZWe7ZAzQuuxTjLKjw8HB4eHjAxsYG8fHxcHBwwJMnT8BxHOrWrUtNl+IfEcuMTjEeazGOGSiYCaanp4etW7eiS5cu/PZXr16hUqVKKjU7RlHc3NwwaNAg9OzZU2r7rl27EBgYiIiICDKBCSg0NBRTp06Fj48P6tWrJ9PYibZGdgCwadMmhIWFYfv27ShbtizpcJTG0NAQ0dHRatHoiSXeVISGhoZc+6nalElFMTExQWRkJOzt7aVu0C5fvowuXbrg1atXpEMkRt1vWIvavXs3AgMDERQUxJ8gHz16hKFDh2LIkCFo2rQpevTogYoVK2Lfvn2Eo2UU7f379zAxMaGyBhYgzk6u8lL385i/v7/c+/5K11dVJ8a6dg0aNED79u3h7+/Pf34rVKgALy8vtGvXDsOHDycdIqMgYjzWYhwzUHC/tXTpUsyYMQOTJk3CrFmzANCdeNPV1UVsbGyxpQLq1KlD5eSG4u6rC6/LaL2XdnZ2xqNHj5CTkwNLS0uZZCONDwWBgsY/TZs2xcCBA0mHUiKWeGNUQvfu3WFkZITAwEAYGBjgzp07MDU1RceOHWFhYYEtW7aQDpEYmporVKtWDfv370edOnWktkdHR6NLly5ISkrClStX0KVLF6SmppIJUiD79u1DaGhosTOhaP0yFJs///wTmpqaCAoKKraT6++//046RIXKy8tDZGQknJycYGxs/MN9xVjcePfu3fDw8JC5+FV3YpkFZWBggJiYGFSrVg0mJia4fPkyatWqhdjYWHTs2BFPnjwhHaLCiH1Gp5iOdSExjhkoSMi8fPmSf1DWtGlTbN++HZ8+faI28Va9enV07NgRixcvlto+adIkHDp0CA8ePCAUmXCePn36w/dpXIJa0gNCGh8KAkBGRga6du0KU1NTODo6ytTRVqUSCazGG6MSli1bhrZt28Le3h5ZWVno1asX38l19+7dpMMjiqbceGpqKnJzc2W25+bm4uXLlwAKZlEU3tjRYuXKlZg+fTr69++PQ4cOYcCAAUhMTERUVBRGjBhBOjyF8fT0lHtfGhtKXL16FefOnUP58uWhoaEBDQ0NNGvWDAsWLMDo0aOp6uQKAJqamnB3d8f9+/dLTLzdu3dPOUGpkKFDh6Jhw4ZUPDQpivaEWyE9PT3+IYm5uTkSExNRq1YtACi2iLM669SpE+kQiBLTsS4kxjED/zcDvVGjRrh+/To8PDzQpEkTqpu4rVixAl26dMGJEyfQsGFDAMCNGzfw8OFD7N+/n3B0wqAxsVYSWhNrJdm9ezdOnz4NbW1tRERESD1EkkgkLPHG/JgYC9BXqVIFsbGxUp1cBw4cSHUnV3mdOHEClStXJh2GQrRs2RJDhw5FUFAQnJ2dARTMdhs+fDhf8+vu3bsy7d7V3dq1axEYGIiePXti69atmDRpEmxsbODn54f379+TDk9hjIyMSIdAVF5eHp+UKF++PF68eIHq1avD0tKSyifKQMFMtqSkJOp+ZxVB3R+aiH0WVKNGjXD58mXUrFkTf/zxB8aPH4+7d+8iLCwMjRo1Ih2eQv3KDRtNMzrFdKwLiXHMgPR52cLCAleuXIGXlxfatGlDMCph/fHHH0hISMC6desQHx8PoGCG/rBhw6idhb5t2zaUL18eHTp0AFAwuy8wMBD29vbYvXs39Ym5v//+G7Nnz0b58uVJhyK46dOnw9/fH1OmTJG7dBcpbKmpCmIF6Ok1btw4ufelsaPUy5cv0adPH4SHh/NTgXNzc+Hm5obt27fDzMwM58+fR05ODtzd3QlHqzhF25pXqFABZ86cQe3atfHw4UM0atQI7969Ix0iMZGRkXBxcaGi5fnvv/+O8ePHo1OnTujVqxc+fPiAGTNmIDAwELdu3aJy1tfJkycxdepUzJkzp9gCxoaGhoQiI4/VtVNvSUlJSE9Ph5OTE758+YLx48fjypUrsLOzw/Lly6m/cSsJTWUwxHisxThmoOC8NnHiROjq6kptnzlzJi5evCjVDZRRX9WrV8e6devQqlUrXL16FW5ubggICMDRo0dRqlQpKlddFEXT+bkkZcuWRVRUFGuuwPwasRSgF2Mn15YtW0q9vn37NnJzc1G9enUABYVONTU1Ua9ePWo7SgFAfHw8EhISABR8ORaOn1Y2NjbYv38/nJ2d4eLigsGDB2Po0KE4ffo0evToQdWst59F08WBGDu5Fn26WHR2FM0FjOWl7om3X0HTLCjmx8T4+WboQXv38Tt37sDBwQEaGhq4c+fOD/elscOnrq4u4uPjYWFhgcmTJyM1NRXBwcH4999/0aJFC7x584Z0iIIS0/nZx8cHpqammDZtGulQSsSWmqqgGTNmYP/+/VKZW1tbWyxdupQvQL948WKpNtjqSN6aIjTdvBV9krZ8+XIYGBhg27ZtUjMbBwwYQF0R9m/VqFGDT7bR2A3vW61atcLhw4fh7OyMAQMGwMfHB/v27cPNmzd/qi4ajWh69tO2bVv+77a2toiPj6e+kyubHcAURVNdu6ioKOTn5/M1kQpdv34dmpqacHFxIRQZo2hiPNZiHDNQMNPP09MTd+7cobr7eJ06dfDy5UtUqFABderUkRprUTTdYxWlr6+Pd+/ewcLCAqdPn+ZXHGlrayMzM5NwdIwi5eXlYfHixTh16hScnJxkmiuo0goylnhTQWIpQJ+fn086BKKWLVuG06dP80k3ADAxMcHcuXPh7u6O8ePHE4xOOMHBwViyZAkePnwIAPjtt98wceJE9OnTh3BkwgkMDOQ/7yNGjEC5cuVw5coVeHh4YOjQoYSjY4RUtmxZ0iEIqnnz5qRDYFQITYn0ESNGYNKkSTKJiefPn2PRokW4fv06ocgYRRPjsRbjmAFgzJgxsLKywtmzZ4vtPk6Lx48fw9TUlP+72LRp0waDBg2Cs7MzEhIS8McffwAA/v33X1hZWZENTgnUPUfwM+7evcvXDf+2pIuqPfRmiTcVJNYC9GLz6dOnYqc6v3nzhtoT5vLly+Hr64uRI0eiadOmAIDLly9j2LBhePv2LXx8fAhHKIzCDpeFevTogR49esjsJ6ZiqLQQeydXALh06RI2bNiApKQk7N27F5UrV8b27dthbW2NZs2akQ5PofLy8hAZGQknJ6cSO7laWlrKPHll1EdcXBzq1q0rs93Z2RlxcXEEImKEIsZjLcYxA+LpPl5Yoy8nJwf+/v7w9fUV1X3jmjVrMGPGDKSkpGD//v0oV64cAODWrVvo2bMn4eiEcfv2bZQuXRqOjo4AgEOHDmHLli2wt7fHrFmzUKZMGcIRCkOdVl6wxJsK2rRpE/r06YN69erJFKDftGkTgIIptMuWLSMZpkKJsZNr586dMWDAACxbtgwNGjQAUDDFf+LEidQuP1y1ahXWrVuHvn378ts8PDxQq1YtzJo1i9rEm7x27NiBCRMmsMSbGhF7J9f9+/ejT58+8PLywu3bt5GdnQ0A+PjxI+bPn4/jx48TjlCxNDU14e7ujvv375eYeKOxmYaYaGlp4dWrVzLLZlNTU1GqFLt8pokYj7UYxwyIr/t46dKlsX//fvj6+pIORamMjY2xevVqme0/0zRI3QwdOhRTpkyBo6MjkpKS0KNHD3Tu3Bl79+5FRkYGAgICSIcoeqy5ggoTUwF6MXZyzcjIwIQJE7B582bk5OQAAEqVKoWBAwdiyZIlVBan1tbWxr1792Brayu1/eHDh3B0dERWVhahyFSDmIqhFqKpuYK8aOrk6uzsDB8fH/Tt21fq8xsdHY327dvz5RFo4uLigkWLFsHNzY10KCqHpnNYz549kZqaikOHDvEJ9rS0NHTq1AkVKlRAaGgo4QgV72dmdDo4OODEiRNUXJOJ8ViLccyAOLuP9+vXD3Xq1KH+4XZJTSSKorGhhJGREW7fvo1q1aph0aJFOHfuHE6dOoXIyEj06NEDKSkppEMUPZZ4U3HfFv2klVg6uRbny5cvSExMBABUq1aNyoRbIQcHB/Tq1Uum88zcuXOxZ88e3L17l1BkqoGmm1Z5iXHMNCUbdXV1ERcXBysrK6ljmZSUBHt7eyqT6SdPnsTUqVMxZ84c1KtXT+acbWhoSCgy8mj6fX7+/DlcXV3x7t07vuxHTEwMzMzMcObMGSoSTsXR1tbG/fv3RbUsTYzHWoxjBsTZfXzu3LlYtmwZ3Nzciv3OGj16NKHIFEtDQ+O7TSQA8O/R2lDC0NAQt27dgp2dHdq0aYP//e9/GDNmDJKTk1G9enXWVEIFsMSbihJbAfpq1aph//79qFOnjtT26OhovpPrlStX0KVLF6SmppIJkvnP9u/fj+7du6N169Z8jbfIyEiEh4cjNDQUnTt3JhwhWTTdtAIFS+QjIiKQmJiIXr16wcDAAC9evIChoSH09fVJh0cMTcfZxsYGgYGBaN26tdS4goODsXDhQiprBRWt11j0oRitF/RinQUFFDwY27lzJ2JjY6GjowMnJyf07NmT6tp9Yp3RKcZjLcYxF4f27uM/SqJLJBIkJSUpMRrhPH36VO59C2vg0aRVq1aoWrUqWrdujYEDByIuLg62tra4cOEC+vXrhydPnpAOUfToXcSvxsRYgF4snVyLatmy5Q+/5M+dO6fEaJSjS5cuuH79OlasWIGDBw8CAGrWrIkbN27wT1wZOjx9+hTt2rVDcnIysrOz0aZNGxgYGGDRokXIzs7G+vXrSYfIKMDgwYMxZswYbN68GRKJBC9evMDVq1cxYcIEamvKqFMhX0UQc107PT09DBkyhHQYSjV37lxMmDBBdDM6xXisxTjm4tDefVwsXU3lTabROucoICAAXl5eOHjwIKZPn86X9dm3bx+aNGlCODoGYIk3lSTGAvRi7OT67ey+nJwcxMTE4N69e+jXrx+ZoJSgXr162LFjB+kwGIGNGTMGLi4uiI2N5btJAQVNRQYPHkwwMkaRpkyZgvz8fLi5uSEjIwOurq7Q0tLChAkTMGrUKNLhCaJ58+akQ1A6BwcHJCUlUfUdLI/ExEQEBATg/v37AAB7e3uMGTOGL4lBoz/++ANAwXWnGGZ0FhLjsRbjmMVOLCWM+vfvjzVr1sg8OHjy5An69OmDS5cuEYpMOE5OTsWW7FmyZAlVzQnVGUu8qaDU1NRiM9NNmjShdpmlGDu5rlixotjts2bNQnp6upKjUZ68vDwcPHiQv9CrVasWPDw82JcCgN69e1Mzm+DSpUu4cuWKTPtyKysrPH/+nFBUjKJJJBJMnz4dEydOxKNHj5Ceng57e3vqlxJfunQJGzZsQFJSEvbu3YvKlStj+/btsLa2RrNmzUiHp3BinAV16tQpeHh4oE6dOlKlEWrVqoUjR46gTZs2hCMUhthmdALiPNZiHLOYbdq0CStWrOBLGNnZ2WHs2LEYNGgQ4ciEERsbCycnJ+zYsQONGzcGAGzbtg2jR4+mso7fj2hra5MOgfn/WI03FSTmAvRi6uT6PY8ePUKDBg3w/v170qEo3KNHj9ChQwc8e/aMP7YPHjxA1apVcezYMaqesoq9u5KJiQkiIyNhb28vVfvr8uXL6NKlC169ekU6RGJoaq5QVGHHLFrqe33P/v370adPH3h5eWH79u2Ii4uDjY0NVq9ejePHj+P48eOkQ1Q4sdW1Awo69rZt2xYLFy6U2j5lyhScPn0at2/fJhQZo2hiPNZiHLNY+fn5Yfny5Rg1ahSfhLp69SpWr14NHx8fzJ49m3CEipeTk4Np06Zh5cqVGD9+PB49eoQTJ05g+fLlVK26+JnahDTeV6oblnhTQWIvQC+WadDfs337dkyePBkvXrwgHYrC/fHHH+A4Djt37uRrarx79w69e/eGhoYGjh07RjhCxSnaXamkzzKNN63du3eHkZERAgMDYWBggDt37sDU1BQdO3aEhYUFtmzZQjpEYmhqrpCbmwt/f3+sXLmSn6mrr6+PUaNGYebMmVQW6XZ2doaPjw/69u0rdSyjo6PRvn17vi4pTS5cuPDD92lcfqutrY27d+/Czs5OantCQgKcnJyo7NhbSGwzOsV4rMU4ZrEyNTXFypUr0bNnT6ntu3fvxqhRo/D27VtCkQlv5syZmDNnDkqVKoULFy7wiUdabNu2Te59aS5jpC7YUlMVJNYC9GLr5Orp6Sn1muM4pKam4ubNm9QWJb9w4QKuXbsmVci2XLlyWLhwIZ9kpkXRYrbR0dGYMGECJk6cKPW0cdmyZVi8eDGpEAW1bNkytG3bFvb29sjKykKvXr3w8OFDlC9fHrt37yYdnmDk6eRKU5OYUaNGISwsDIsXL5b6bM+aNQvv3r3DunXrCEeoeA8ePICrq6vMdiMjI6SlpSk/ICWgMbFWElNTU8TExMgkJmJiYlChQgVCUQmv6IzO27dvIzs7GwDw8eNHzJ8/n8oZnWI81mIcs1jl5OTAxcVFZnu9evWKbWxHg5ycHEyZMgVr1qzB1KlTcfnyZXh6emLTpk18HUsasGSaemGJNxUltgL0YuzkamRkJPVaQ0MD1atXx+zZs+Hu7k4oKmFpaWkVm3RIT0+XqQWm7op2V+ratStWrlwp9WXv5OSEqlWrwtfXF506dSIQobCqVKmC2NhYhISE4M6dO0hPT8fAgQPh5eUFHR0d0uEJQoydXHft2oWQkBC0b9+e31b42e7ZsyeVibeKFSvi0aNHsLKyktp++fJlKmYxfo/YZkENHjwYQ4YMQVJSEl93NzIyEosWLcK4ceMIRyecuXPnYv369ejbty9CQkL47U2bNsXcuXMJRiYcMR5rMY5ZrPr06YN169Zh+fLlUtsDAwPh5eVFKCphubi4ICMjAxEREWjUqBE4jsPixYvh6ekJb29vrF27lnSICrd161b0799fZntubi58fX2xYMEC5QfFSOMYlZSbm8vt27ePmzNnDjdnzhwuLCyMy83NJR2WYKysrLht27bJbN+6dStnZWVFICJGCH369OFq1arFXbt2jcvPz+fy8/O5q1evcg4ODly/fv1IhycYbW1tLi4uTmZ7XFwcp62tTSAiRggdO3bkevfuzWVnZ3P6+vpcYmIix3Ecd/78ec7W1pZwdMIwNTX97me7fPnyBCIS3vz58zl7e3vu2rVrnIGBAXfp0iVux44dnKmpKbdy5UrS4Qli3759nI6ODjdo0CBOS0uL/2yvWrWKa9++PeHohJGfn88tX76cq1y5MieRSDiJRMJVrlyZCwgI4PLz80mHJxgdHR3u8ePHHMdxUuexxMRETktLi2BkwhHjsRbjmMXEx8eH/zNq1CjOwMCAq1WrFjdw4EBu4MCBnIODA2doaMiNHDmSdKiC8Pb25tLT02W23759m6tVqxaBiIRnYGDA/fXXX9z79+/5bfHx8VzdunU5S0tLcoExPFbjTQWJqQB9IW1tbdy7dw+2trZS2x8+fAhHR0eqa03cunVLqsMnzcuJ09LS0K9fPxw5coSv/ZSTk4OOHTtiy5YtMDY2JhugQOrWrQsHBwcEBQXxM/u+fv2KQYMG4d69e9QUMT58+LDc+3p4eAgYCRnlypXDlStXUL16danaX0+ePIG9vT0yMjJIh6hws2fPRnx8PLZs2QItLS0AQHZ2NgYOHAg7OzvMnDmTcISKx3Ec5s+fjwULFvDHVEtLi+/6SSMx1rUrqnCmtoGBAeFIhGdjY4PAwEC0bt1a6lgHBwdj4cKFiIuLIx2ioMR0rAuJccy0a9mypVz7SSQSnDt3TuBoVEt2djZ/vUKTxMRE9O7dGykpKdiyZQsSEhIwadIkdOrUCWvXrpVZacUoH0u8qSAxFaAvJMZOrq9fv0aPHj0QERHBJ5zS0tLQsmVLhISEwNTUlGyAAnr06BGfbKxZs6ZMwpU2N27cwJ9//gmO4/gOpnfu3IFEIsGRI0fQoEEDwhEqRtHOhz9CaxdEMXZy7dy5M8LDw6GlpYXatWsDAGJjY/H161e4ublJ7RsWFkYiRMF8/foVjx49Qnp6Ouzt7fkafjTS1dVFXFwcrKyspD7bSUlJfB1Hhg4LFizAjh07sHnzZrRp0wbHjx/H06dP4ePjA19fX4waNYp0iAzDMHLr0KEDgoKCYG5uTjoUweXn52Ps2LFYs2YNNDU1sW3bNpmmGgw5rMabChJTAfpC/v7+6N69Oy5evFhsJ1cajRo1Cp8/f8a///6LmjVrAgDi4uLQr18/jB49msoC9MXVDTl//jwkEgm0tbVha2uLjh07Sn32adCgQQMkJSVh586diI+PB1DQ9bNXr17Q09MjHJ3i5Ofnkw6BKHd3dwQEBCAwMBBAQYIxPT0dM2fOpKqYb1HGxsbo0qWL1LaqVasSika5ypQpAwMDAxgYGFCddAPEU9fO2dlZ7o7qtMxU/taUKVOQn58PNzc3i2nJWAAAVJdJREFUZGRkwNXVlZ/RSVPSTYzHWoxjZoAtW7agR48e1NbXLcnFixeRmZlJOgylOHbsGEJCQtC4cWMkJCRg06ZNaN68OSpVqkQ6NAZsxptKKlu2LI4ePcoXOy0UGRmJP//8E+/fvycUmbBu3bqFFStWSM2EGj9+PLVLL42MjHD27FnUr19favuNGzfg7u5OZXe8li1b4vbt28jLy+OXUSckJEBTUxM1atTAgwcPIJFIcPnyZdjb2xOOlmF+zrNnz9C2bVtwHIeHDx/CxcWF7+R68eJF1imOErm5ufD398fKlSuRnp4OANDX18eoUaMwc+ZMfhk9TcQyC8rf31/ufWlcRl0U7TM6xXisxThmBjAzM0NmZia6du2KgQMHytxf0q7oLG2aDR06FNu2bcO8efMwbtw4vHr1Ct7e3rh+/TrWrVuHbt26kQ5R9FjiTQX17dsXt2/fxqZNm/glaNevX8fgwYNRr149bN26lWyAjEIYGBjg0qVLqFOnjtT26OhoNG/eHJ8+fSITmIACAgJw6dIlbNmyBYaGhgCAjx8/YtCgQWjWrBkGDx6MXr16ITMzE6dOnSIcrWI9fPgQ58+fx+vXr2Vmhvn5+RGKSjgrV64sdnvR2Y2urq7Q1NRUcmTCys3NlerkWrduXao7uWZmZoLjOOjq6gIo6Ox64MAB2NvbU9udefjw4QgLC8Ps2bPRuHFjAMDVq1cxa9YsdOrUicpOrmKsayev3bt3w8PDg6rZy4VSUlIAiGcWa0loPtbfI8Yx0yY3NxdHjhzB1q1bceLECdjY2GDAgAHo168fKlasSDo8wTk4OODEiRPUn8ccHBywc+dOvuxHoTVr1mDy5Mn8g0KGHJZ4U0FiLUCfl5eHgwcPSjUa8PDwoO7GvFDHjh2RlpaG3bt381OAnz9/Di8vL5iYmODAgQOEI1S8ypUr48yZMzKz2f7991+4u7vj+fPnuH37Ntzd3fH27VtCUSrexo0bMXz4cJQvXx4VK1aUWuohkUioXNJhbW2NN2/eICMjAyYmJgCADx8+QFdXF/r6+nj9+jVsbGxw/vx56i+GaObu7g5PT08MGzYMaWlpqF69OsqUKYO3b99i+fLlGD58OOkQFc7IyAghISFo37691Pbjx4+jZ8+e+PjxI6HIhEf7LKhfYWhoiJiYGGpmU4hxRqe8aDvW8hDjmGn26tUr7NixA9u2bUN8fDzatWuHgQMH4s8//5S7Ti+jmn7UNOLBgwf8SqPIyEi4uLhQ2WBC1bEabyrI2NgYhw4dElUB+uI6uS5YsIDqTq6rV6+Gh4cHrKys+MRDSkoKHBwcsGPHDsLRCePjx494/fq1TOLtzZs3/Aw/Y2NjfP36lUR4gpk7dy7mzZuHyZMnkw5FaebPn4/AwEAEBQXxv7+PHj3C0KFDMWTIEDRt2hQ9evSAj48P9u3bRzjaXyf2Tq63b9/GihUrAAD79u1DxYoVER0djf3798PPz4/KxJuWlpZMrTOgINlc2LWYVmKqaycv2p5fjxo1CmFhYVi8eLHMjM53795ROaNTXrQda3mIccw0MzMzQ7NmzZCQkICEhATcvXsX/fr1g4mJCbZs2YIWLVqQDlFhLl26hA0bNiApKQl79+5F5cqVsX37dlhbW6NZs2akw1O4HyXSCu+tAaB9+/YsmU4IS7ypIDEWoB89ejRsbGxw9epVmU6uo0ePprKTa9WqVXH79m2cPXuWL7hfs2ZNtG7dmnBkwunYsSO8vb2xbNkyvrZdVFQUJkyYgE6dOgEoqHH322+/EYxS8T58+ICuXbuSDkOpZsyYgf3790slzW1tbbF06VJ06dIFSUlJWLx4sUxhfnVT+LktCa2dXDMyMmBgYAAAOH36NDw9PaGhoYFGjRrh6dOnhKMTxsiRIzFnzhxs2bKFv9DNzs7GvHnzMHLkSMLRCYPNghKPXbt2yczodHJyQtWqVdGzZ09RJ94YRl29evUK27dvx5YtW5CUlIROnTrh6NGjaN26Nb58+YLZs2ejX79+1Hxv79+/H3369IGXlxdu376N7OxsAAUTAObPn4/jx48TjpAclkwnhyXeVFB0dPQPC9CvXbsW48ePp6oAvRg7uQIFN+Nt2rRBmzZtSIeiFBs2bICPjw969OiB3NxcAECpUqXQr18/ftZMjRo1EBQURDJMhevatStOnz6NYcOGkQ5FaVJTU/ljXFRubi5evnwJAKhUqRI+f/6s7NAUSuydXG1tbXHw4EF07twZp06dgo+PDwDg9evXfB1H2kRHRyM8PBxVqlTha6nExsbi69evcHNzg6enJ79vWFgYqTAVis2CEg8xz+hkGBr9+eefOHXqFH777TcMHjwYffv2lbrf0tPTw/jx47FkyRKCUSrW3LlzsX79evTt2xchISH89qZNm2Lu3LkEI2PEjCXeVFDhbLaSCtD7+PhQU4BeS0ur2Bvw9PR0qi70vldwvjijR48WMBIy9PX1sXHjRqxYsQJJSUkAABsbG6klS982m6CBra0tfH19ce3aNTg6OsrMDqHxWLds2RJDhw5FUFAQ35k4Ojoaw4cPR6tWrQAAd+/ehbW1Nckwmf/Iz8+P/z5yc3PjkzKnT5+mtiO1sbGxzExN2usUsllQ4iHGGZ0MQ7MKFSrgwoUL/PdzcUxNTfH48WMlRiWsBw8ewNXVVWa7kZER0tLSlB8Qw4A1V1BJYixAL5ZOrvImGSQSCZ+YYtTfj447rcf65cuX6NOnD8LDw/lEY25uLtzc3LB9+3aYmZnh/PnzyMnJoab7pVg7ub58+RKpqamoXbs2X5z5xo0bMDQ0RI0aNQhHxyhC4Y1bzZo1pbbfv38frq6uePPmDaHIyDMwMEBsbCw19XI6d+6M8PBwaGlpFTujsyhaZnTKi7ZjLQ8xjplRfzY2NggMDETr1q2lPsPBwcFYuHAh4uLiSIdIDPudJofNeFNBYixAv3LlSvTr1w+NGzeW6eQaEBBANjgFoulpEiM/MR73ihUr4syZM4iPj0dCQgKAguKuRQu8tmzZklR4glixYoUoO7lWrFgRFStWlNpW+ACFRpmZmeA4Drq6ugCAp0+f4sCBA7C3t6cmifwtsc2CysvLQ2RkJJycnErsJG9paUlVjTuxzegU47EW45jFLjw8HOHh4Xj9+rVMiYzNmzcTiko4gwcPxpgxY7B582ZIJBK8ePECV69exYQJE+Dr60s6PKIkEgnpEESLzXhTQV5eXrh69WqxBeibNGmC7du3IyQkBEuXLsXNmzcJR6tYYurkyjBiUfg1Q/uX/e7du+Xq5FqxYkW17uTq6emJrVu3wtDQUKqeWXFonBHj7u4OT09PDBs2DGlpaahevTrKlCmDt2/fYvny5VR2chXjLChtbW3cv3+fLYcXATEeazGOWaz8/f0xe/ZsuLi4wNzcXOZa7MCBA4QiEw7HcZg/fz4WLFiAjIwMAAVljSZMmIA5c+YQjo4sNuONHDbjTQWJsQC9GDu5dunSBQ0aNMDkyZOlti9evBhRUVHYu3cvocgYITx79gyHDx9GcnKyzGzV5cuXE4pKWMHBwViyZAkePnwIAPjtt98wceJE9OnTh3BkwhBLJ1cjIyP+wt3IyIhwNMp3+/Zt/rt43759qFixIqKjo7F//374+flRmXgT2ywoAHBwcEBSUpLoEhNinNEpxmMtxjGL1fr167F161Zqr72KI5FIMH36dEycOBGPHj1Ceno67O3tpWpKi5W6NzVTZ2zGmwpLT0//bgF62rRs2fKHnVwfPHgAiURCVSdXU1NTnDt3Do6OjlLb7969i9atW+PVq1eEImMULTw8HB4eHrCxsUF8fDwcHBzw5MkTcByHunXr4ty5c6RDVLjly5fD19cXI0eO5DsTX758GWvWrMHcuXP57pc00dXVxcWLF+Hi4iK1PSoqCs2bN0dGRgaePHkCBwcHpKenE4qS+a90dXURHx8PCwsLdOvWDbVq1cLMmTORkpKC6tWr80/XGfV28uRJTJ06FXPmzEG9evWgp6cn9T6tXXvFOKNTjMdajGMWq3LlyuHGjRtSDwUZuhw/fhxhYWEoW7YsvL29perrfvjwAV26dKHyXkPdsMQboxICAgJw6dKlEju5ZmZmUtPJVUdHBzExMVI1rwAgPj4ezs7OyMzMJBQZo2gNGjRA+/bt4e/vz0/xrlChAry8vNCuXTsqb2Ssra3h7++Pvn37Sm3ftm0bZs2aRWXduw4dOuDly5cynVwHDx6MihUr4ujRozhy5AimTZuGu3fvEo6W+VVOTk4YNGgQOnfuDAcHB5w8eRKNGzfGrVu3+M8AbcQ4C6qwUQggvUye4zhIJBLk5eWRCEtw5cuXx4ULF1CrVi0EBQVh1apVUjM6C8uB0ESMx1qMYxaryZMnQ19fX1S1zTp37lxseZOiK6l69eolcw+mjnbt2oW+ffuiXbt2+PjxI27evImgoCB4eXkBAF69eoVKlSqx32kVwJaaMiphyZIlOHPmjNQTNiMjI8yaNQvu7u4YM2YM/Pz8qLrAd3R0xJ49e+Dn5ye1PSQkhJpZfUyB+/fvY/fu3QAKlo1nZmZCX18fs2fPRseOHalMvKWmpqJJkyYy25s0aYLU1FQCEQlv06ZN6NOnD+rVqyfTyXXTpk0AAH19fSxbtoxkmAr16tUrTJgwgS/a/O2zPBov9Pz8/NCrVy/4+PjAzc0NjRs3BgCcPn2aT7jSpmPHjlKzoBo0aED9LKjz58+TDoGIjIwMGBgYACj4THt6ekJDQwONGjXC06dPCUcnDDEeazGOWUyKlvDJz89HYGAgzp49CycnJ5lmGTSWOzEyMsLBgwdhbGyMevXqASgoE5GWlgZ3d3fs2bMHixYtQnh4OL8qQ10tWbIEy5cvx+jRowEAoaGh8Pb2RlZWFgYOHEg4OqYolnhjVIIYO7n6+vrC09MTiYmJaNWqFYCCJYm7d+9m9d0oo6enx392zc3NkZiYiFq1agEA3r59SzI0wdja2iI0NBTTpk2T2r5nzx7Y2dkRikpYYuzk2r9/fyQnJ8PX17fYos00+uuvv9CsWTOkpqbyjQYAwM3NDZ07dyYYmXDEWNeuefPmpEMgwtbWFgcPHkTnzp1x6tQpvizA69evqV1+KMZjLcYxi0l0dLTU6zp16gAA7t27J7Wd1u/sihUrolevXli9ejU/uzM/Px9jxoyBgYEBQkJCMGzYMEyePBmXL18mHO1/8/DhQ/z555/8627dusHU1BQeHh7Iycmh9rpELXEMowJ69erFWVtbc2FhYVxKSgqXkpLChYWFcTY2Nlzv3r05juO43bt3c/Xq1SMcqWIdPXqUa9KkCaerq8uVK1eOa9myJRcREUE6LEbBOnbsyAUGBnIcx3Hjx4/nbG1tublz53J169bl3NzcCEcnjH379nGamppc27ZtudmzZ3OzZ8/m2rZty5UqVYoLCwsjHZ7g8vPzufz8fNJhCE5fX5+Ljo4mHQYjMB0dHe7p06ccx3Fc165duVmzZnEcx3HJycmcjo4OydAEdfHiRc7Ly4tr3Lgx9+zZM47jOC44OJi7dOkS4ciEs3fvXq506dKchoYG16ZNG377/PnzuXbt2hGMTFhiPNZiHDPzfSkpKVxeXh7pMBSifPny3IMHD2S2P3jwgCtXrhzHcRx3584dzsjISMmRKZ65uTl39epVme0RERGcvr4+N336dE5DQ4NAZMy3NEpOzTGM8DZs2AA3Nzf06NEDlpaWsLS0RI8ePeDm5ob169cDoK+TK1BQEyoyMhJfvnzB27dvce7cOZmnkLt378aXL18IRcgowvLly9GwYUMABW3d3dzcsGfPHlhZWfFLEGnTpUsXXL9+HeXLl8fBgwdx8OBBlC9fHjdu3KD66VtwcDAcHR2ho6MDHR0dODk5Yfv27aTDEkzVqlVllpfSyNPTk5997enp+cM/NCqcBZWSkoJTp07xZR9ongW1f/9+tG3bFjo6Orh9+zays7MBFMzQnz9/PuHohPPXX38hOTkZN2/exMmTJ/ntbm5u/KxH2ojxWItxzMz/a+/O47Is8z7ufy9UUJTVwZ0RkRRIQTJr1EFEHXMZl7DF0FEzKbtzo+weM8ulUm9LJaf7nkwTy1LHBWdyKTUFXHMJpDI3NCVNxcQNyQW4nj98up4Ip5nnvrk47Dw/79fL1wuP8yK/h2fCxe/8HcfxyyIjI3X8+HHTMSpEcXGxDh48WG784MGDri0wqlevbomOv/vuu08ff/xxufG4uDitXr1aKSkplR8Kt8XhCrij2Okk13+Xr6+v9u3bp9DQUNNRAPwCO57kumHDBs2cOVNz585VSEiI6Thu8/jjj2vOnDny8fHR448//ouvTU1NraRUlWfFihVKTExUSUmJOnfurA0bNkiSpk2bpi1bttz2Tf+vXUxMjJKTkzVo0CDXoTihoaHKzs5W9+7dLXmIhl3Z8V7bcc74ZT/9/+DXbtSoUVqyZInGjx+vNm3aSLp1wvzUqVOVmJioN998U/Pnz9fChQt/9UtNMzMztWPHDr3wwgu3vZ6enq7333/fku9Nfm0ovAF3OCt9I8St4nJpaWmZMat2jJSUlOjvf/+76xS8u+++W71791aVKlUMJ3MPu5zkGhAQUOYp8dWrV1VcXCxvb+9ymzYXFBRUdjy4yZkzZ1z72v24Z87u3bvl6+ur8PBww+kqnre3t77++muFhISU+T587NgxRUZG6tq1a6YjVpiEhAQtXLhQvr6+/7JrMy0trZJSVR473esf2XHO+GVW+nmjpKRE06dP11tvvaWzZ89KkurWrauRI0fqz3/+s6pUqaK8vDx5eHioUaNGhtPCLjhcAQDc7JtvvtGIESOUkZFR5s2s0+mUw+Gw5MmPubm56tmzp06ePOk6XGDatGkKDg7W2rVr1bRpU8MJK55dTnJl2YI91atXT/Xq1Sszdt999xlK43716tVTbm5uuU7Obdu2WeIH05/y8/NzFdP9/PwMp6l8drrXP7LjnGEPxcXFWrx4sYYNG6YXX3zRtU3Ezx9y//a3vzURz23WrVunKlWq6IEHHigzvn79epWWlqp79+6GkuFHFN4AwM0GDhwop9OpBQsWqG7dupbYU+JfGTVqlEJDQ7Vz504FBgZKks6fP6+BAwdq1KhRWrt2reGEFc8uJ7kOHjzY9fGgQYPUsWNHxcXFWbKYejtnz57V2LFjtWnTJuXn55fb484qhXS7d0ElJSVp9OjRWrBggRwOh7777jvt3LlTY8eO1UsvvWQ6XoX66RIkOy5HstO9/pEd5wx7qFq1qoYPH+5abWHVVSU/N27cOE2fPr3cuNPp1Lhx4yi83QEovAGAm+Xk5Ojzzz93dX7ZQWZmpj777DNX0U2SateurenTp7v2P7OayZMn69FHH9WWLVtcc9y+fbs2bdqkZcuWGU7nHl5eXpo+fbqSkpLUoEEDxcXFuQpxVio2/tSQIUOUl5enl156SfXr17dsId3uXVDjxo1TaWmpOnfurKKiInXo0EFeXl4aO3asRo4caToeKpAd77Ud54xfZqXvZffdd5+ys7PVuHFj01EqzZEjRxQZGVluPDw8XLm5uQYS4efY4w24w1lpzwW7io+P14svvqguXbqYjlJpAgMDtWbNmnJLL7dv365evXpZdu+vzz//XLNnz3Y9aY2IiNBzzz2nmJgYw8nc69SpU9qyZYsyMzOVmZmpw4cPq379+jp58qTpaBXOx8dHW7duVatWrUxHQSW4ceOGcnNzVVhYqMjISMsf+mSXjs7bsdu9luw5Z9yelX7eWLZsmV544QUlJyerdevWqlmzZpnrUVFRhpK5T7169bR48WJ16tSpzPinn36qxMRE5efnG0qGH9HxBhhQUlKi7du3KyoqSv7+/r/42saNG5fbsBy/LvPnz9fw4cN16tQptWjRotz9tOIbgD/+8Y968skn9e6777r2gdq1a5eGDx+u3r17G07nPq1bt9YHH3xgOkalCwgIUO3atRUQECB/f39VrVpVQUFBpmO5RXBwcLliBKzL09NTPj4+8vHxsUVRwi4dnbdjt3st2XPOdnLz5k3VqFFD+/btU4sWLX7xtV9//bUaNGhQScncq3///pJubXvyI4fDYem9lfv06aMxY8Zo1apVrq0/cnNz9dxzz1n6ffevCR1vgCHVq1fXgQMH1KRJE9NR4GafffaZEhMTdfz4cdeY1d8AXLx4UYMHD9bq1atdhcabN2+qT58+Sk1N/ZcF518ru53kOn78eGVkZCg7O1sRERGupaYdOnRQQECA6XhusWHDBs2cOVNz584ttzG5VdmxC6q4uFiTJ0/WnDlzVFhYKEmqVauWRo4cqYkTJ1r2gZgdOzrteK/tOGe7Cg0N1apVqxQdHW06SqU5ceLEL1634hLUS5cuqVu3btq7d6/rpNaTJ08qNjZWaWlpln3f/WtCxxtgSIsWLXTs2DEKbzYwdOhQxcTEaMmSJbY5XMHf31//+Mc/lJubW2bZZVhYmOFk7mPHk1ynT5+uoKAgTZw4UQkJCWrWrJnpSG4REBBQ5t/t1atX1bRpU3l7e5f7AdWKy6jt2AU1cuRIpaWlacaMGWrbtq0kaefOnZo0aZLOnz+vv/71r4YTuocdOzrteK/tOGe7evHFFzV+/HgtWrSozL67VmbFwtq/4ufnpx07dmjjxo3KyclRjRo1FBUVpQ4dOpiOhv8XHW+AIZ988oleeOEFvfLKK7fdf8Aup/DYQc2aNZWTk2PpotPPPfvss7cddzgcql69usLCwtSnTx9LvQns0aOHnE6nPvzww3InuXp4eFjyJNecnBxlZmYqIyNDW7dulaenp6vrrWPHjpYpxL333nv/9mt/euqrVdixC8rPz09Lly4tdxLcunXr9Nhjj+nSpUuGkrmXHTs67Xiv7Thnu4qJiVFubq5u3rypxo0bl/t5Iysry1Ay9/v666+Vl5enGzdulBm3+tLLa9euycvLyxYPyX5N6HgDDOnRo4ekW1/8f/qF0crLD+2qU6dOtiu8ZWdnKysrSyUlJa7ur8OHD6tKlSoKDw/X//zP/+i5557Ttm3bbnsK06+RHU9yjY6OVnR0tGsflZycHM2ePVvPPPOMSktLLfN17KfFtEGDBrlObrViF+Pt2LELysvL67aFpyZNmsjT07PyA7mR3Ts67XSvf2THOdtV3759TUeodMeOHdODDz6oL7/80rW1i/T/ndxqlfcmP1VaWqrXXntNb7/9ts6ePavDhw8rNDRUL730kkJCQvTEE0+Yjmh7FN4AQ9LT001HQCXp1auXkpOT9eWXX6ply5blfpCx4pO3H7vZUlNTXd2bly5d0rBhw/T73/9eSUlJSkxMVHJystavX284bcXw8vLSlStXyo0XFhZa9gcZp9Op7OxsZWRkKCMjQ9u2bdPly5cVFRWluLg40/HcwsvLS9OnT1dSUpIaNGjg6vCLi4vTXXfdZTqeW6SkpGjcuHG26oIaMWKEXnnlFaWmpsrLy0uSdP36db322msaMWKE4XQVKyUlxXQEo+x0r39kxznb1cSJE01HqHSjR49WkyZNtGnTJjVp0kS7d+/W+fPn9dxzz+mNN94wHc8tXn31Vb333nuaMWOGkpKSXOMtWrRQSkoKhbc7AEtNAcDNPDw8/uk1q3Y3NmzYUBs3bizXzbZ//3517dpVp06dUlZWlrp27arvv//eUMqKNWjQIGVlZZU7yTUpKUmtW7fWwoULzQZ0g4CAABUWFio6OtpVgIqNjbXFJr6nTp3Sli1blJmZqczMTB0+fFj169fXyZMnTUerELfrgiouLrZNF9SDDz6oTZs2ycvLy7UpeU5Ojm7cuKHOnTuXeW1aWpqJiG5hx45OO95rO87Zzi5evKgVK1bo6NGjev755xUYGKisrCzVrVtXDRs2NB2vwv3mN7/R5s2bFRUVJT8/P+3evVvNmzfX5s2b9dxzzyk7O9t0xAoXFhamuXPnqnPnzvLx8VFOTo5CQ0N18OBBtW3bVhcuXDAd0fboeAMM2rp1q+bOnatjx45p+fLlatiwoRYtWqQmTZro97//vel4qCClpaWmI1S6S5cuKT8/v1zh7dy5c7p8+bKkWwcw/HzfjV+zOXPmaPDgwWrbtm25k1yt2lHywQcfKDY21pZ7UgYEBKh27doKCAiQv7+/qlatqqCgINOxKoxV/5/9d/n7+6tfv35lxoKDgw2lqTx27Oi0472245zt6osvvlCXLl3k5+en48ePKykpSYGBgUpLS1NeXp7ef/990xErXElJiXx8fCTdKsJ99913at68uRo3bqxDhw4ZTucep06duu2WNqWlpbp586aBRPg5Cm+AIStXrtSf/vQnDRgwQFlZWbp+/bqkWwWLqVOnat26dYYTAv97ffr00dChQzVz5ky1adNGkrRnzx6NHTvWtd/I7t27LbP5vmTPk1x79uxpOkKlGz9+vDIyMpSdna2IiAjFxcVp3Lhx6tChgwICAkzHqzB239cuNTXVdAQj5s2bJ6lsR+fMmTP11FNPWaqj86fseK/tOGe7evbZZzVkyBDNmDHDVYySbu01nZiYaDCZ+7Ro0UI5OTlq0qSJ7r//fs2YMUOenp565513FBoaajqeW0RGRmrr1q3lTnRdsWKFYmJiDKXCT1F4Awx59dVX9fbbb2vQoEFaunSpa7x9+/Z69dVXDSaDO+zZs0fp6enKz88v1wE3a9YsQ6ncZ+7cuUpOTlb//v1VXFwsSapataoGDx6s2bNnS5LCw8M1f/58kzEr1O1Ock1PT7f0Sa52NH36dAUFBWnixIlKSEiwVPH4n7FjF9QPP/wgp9Mpb29vSdKJEye0atUqRUZGqmvXrobTuZ/VOzp/yo732o5ztqs9e/Zo7ty55cYbNmyoM2fOGEjkfhMmTNDVq1clSVOmTNEf//hHxcbGqnbt2vrb3/5mOJ17vPzyyxo8eLBOnTql0tJSpaWl6dChQ3r//fe1Zs0a0/Eg9ngDjPH29tbXX3+tkJCQMmvxjx07psjISF27ds10RFSQqVOnasKECWrevLnq1q1bZt8kh8OhzZs3G0znXoWFhTp27JgkKTQ0VLVq1TKcyH3i4+N/8STXQ4cOyeFwWOokVzvKyclRZmamMjIytHXrVnl6eroKUR07drR0Ic7q+9r9VNeuXZWQkKDhw4fr4sWLat68uTw9PfX9999r1qxZevrpp01HdIvbdXR27NjRch2dP2XHe23HOdtVnTp1tH79esXExJT5eWPjxo0aOnSovv32W9MRK0VBQUG5vUutZuvWrZoyZYpycnJUWFioe+65Ry+//DLF9DuFE4ARTZo0cW7cuNHpdDqdtWrVch49etTpdDqd7733njMiIsJkNFSwOnXqOFNTU03HgJvNnj3bmZCQ4Lx06ZJr7OLFi86HHnrImZKS4rx69aqzT58+zq5duxpMiYq2b98+5+DBg51Vq1Z1enh4mI7jVlevXnWuX7/eOW7cOOfvfvc7p6enp7NVq1amY7lF7dq1nV999ZXT6XQ6582b54yKinKWlJQ4ly1b5gwPDzeczn0cDoezTp06zmnTpjkPHTpkOk6lsOO9tuOc7eqJJ55w9u3b13njxg1nrVq1nMeOHXOeOHHCGRMT4xw9erTpeIBtsNQUMCQpKUmjR4/WggUL5HA49N1332nnzp0aO3asXnrpJdPxUIE8PDzUvn170zHgZq+//ro2btxY5qABPz8/TZo0SV27dtXo0aN58mgBTqdT2dnZysjIUEZGhrZt26bLly8rKipKcXFxpuO5hV32tfupoqIi135IGzZsUEJCgjw8PPS73/1OJ06cMJzOfbKzs10dnTNnzrRFR6cd77Ud52xXM2fO1EMPPaQ6derohx9+UFxcnM6cOaO2bdvqtddeMx2vwiQkJPzbr7XiSb3Dhg3TwIED1bFjR9NR8E9QeAMMGTdunEpLS9W5c2cVFRWpQ4cO8vLy0tixYzVy5EjT8VCBkpOT9d///d+2PyXQ6ux4kqsdBQYGqrCwUNHR0YqLi1NSUpJiY2Pl7+9vOprb2HFfu7CwMP3973/Xgw8+qPXr1ys5OVmSlJ+fb+lTfKOjoxUdHa1Ro0ZJurW0evbs2XrmmWdUWlqqkpISwwkrnh3vtR3nbFd+fn7auHGjtm3bpi+++MK1BLFLly6mo1UoPz8/0xGMOnfunLp166agoCD1799fAwYMUKtWrUzHwk+wxxtg2I0bN5Sbm6vCwkJFRkZaeg8suyotLVXPnj11+PBhRUZGqlq1amWuW/HJmx0NGDBAO3fuvO1Jru3atdOiRYu0dOlSvfHGG9q7d6/htPjfWrt2rWJjY231w6kd97VbsWKFEhMTVVJSos6dO2vDhg2SpGnTpmnLli36+OOPDSd0j3/V0fnj4ThWYsd7bcc5Az+3fft23XvvvfLy8jIdpUJcuHBBy5cv1+LFi7V161aFh4drwIABSkxMVEhIiOl4tkfhDbgD/LixaXBwsOEkcIcRI0Zo/vz5io+PL3e4giSlpqYaSoaKVFhYqOTkZL3//vu3Pcm1Zs2a2rdvnyTxFBK/aj92QX344YeW7YKSpDNnzuj06dOKjo6Wh4eHJGn37t3y9fVVeHi44XTuERAQUKajs2PHjpbv6JTsea/tOGe72rNnj9LT05Wfn6/S0tIy12bNmmUolXm+vr7at2+fQkNDTUepcCdPntSSJUu0YMECHTlyxPW+FOZQeAMMKS4u1uTJkzVnzhwVFhZKkmrVqqWRI0dq4sSJ5bqi8Ovl4+OjpUuXqmfPnqajoBLY6SRX2IMdu6Dsyo4dnYCVTZ06VRMmTFDz5s3LPfx1OBzavHmzwXRm/fSUVyu5efOm1q5dqw8++EBr165VYGCgTp06ZTqW7bHHG2DIyJEjlZaWphkzZqht27aSpJ07d2rSpEk6f/68/vrXvxpOiIoSGBiopk2bmo6BSlKrVi1FRUWZjgFUGLvsa5eQkKCFCxfK19f3X27UbdUtAuzygMiO99qOc4b05ptvasGCBRoyZIjpKHCz9PR0LV68WCtXrlRpaakSEhK0Zs0aderUyXQ0iMIbYMzixYu1dOlSde/e3TUWFRWl4OBgPfbYYxTeLGTSpEmaOHGiUlNT5e3tbToOAPz/8sEHH9iiC8rPz8/VDWL3jbqtzo732o5zhuTh4aH27dubjgE3a9iwoQoKCtStWze988476tWrl2X2rrMKlpoChtSpU0eZmZmKiIgoM37gwAF16NBB586dM5QMFS0mJkZHjx6V0+lUSEhIuWXEWVlZhpIBAADAqmbMmKHvvvtOKSkppqPccay01HTevHl6+OGHLdeJbiV0vAGGjBgxQq+88opSU1NdTySuX7+u1157TSNGjDCcDhWpb9++piMAAADAZsaOHauePXuqadOmioyMLPfw187Lin9+2NmvWVJSkukI+BcovAGGZGdna9OmTWrUqJGio6Ml3Top7saNG+rcuXOZ/Tfs/E3RCiZOnGg6AgDg/4ezZ89q7Nix2rRpk/Lz8/XzBSJWPcnVjux4r+04Z7saNWqU0tPTFR8fr9q1a1uq2PR/ZZWFfzk5OVq9erUCAwP1yCOP6De/+Y3r2uXLlzVmzBgtWLDAYEJILDUFjHn88cf/7dempqa6MQkqy+eff64DBw5Iku6++27FxMQYTgQAuJ3u3bsrLy9PI0aMUP369cv9sNqnTx9DyVDR7Hiv7Thnu/Lx8dHSpUttc3CK3WzYsEG9evXSXXfdpStXrujq1atavny54uPjJd0qsjdo0IBi+h2AwhsAuFl+fr769++vjIwM194LFy9eVHx8vJYuXaqgoCCzAQEAZfj4+Gjr1q1q1aqV6ShwMzveazvO2a4aN26s9evXKzw83HSUSrFu3TqlpaUpMDBQQ4cOLTPvCxcuqF+/ftq8ebPBhBWrXbt2io+P12uvvSan06nXX39dr7zyipYvX65u3bpReLuDeJgOANjVDz/8oKKiItfvT5w4oZSUFG3YsMFgKrjDyJEjdeXKFe3fv18FBQUqKCjQV199pcuXL2vUqFGm4wEAfiY4ONgyy5Dwy+x4r+04Z7uaNGmSJk6cWOZnDqtavHixevfurTNnzmjnzp2KiYnRhx9+6Lp+48YNZWZmGkxY8fbv36+hQ4dKurVn3X/+539q7ty5euihh7RmzRrD6fBTdLwBhnTt2lUJCQkaPny4Ll68qObNm8vT01Pff/+9Zs2apaefftp0RFQQPz8/ffrpp2rTpk2Z8d27d6tr1666ePGimWAAgNvasGGDZs6cqblz5yokJMR0HLiRHe+1HedsVzExMTp69KicTqdCQkLKHa6QlZVlKFnFi4mJ0eOPP+56qL1s2TINHTpUb775pp544glLdn/VqVNHH3/8sVq3bl1mfOnSpXriiSc0c+ZMPfPMM5aa868VhysAhmRlZWn27NmSpBUrVqhevXrKzs7WypUr9fLLL1N4s5DS0tJyb3QkqVq1aiotLTWQCADwcwEBAWX2urp69aqaNm0qb2/vcl/DCwoKKjseKpAd77Ud5wypb9++piNUmiNHjqhXr16u3z/yyCMKCgpS7969dfPmTT344IMG07lHq1atlJ6eXq7w1r9/fzmdTg0ePNhQMvwchTfAkKKiIvn4+Ei69eQxISFBHh4e+t3vfqcTJ04YToeK1KlTJ40ePVpLlixRgwYNJEmnTp1ScnKyOnfubDgdAECSUlJSTEdAJbHjvbbjnO2uuLhYDodDQ4cOVaNGjUzHcTtfX1+dPXtWTZo0cY3Fx8drzZo1+uMf/6iTJ08aTOceTz/9tLZs2XLba4899picTqfmzZtXyalwOyw1BQyJiorSsGHD9OCDD6pFixb65JNP1LZtW33++efq2bOnzpw5YzoiKsi3336r3r17a//+/QoODnaNtWjRQh999JEt3gwBwK/JoEGD1LFjR8XFxalp06am48CN7Hiv7Thnu/Lx8dGXX35piyXFffv2VXR0tCZPnlzuWkZGhv74xz/qhx9+YNkljOBwBcCQl19+WWPHjlVISIjuv/9+tW3bVtKt7reYmBjD6VCRgoODlZWVpbVr12rMmDEaM2aM1q1bp6ysLIpuAHAH8vLy0vTp09WsWTMFBwdr4MCBmj9/vo4cOWI6GiqYHe+1HedsV506dbLcgQL/THJysqpXr37bax07dtTq1as1aNCgSk5VOYYNG6aMjAzTMfAL6HgDDDpz5oxOnz6t6OhoeXjcqoPv3r1bvr6+tjn2GwCAO9WpU6e0ZcsWZWZmKjMzU4cPH1b9+vUtuWTJ7ux4r+04Z7t5++23NXnyZA0YMECtW7dWzZo1y1zv3bu3oWSoSH369NH69esVFBSk/v37a+DAgYqOjjYdCz/BHm+AQfXq1VO9evXKjN13332G0sBdRo0apbCwMNcpSz966623lJuby74rAHCHCggIUO3atRUQECB/f39VrVpVQUFBpmPBDex4r+04Z7v5j//4D0nSrFmzyl1zOByWXHa5bt06ValSRQ888ECZ8fXr16u0tFTdu3c3lMx9/vGPf+jChQtavny5Fi9erFmzZik8PFwDBgxQYmKiLZYa3+noeAMqUUJCghYuXChfX18lJCT84mvT0tIqKRXcrWHDhvroo4/KnTiUlZWl3r1782QZAO4w48ePV0ZGhrKzsxUREaG4uDh17NhRHTp0UEBAgOl4qEB2vNd2nDPsIyoqStOnT1ePHj3KjH/yySf685//rJycHEPJKs/Jkye1ZMkSLViwQEeOHFFxcbHpSLZHxxtQifz8/FxHufv5+RlOg8py/vz5295vX19fff/99wYSAQB+yfTp0xUUFKSJEycqISFBzZo1Mx0JbmLHe23HOcM+jhw5osjIyHLj4eHhys3NNZCoct28eVN79+7Vrl27dPz4cdWtW9d0JIjCG1CpUlNTb/sxrC0sLEyffPKJRowYUWb8448/VmhoqKFUAIB/Jjs7W5mZmcrIyNDMmTPl6enp6grq2LEjhQoLseO9tuOc7SwzM1NvvPGGDhw4IEmKjIzU888/r9jYWMPJ3MPPz0/Hjh0rt7wyNze33B53VpKenq7Fixdr5cqVKi0tVUJCgtasWaNOnTqZjgax1BQA3G7BggUaMWKEnn/+edc3v02bNmnmzJlKSUlRUlKS4YQAgF+Sk5Oj2bNn68MPP1Rpaakl90XCLXa813acs1188MEHevzxx5WQkKD27dtLkrZv365Vq1Zp4cKFSkxMNJyw4j311FPauXOnVq1apaZNm0q6VXTr16+f2rRpo/nz5xtOWPEaNmyogoICdevWTQMGDFCvXr3k5eVlOhZ+gsIbYMjZs2c1duxYbdq0Sfn5+fr5P0Xe9FjLX//6V7322mv67rvvJEkhISGaNGmSZY81B4BfM6fTqezsbGVkZCgjI0Pbtm3T5cuXFRUVpbi4OM2ePdt0RFQQO95rO87ZriIiIvTkk08qOTm5zPisWbM0b948VxeclVy6dEndunXT3r171ahRI0m39jyLjY1VWlqa/P39zQZ0g3nz5unhhx+25NysgsIbYEj37t2Vl5enESNGqH79+q69337Up08fQ8ngTufOnVONGjVUq1atcte2b9+ue++9lydUAGBYQECACgsLFR0d7VqCFxsbyw81FmTHe23HOduVl5eX9u/fr7CwsDLjubm5atGiha5du2YomXs5nU5t3LhROTk5qlGjhqKiotShQwfTsWBjFN4AQ3x8fLR161a1atXKdBTcIXx9fbVv3z72fQMAw9auXavY2Fj5+vqajgI3s+O9tuOc7SosLEzPP/+8nnrqqTLjb7/9tmbOnKkjR44YSlY5rl27Ji8vr3INDla0d+9eLVu2THl5ebpx40aZa2lpaYZS4UcepgMAdhUcHFxueSnsjf8fAODO0LNnT4oSNmHHe23HOdvVc889p1GjRunpp5/WokWLtGjRIg0fPlxjxozR2LFjTcdzi9LSUr3yyitq2LChatWqpW+++UaS9NJLL+ndd981nM49li5dqnbt2unAgQNatWqVbt68qf3792vz5s3y8/MzHQ+i8AYYk5KSonHjxun48eOmowAAAACwmKefflpLly7Vl19+qTFjxmjMmDH66quv9Le//a1cF5xVvPrqq1q4cKFmzJghT09P13iLFi0sebCCJE2dOlWzZ8/W6tWr5enpqTfffFMHDx7UI488ot/+9rem40EsNQUqVUBAQJlW56tXr6q4uFje3t6qVq1amdcWFBRUdjwY5uPjo5ycHJaaAgAA4H9lzpw5evLJJ1W9enXl5eUpODjYFkstfxQWFqa5c+eqc+fOZd5bHzx4UG3bttWFCxdMR6xwNWvW1P79+xUSEqLatWsrIyNDLVu21IEDB9SpUyedPn3adETbq2o6AGAnKSkppiMAAAAAsKhnn31W/fv3V/Xq1dWkSROdPn1aderUMR2r0pw6darcYRLSrSWoN2/eNJDI/QICAnTlyhVJUsOGDfXVV1+pZcuWunjxooqKigyng0ThDahUgwcPdn08aNAgdezYUXFxcWratKnBVLhT2OlpJAAAACpegwYNtHLlSvXo0UNOp1MnT578p6eXWnEZYmRkpLZu3arGjRuXGV+xYoViYmIMpXKvDh06aOPGjWrZsqUefvhhjR49Wps3b9bGjRvVuXNn0/EgCm+AMV5eXpo+fbqSkpLUoEED13HucXFxuuuuu0zHgwGs/AcAAMD/xYQJEzRy5EiNGDFCDodDbdq0Kfcap9Mph8OhkpISAwnd6+WXX9bgwYN16tQplZaWKi0tTYcOHdL777+vNWvWmI7nFm+99ZaruPriiy+qWrVq2rFjh/r166cJEyYYTgeJPd4A406dOqUtW7YoMzNTmZmZOnz4sOrXr6+TJ0+ajoYKVFxcrIyMDB09elSJiYny8fHRd999J19fX9WqVct0PAAAAFjElStXdOLECUVFRenTTz9V7dq1b/u66OjoSk5WObZu3aopU6YoJydHhYWFuueee/Tyyy+ra9eupqO5xaBBgxQfH68OHTqwkuoORccbYFhAQIBq166tgIAA+fv7q2rVqgoKCjIdCxXoxIkT6tatm/Ly8nT9+nX94Q9/kI+Pj/7rv/5L169f19tvv206IgAAACzCx8dHLVq0UGpqqtq3by8vLy/TkSpVbGysNm7caDpGpfH09NS0adP0xBNPqGHDhqykugPR8QYYMn78eGVkZCg7O1sRERGuL5AdOnRQQECA6XioQH379pWPj4/effdd1a5d23W6UkZGhpKSknTkyBHTEQEAAGBRN27cUH5+vkpLS8uMW3GPt2HDhmngwIHq2LGj6SiVjpVUdy463gBDpk+frqCgIE2cOFEJCQlq1qyZ6Uhwk61bt2rHjh3y9PQsMx4SEqJTp04ZSgUAAAArO3LkiIYOHaodO3aUGbfyHm/nzp1Tt27dFBQUpP79+2vAgAFq1aqV6ViVgpVUdy4Kb4Ah2dnZyszMVEZGhmbOnClPT09X11vHjh0pxFlIaWnpbd/YnDx5Uj4+PgYSAQAAwOqGDBmiqlWras2aNapfv74cDofpSG73j3/8QxcuXNDy5cu1ePFizZo1S+Hh4RowYIASExMVEhJiOmKFu91KqnHjxrGS6g7CUlPgDpGTk6PZs2frww8//KeFGvw6Pfroo/Lz89M777wjHx8fffHFFwoKClKfPn3029/+VqmpqaYjAgAAwGJq1qypzz//XOHh4aajGHPy5EktWbJECxYs0JEjR1RcXGw6UoXz8PBQUFCQkpOTWUl1h6LjDTDE6XQqOztbGRkZysjI0LZt23T58mVFRUUpLi7OdDxUoJkzZ+qBBx5QZGSkrl27psTERB05ckS/+c1vtGTJEtPxAAAAYEGRkZH6/vvvTccw5ubNm9q7d6927dql48ePq27duqYjuQUrqe58dLwBhgQEBKiwsFDR0dGuL4yxsbHy9/c3HQ1uUFxcrKVLl+qLL75wHWs+YMAA1ahRw3Q0AAAAWNDmzZs1YcIETZ06VS1btlS1atXKXPf19TWUzL3S09O1ePFirVy5UqWlpUpISNCAAQPUqVMnWyy3ZSXVnYfCG2DI2rVrFRsba9lveAAAAADM8fDwkKRyxSYrH67QsGFDFRQUqFu3bhowYIB69eolLy8v07Hc6l+tpJo9e7bpiLZH4Q0A3OCjjz76t1/bu3dvNyYBAACAHWVmZv7idStubzNv3jw9/PDDtlpFxEqqOx+FNwBwgx+fMP4rVn3aCAAAAMD9WEl156PwBgAAAACABV28eFHvvvuuDhw4IEm6++67NXToUPn5+RlOVvFycnK0evVqBQYG6pFHHtFvfvMb17XLly9rzJgxWrBggcGEsCsKbwAAAAAAWMzevXv1wAMPqEaNGrrvvvskSXv27NEPP/ygDRs26J577jGcsOJs2LBBvXr10l133aUrV67o6tWrWr58ueLj4yVJZ8+eVYMGDVhpAiMovAGAm82ZM+e24w6HQ9WrV1dYWJg6dOigKlWqVHIyAAAAWFVsbKzCwsI0b948Va1aVZJUXFysYcOG6dixY9qyZYvhhBWnXbt2io+P12uvvSan06nXX39dr7zyipYvX65u3bpReINRFN4AwM2aNGmic+fOqaioSAEBAZKkCxcuyNvbW7Vq1VJ+fr5CQ0OVnp6u4OBgw2kBAABgBTVq1FB2drbCw8PLjH/99de69957VVRUZChZxfPz81NWVpaaNm3qGlu8eLGefPJJLV26VG3atKHwBmP+vd2/AQD/a1OnTlWbNm105MgRnT9/XufPn9fhw4d1//33680331ReXp7q1aun5ORk01EBAABgEb6+vsrLyys3/u2338rHx8dAIvfx8vLSxYsXy4wlJiZq/vz5evTRR7Vq1SozwQDR8QYAbte0aVOtXLlSrVq1KjOenZ2tfv366dixY9qxY4f69eun06dPmwkJAAAASxk1apRWrVqlN954Q+3atZMkbd++Xc8//7z69eunlJQUswErUNeuXdW1a1eNHTu23LUlS5Zo8ODBKikpoeMNRlQ1HQAArO706dMqLi4uN15cXKwzZ85Ikho0aKArV65UdjQAAABY1BtvvCGHw6FBgwa53otWq1ZNTz/9tKZPn244XcV6+umn/+medY899picTqfmzZtXyamAW+h4AwA369mzp86cOaP58+crJiZG0q1ut6SkJNWrV09r1qzR6tWrNX78eH355ZeG0wIAAMBKioqKdPToUUm3VmJ4e3sbTgTYC3u8AYCbvfvuuwoMDFTr1q3l5eUlLy8v3XvvvQoMDNS7774rSapVq5ZmzpxpOCkAAACs4tKlSyooKJC3t7datmypli1bytvbWwUFBbp8+bLpeG4xbNgwZWRkmI4BlEHHGwBUkoMHD+rw4cOSpObNm6t58+aGEwEAAMCqunfvrl69euk//uM/yoy//fbb+uijj7Ru3TpDydynT58+Wr9+vYKCgtS/f38NHDhQ0dHRpmPB5ii8AUAl+vFLrsPhMJwEAAAAVhYYGKjt27crIiKizPjBgwfVvn17nT9/3lAy97pw4YKWL1+uxYsXa+vWrQoPD9eAAQOUmJiokJAQ0/FgQyw1BYBK8P7776tly5aqUaOGatSooaioKC1atMh0LAAAAFjU9evXb3vA182bN/XDDz8YSFQ5AgIC9OSTTyojI0MnTpzQkCFDtGjRIoWFhZmOBpui8AYAbjZr1iw9/fTT6tGjh5YtW6Zly5apW7duGj58uGbPnm06HgAAACzovvvu0zvvvFNu/O2331br1q0NJKpcN2/e1N69e7Vr1y4dP35cdevWNR0JNsVSUwBwsyZNmmjy5MkaNGhQmfH33ntPkyZN0jfffGMoGQAAAKxq+/bt6tKli9q0aaPOnTtLkjZt2qQ9e/Zow4YNio2NNZzQPdLT07V48WKtXLlSpaWlSkhI0IABA9SpUye2e4ERFN4AwM2qV6+ur776qlx7+5EjR9SyZUtdu3bNUDIAAABY2b59+/T6669r3759ru1OXnjhBd11112mo7lFw4YNVVBQoG7dumnAgAHq1auXvLy8TMeCzVF4AwA3a9GihRITEzV+/Pgy46+++qr+9re/6csvvzSUDAAAALCOefPm6eGHH5a/v7/pKIALhTcAcLOVK1fq0UcfVZcuXdS+fXtJt1r/N23apGXLlunBBx80nBAAAABWU6VKFZ0+fVp16tQpM37+/HnVqVNHJSUlhpIB9lLVdAAAsLp+/fpp165dmj17tv7+979LkiIiIrR7927FxMSYDQcAAABL+mc9NtevX5enp2clp6k8e/fu1bJly5SXl6cbN26UuZaWlmYoFeyMwhsAVILWrVvrgw8+MB0DAAAAFjdnzhxJksPh0Pz581WrVi3XtZKSEm3ZskXh4eGm4rnV0qVLNWjQID3wwAPasGGDunbtqsOHD+vs2bOsMoExLDUFgEpQUlKiv//97zpw4IAk6e6771bv3r1VpUoVw8kAAABgJU2aNJEknThxQo0aNSrzftPT01MhISGaMmWK7r//flMR3SYqKkpPPfWUnnnmGfn4+CgnJ0dNmjTRU089pfr162vy5MmmI8KGKLwBgJvl5uaqZ8+eOnnypJo3by5JOnTokIKDg7V27Vo1bdrUcEIAAABYTXx8vNLS0hQQEGA6SqWpWbOm9u/fr5CQENWuXVsZGRlq2bKlDhw4oE6dOun06dOmI8KGPEwHAACrGzVqlEJDQ/Xtt98qKytLWVlZysvLU5MmTTRq1CjT8QAAAGBB6enpZYpuJSUl2rdvny5cuGAwlXsFBAToypUrkqSGDRvqq6++kiRdvHhRRUVFJqPBxii8AYCbZWZmasaMGQoMDHSN1a5dW9OnT1dmZqbBZAAAALCqMWPG6N1335V0q+jWoUMH3XPPPQoODlZGRobZcG7SoUMHbdy4UZL08MMPa/To0UpKStJjjz2mzp07G04Hu+JwBQBwMy8vL9eTt58qLCy09IlSAAAAMGf58uUaOHCgJGn16tU6fvy4Dh48qEWLFunFF1/U9u3bDSeseG+99ZauXbsmSXrxxRdVrVo17dixQ/369dOECRMMp4NdsccbALjZoEGDlJWVpXfffVf33XefJGnXrl1KSkpS69attXDhQrMBAQAAYDnVq1dXbm6uGjVqpCeffFLe3t5KSUnRN998o+joaF2+fNl0xAo3aNAgxcfHq0OHDuyjjDsGS00BwM3mzJmjpk2bqm3btqpevbqqV6+udu3aKSwsTCkpKabjAQAAwILq1q2rr7/+WiUlJfrkk0/0hz/8QZJUVFRU5qRTK/H09NS0adN01113KTg4WAMHDtT8+fN15MgR09FgY3S8AUAlyc3N1YEDByRJERERCgsLM5wIAAAAVjVp0iSlpKSofv36Kioq0uHDh+Xl5aUFCxZo3rx52rlzp+mIbnPq1Clt2bJFmZmZyszM1OHDh1W/fn2dPHnSdDTYEHu8AYCbPfvss+XG0tPT5XA4VL16dYWFhalPnz5lDl8AAAAA/i8mTZqkFi1a6Ntvv9XDDz8sLy8vSVKVKlU0btw4w+ncKyAgQLVr11ZAQID8/f1VtWpVBQUFmY4Fm6LjDQDcLD4+XllZWSopKVHz5s0lSYcPH1aVKlUUHh6uQ4cOyeFwaNu2bYqMjDScFgAAAPh1Gj9+vDIyMpSdna2IiAjFxcWpY8eO6tChgwICAkzHg01ReAMAN0tJSdHWrVuVmpoqX19fSdKlS5c0bNgw/f73v1dSUpISExP1ww8/aP369YbTAgAAwCquXr2qzMxM5eXl6caNG2WujRo1ylAq9/Hw8FBQUJCSk5OVkJCgZs2amY4EUHgDAHdr2LChNm7cWK6bbf/+/eratatOnTqlrKwsde3aVd9//72hlAAAALCS7Oxs9ejRQ0VFRbp69aoCAwP1/fffy9vbW3Xq1NGxY8dMR6xwOTk5yszMVEZGhrZu3SpPT09X11vHjh0pxMEITjUFADe7dOmS8vPzy42fO3fOdYy7v79/uaeQAAAAwP9WcnKyevXqpQsXLqhGjRr67LPPdOLECbVu3VpvvPGG6XhuER0drVGjRiktLU3nzp3TunXr5OnpqWeeeUYRERGm48GmOFwBANysT58+Gjp0qGbOnKk2bdpIkvbs2aOxY8eqb9++kqTdu3fzBA4AAAAVZt++fZo7d648PDxUpUoVXb9+XaGhoZoxY4YGDx6shIQE0xErnNPpVHZ2tjIyMpSRkaFt27bp8uXLioqKUlxcnOl4sCkKbwDgZnPnzlVycrL69++v4uJiSVLVqlU1ePBgzZ49W5IUHh6u+fPnm4wJAAAAC6lWrZo8PG4tcqtTp47y8vIUEREhPz8/ffvtt4bTuUdgYKAKCwsVHR2tuLg4JSUlKTY2Vv7+/qajwcbY4w0AKklhYaFrL43Q0FDVqlXLcCIAAABYVdeuXTVkyBAlJiYqKSlJX3zxhUaNGqVFixbpwoUL2rVrl+mIFW7t2rWKjY11HWgG3AkovAEAAAAAYDF79+7VlStXFB8fr/z8fA0aNEg7duzQXXfdpQULFig6Otp0RMAWKLwBAAAAAGABH330kbp3765q1aqZjgLg/0XhDQAAAAAAC6hSpYrOnDmjoKAgValSRadPn1adOnVMxwJszcN0AAAAAAAA8H8XFBSkzz77TNKtEz4dDofhRAA41RQAAAAAAAsYPny4+vTpI4fDIYfDoXr16v3T15aUlFRiMsC+WGoKAAAAAIBFHDx4ULm5uerdu7dSU1Pl7+9/29f16dOncoMBNkXhDQAAAAAAi5k8ebKef/55eXt7/+Lrtm/frnvvvVdeXl6VlAywFwpvAAAAAADYlK+vr/bt26fQ0FDTUQBL4nAFAAAAAABsil4cwL0ovAEAAAAAAABuQOENAAAAAAAAcAMKbwAAAAAAAIAbUHgDAAAAAMCmHA6H6QiApVF4AwAAAADApjhcAXAvh5N/ZQAAAAAAAECFq2o6AAAAAAAA+L+LiYn5t5eOZmVluTkNAInCGwAAAAAAltC3b1/TEQD8DEtNAQAAAAAAADeg4w0AAAAAAIvau3evDhw4IEmKjIxU69atDScC7IXCGwAAAAAAFnPy5Ek99thj2r59u/z9/SVJFy9eVLt27bR06VI1atTIbEDAJjxMBwAAAAAAABVr2LBhunnzpg4cOKCCggIVFBTowIEDKi0t1bBhw0zHA2yDPd4AAAAAALCYGjVqaMeOHYqJiSkz/vnnnys2NlZFRUWGkgH2QscbAAAAAAAWExwcrJs3b5YbLykpUYMGDQwkAuyJwhsAAAAAABbz+uuva+TIkdq7d69rbO/evRo9erTeeOMNg8kAe2GpKQAAAAAAFhMQEKCioiIVFxeratVb5yr++HHNmjXLvLagoMBERMAWONUUAAAAAACLSUlJMR0BgOh4AwAAAADAtqZPn67hw4fL39/fdBTAkii8AQAAAABgU76+vtq3b59CQ0NNRwEsicMVAAAAAACwKXpxAPei8AYAAAAAAAC4AYU3AAAAAAAAwA0ovAEAAAAAAABuQOENAAAAAAAAcAMKbwAAAAAA2FRsbKxq1KhhOgZgWQ4nR5gAAAAAAGApVapU0enTp1WnTp0y4+fPn1edOnVUUlJiKBlgL3S8AQAAAABgMf+sx+b69evy9PSs5DSAfVU1HQAAAAAAAFSMOXPmSJIcDofmz5+vWrVqua6VlJRoy5YtCg8PNxUPsB2WmgIAAAAAYBFNmjSRJJ04cUKNGjVSlSpVXNc8PT0VEhKiKVOm6P777zcVEbAVCm8AAAAAAFhMfHy80tLSFBAQYDoKYGvs8QYAAAAAgMXEx8fLy8ur3PgPP/ygKVOmGEgE2BMdbwAAAAAAWAynmgJ3BjreAAAAAACwGKfTKYfDUW48JydHgYGBBhIB9sSppgAAAAAAWERAQIAcDoccDoeaNWtWpvhWUlKiwsJCDR8+3GBCwF5YagoAAAAAgEW89957cjqdGjp0qFJSUuTn5+e69uOppm3btjWYELAXCm8AAAAAAFhMZmam2rdvr6pVWegGmMQebwAAAAAAWIyPj48OHDjg+v0//vEP9e3bV+PHj9eNGzcMJgPshcIbAAAAAAAW89RTT+nw4cOSpGPHjunRRx+Vt7e3li9frv/8z/80nA6wDwpvAAAAAABYzOHDh9WqVStJ0vLlyxUXF6fFixdr4cKFWrlypdlwgI1QeAMAAAAAwGKcTqdKS0slSZ9++ql69OghSQoODtb3339vMhpgKxTeAAAAAACwmHvvvVevvvqqFi1apMzMTPXs2VOS9M0336hu3bqG0wH2QeENAAAAAACLSUlJUVZWlkaMGKEXX3xRYWFhkqQVK1aoXbt2htMB9uFwOp1O0yEAAAAAAID7Xbt2TVWqVFG1atUkSUuWLFHv3r1Vs2ZNw8kAa6LwBgAAAACATfn6+mrfvn0KDQ01HQWwJJaaAgAAAABgU/TiAO5F4Q0AAAAAAABwAwpvAAAAAAAAgBtQeAMAAAAAAADcgMIbAAAAAAAA4AYU3gAAAAAAsKnGjRurWrVqpmMAluVwcoQJAAAAAACW9Pnnn+vAgQOSpMjISN1zzz2GEwH2UtV0AAAAAAAAULHy8/PVv39/ZWRkyN/fX5J08eJFxcfHa+nSpQoKCjIbELAJlpoCAAAAAGAxI0eO1JUrV7R//34VFBSooKBAX331lS5fvqxRo0aZjgfYBktNAQAAAACwGD8/P3366adq06ZNmfHdu3era9euunjxoplggM3Q8QYAAAAAgMWUlpbe9tCEatWqqbS01EAiwJ4ovAEAAAAAYDGdOnXS6NGj9d1337nGTp06peTkZHXu3NlgMsBeWGoKAAAAAIDFfPvtt+rdu7f279+v4OBg11iLFi300UcfqVGjRoYTAvZA4Q0AAAAAAAtyOp369NNPdfDgQUlSRESEunTpYjgVYC8U3gAAAAAAAAA3qGo6AAAAAAAAqHh79uxRenq68vPzyx2oMGvWLEOpAHuh8AYAAAAAgMVMnTpVEyZMUPPmzVW3bl05HA7XtZ9+DMC9WGoKAAAAAIDF1K1bV//1X/+lIUOGmI4C2JqH6QAAAAAAAKBieXh4qH379qZjALZH4Q0AAAAAAItJTk7Wf//3f5uOAdgeS00BAAAAALCY0tJS9ezZU4cPH1ZkZKSqVatW5npaWpqhZIC9cLgCAAAAAAAWM2rUKKWnpys+Pl61a9fmQAXAEDreAAAAAACwGB8fHy1dulQ9e/Y0HQWwNfZ4AwAAAADAYgIDA9W0aVPTMQDbo/AGAAAAAIDFTJo0SRMnTlRRUZHpKICtsdQUAAAAAACLiYmJ0dGjR+V0OhUSElLucIWsrCxDyQB74XAFAAAAAAAspm/fvqYjABAdbwAAAAAAAIBbsMcbAAAAAAAWdPHiRc2fP18vvPCCCgoKJN1aYnrq1CnDyQD7oOMNAAAAAACL+eKLL9SlSxf5+fnp+PHjOnTokEJDQzVhwgTl5eXp/fffNx0RsAU63gAAAAAAsJhnn31WQ4YM0ZEjR1S9enXXeI8ePbRlyxaDyQB7ofAGAAAAAIDF7NmzR0899VS58YYNG+rMmTMGEgH2ROENAAAAAACL8fLy0uXLl8uNHz58WEFBQQYSAfZE4Q0AAAAAAIvp3bu3pkyZops3b0qSHA6H8vLy9Oc//1n9+vUznA6wDw5XAAAAAADAYi5duqSHHnpIe/fu1ZUrV9SgQQOdOXNGv/vd7/Txxx+rZs2apiMCtkDhDQAAAAAAi9q+fbtycnJUWFioe+65R126dDEdCbAVCm8AAAAAAFjQpk2btGnTJuXn56u0tLTMtQULFhhKBdhLVdMBAAAAAABAxZo8ebKmTJmie++9V/Xr15fD4TAdCbAlOt4AAAAAALCY+vXra8aMGfrTn/5kOgpga5xqCgAAAACAxdy4cUPt2rUzHQOwPQpvAAAAAABYzLBhw7R48WLTMQDbY483AAAAAAAs5tq1a3rnnXf06aefKioqStWqVStzfdasWYaSAfbCHm8AAAAAAFhMfHz8P73mcDi0efPmSkwD2BeFNwAAAAAAAMAN2OMNAAAAAAAAcAMKbwAAAAAAAIAbUHgDAAAAAAAA3IDCGwAAAAAAAOAGFN4AAAAAAAAAN6DwBgAAgH8pIyNDDodDFy9eNB0FAADgV4PCGwAAAAAAAOAGFN4AAAAsZsWKFWrZsqVq1Kih2rVrq0uXLsrMzFS1atV05syZMq8dM2aMYmNjJUknTpxQr169FBAQoJo1a+ruu+/WunXrdPz4ccXHx0uSAgIC5HA4NGTIEElSaWmppk2bpiZNmqhGjRqKjo7WihUrXP/9Hzvl1q9fr5iYGNWoUUOdOnVSfn6+Pv74Y0VERMjX11eJiYkqKiqqnL8gAACASlLVdAAAAABUnNOnT+uxxx7TjBkz9OCDD+rKlSvaunWrWrdurdDQUC1atEjPP/+8JOnmzZv68MMPNWPGDEnSM888oxs3bmjLli2qWbOmvv76a9WqVUvBwcFauXKl+vXrp0OHDsnX11c1atSQJE2bNk0ffPCB3n77bd11113asmWLBg4cqKCgIMXFxblyTZo0SW+99Za8vb31yCOP6JFHHpGXl5cWL16swsJCPfjgg/rLX/6iP//5z5X/lwYAAOAmFN4AAAAs5PTp0youLlZCQoIaN24sSWrZsqUk6YknnlBqaqqr8LZ69Wpdu3ZNjzzyiCQpLy9P/fr1c70+NDTU9d8NDAyUJNWpU0f+/v6SpOvXr2vq1Kn69NNP1bZtW9fnbNu2TXPnzi1TeHv11VfVvn17V44XXnhBR48edf0ZDz30kNLT0ym8AQAAS2GpKQAAgIVER0erc+fOatmypR5++GHNmzdPFy5ckCQNGTJEubm5+uyzzyRJCxcu1COPPKKaNWtKkkaNGuUqkE2cOFFffPHFL/5Zubm5Kioq0h/+8AfVqlXL9ev999/X0aNHy7w2KirK9XHdunXl7e1dprBXt25d5efnV8jfAQAAwJ2CwhsAAICFVKlSRRs3btTHH3+syMhI/eUvf1Hz5s31zTffqE6dOurVq5dSU1N19uxZffzxxxo6dKjrc4cNG6Zjx47pT3/6k7788kvde++9+stf/vJP/6zCwkJJ0tq1a7Vv3z7Xr6+//rrMPm+SVK1aNdfHDoejzO9/HCstLa2IvwIAAIA7BoU3AAAAi3E4HGrfvr0mT56s7OxseXp6atWqVZJuFdf+9re/6Z133lHTpk1dyz9/FBwcrOHDhystLU3PPfec5s2bJ0ny9PSUJJWUlLheGxkZKS8vL+Xl5SksLKzMr+Dg4EqaLQAAwJ2LPd4AAAAsZNeuXdq0aZO6du2qOnXqaNeuXTp37pwiIiIkSQ888IB8fX316quvasqUKWU+d8yYMerevbuaNWumCxcuKD093fV5jRs3lsPh0Jo1a9SjRw/VqFFDPj4+Gjt2rJKTk1VaWqrf//73unTpkrZv3y5fX18NHjy40ucPAABwJ6HjDQAAwEJ8fX21ZcsW9ejRQ82aNdOECRM0c+ZMde/eXZLk4eGhIUOGqKSkRIMGDSrzuSUlJXrmmWcUERGhbt26qVmzZvqf//kfSVLDhg01efJkjRs3TnXr1tWIESMkSa+88opeeuklTZs2zfV5a9euVZMmTSp34gAAAHcgh9PpdJoOAQAAgMrzxBNP6Ny5c/roo49MRwEAALA0lpoCAADYxKVLl/Tll19q8eLFFN0AAAAqAYU3AAAAm+jTp492796t4cOH6w9/+IPpOAAAAJbHUlMAAAAAAADADThcAQAAAAAAAHADCm8AAAAAAACAG1B4AwAAAAAAANyAwhsAAAAAAADgBhTeAAAAAAAAADeg8AYAAAAAAAC4AYU3AAAAAAAAwA0ovAEAAAAAAABu8P8APqa268Vf2AMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot average WER per system\n", "plt.figure(figsize=(15, 8))\n", "sns.boxplot(data=df_per_sample, x='system', y='WER')\n", "plt.xticks(rotation=90)\n", "plt.title('Average WER per system')\n", "plt.show()\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAR7CAYAAAADlcLCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfXzddX3//2dCS08pNKVU0haa2AIdIMgcaLkaUKgriAJanCjXc8R9R1HGNpUVAdFQQQWEgRAvimARUQGFDRS5lKvKxZjOCy4GSxjagGJPuWjS0pzfH/zIjC1QPkn7SZr7/XbLreZzzvmc13nnQKWPfs67rlar1QIAAAAAAMAbUl/2AAAAAAAAAEORyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAACW56KKLUldXlxkzZpQ9yqCy/fbbZ6eddlrl+DXXXJO6urrsvffeq9z29a9/PXV1dfnRj36UJLn00ktTV1f3ql/33ntv72P/9LaxY8dm7733zr/927+tvRc5xJ155pm59tpryx4DAABKN6LsAQAAYLhauHBh3vzmN+enP/1pHnvssWy99dZljzQo7Lnnnvna176WarWahoaG3uN33XVXRowYkfvuuy8rVqzIyJEj+9y2wQYbZLfddutzrjPOOCNTp05d5Tn+dK3f+c535qijjkqtVkt7e3u+/OUv5z3veU9uuOGGzJ49e4Bf4dB35pln5tBDD80hhxxS9igAAFAqkQUAAErwxBNP5O67787VV1+dj3zkI1m4cGFOO+20dTpDT09Pli9fnkqlsk6f9/Xsueee+cpXvpK77747BxxwQO/xu+66K3/913+dK664Ig888EB23XXX3tvuvPPOvPWtb80mm2zS51wHHHBAdtlll9d9zunTp+eII47o/X7OnDnZfvvt86UvfWnQRJYXXnghY8aMKXsMAADgj/i4MAAAKMHChQuz6aab5sADD8yhhx6ahQsX9t62YsWKjB8/Pscee+wqj1u6dGkqlUr+6Z/+qfdYd3d3TjvttGy99dYZNWpUpkyZko9//OPp7u7u89i6urrMnTs3CxcuzFve8paMGjUqN954Y5LkC1/4QnbfffdsttlmGT16dHbeeed897vfXeX5ly1blo9+9KOZMGFCNtlkkxx00EF56qmnUldXl9NPP73PfZ966qn8zd/8TRobGzNq1Ki85S1vyde//vXXXZs999wzyctR5RVdXV158MEH8773vS/Tpk3rc9szzzyTRx55pPdxA2G77bbLhAkT8t///d+ve9/bbrstdXV1+fa3v51/+Zd/ycSJEzNmzJgcdNBBefLJJ1e5/6JFi7L//vunoaEhG220Ufbee+8+rydJTj/99NTV1eWXv/xlPvShD2XTTTd9zde3YsWKfPrTn84222yTSqWSzTbbLHvuuWduuummJMmCBQtSV1eX//iP/1jlsWeeeWY22GCDPPXUU0mSRx99NHPmzMnEiRNTqVSy5ZZb5rDDDku1Wk3y8vvohRdeyDe+8Y3ej1g75phjes+3Jj/3V9bsqquuyqc//elsscUW2WSTTXLooYemWq2mu7s7J554YjbffPNsvPHGOfbYY1d5PwMAwGDgShYAACjBwoUL8773vS8bbrhhPvjBD+bLX/5y7rvvvrz97W/PyJEj8973vjdXX311Lrnkkmy44Ya9j7v22mvT3d2dww47LMnLV6McdNBBufPOO9PS0pLtttsuP//5z3PuuefmkUceWWXfjFtuuSVXXXVV5s6dmwkTJuTNb35zkuRLX/pSDjrooBx++OFZvnx5rrzyyrz//e/P9ddfnwMPPLD38cccc0yuuuqqHHnkkdl1111z++2397n9FZ2dndl11117w86b3vSm3HDDDfnwhz+cpUuX5sQTT3zVtZk2bVomT56cO++8s/fYfffdl+XLl2f33XfP7rvvnrvuuiv/+I//mCS5++67k2S1EaJareZ3v/tdn2N1dXXZbLPNXvX5X3ncH/7wh2y11Vaveb8/1tramrq6unziE5/I008/nfPOOy+zZs3KQw89lNGjRyd5ef0POOCA7LzzzjnttNNSX1+fBQsWZN99981PfvKTvOMd7+hzzve///3ZZpttcuaZZ6ZWq73qc59++umZP39+/vZv/zbveMc7snTp0tx///158MEH8853vjOHHnpojj/++CxcuDBve9vb+jx24cKF2WeffbLFFltk+fLlmT17drq7u3PCCSdk4sSJeeqpp3L99ddnyZIlaWhoyOWXX977PC0tLUnSu05v9Oc+f/78jB49Op/85Cfz2GOP5YILLsjIkSNTX1+fP/zhDzn99NNz77335tJLL83UqVNz6qmnrvHPAwAA1okaAACwTt1///21JLWbbrqpVqvVaj09PbUtt9yy9rGPfaz3Pj/84Q9rSWrXXXddn8e+613vqk2bNq33+8svv7xWX19f+8lPftLnfhdffHEtSe2uu+7qPZakVl9fX/vFL36xykwvvvhin++XL19e22GHHWr77rtv77EHHniglqR24okn9rnvMcccU0tSO+2003qPffjDH65NmjSp9rvf/a7PfQ877LBaQ0PDKs/3p97//vfXRo8eXVu+fHmtVqvV5s+fX5s6dWqtVqvVLrrootrmm2/ee99/+qd/qiWpPfXUU73HFixYUEuy2q9Ro0b1ea4ktQ9/+MO1Z555pvb000/X7r///tr+++9fS1L7/Oc//5pz1mq12q233lpLUttiiy1qS5cu7T1+1VVX1ZLUvvSlL9VqtZd/zttss01t9uzZtZ6ent77vfjii7WpU6fW3vnOd/YeO+2002pJah/84Adf9/lrtVptp512qh144IGveZ8PfvCDtcmTJ9dWrlzZe+zBBx+sJaktWLCgVqvVav/xH/9RS1L7zne+85rnGjNmTO3oo49e5fia/txfWbMddtih92f8yox1dXW1Aw44oM/jd9ttt1pzc/NrzgQAAGXwcWEAALCOLVy4MI2NjZk5c2aSl6+s+MAHPpArr7wyK1euTJLsu+++mTBhQr797W/3Pu4Pf/hDbrrppnzgAx/oPfad73wn2223Xbbddtv87ne/6/3ad999kyS33nprn+fee++9s/32268y0ytXWrzyPNVqNX/5l3+ZBx98sPf4Kx8t9vd///d9HnvCCSf0+b5Wq+V73/te3vOe96RWq/WZa/bs2alWq33Ouzp77rlnli1blgceeCDJyx8dtvvuuydJ9thjjzz99NN59NFHe2+bOnVqJk+evMp5Lrzwwtx00019vm644YZV7ve1r30tb3rTm7L55ptnl112yc0335yPf/zjOemkk15zzj921FFH9dkT5tBDD82kSZPy7//+70mShx56KI8++mg+9KEP5fe//33vmrzwwgvZb7/9cscdd6Snp6fPOf/u7/5ujZ573Lhx+cUvftG7Jq82329+85s+74mFCxdm9OjRmTNnTpKkoaEhSfLDH/4wL7744pq98P9fkZ/7UUcdlZEjR/Z+P2PGjNRqtfzN3/xNn/vNmDEjTz75ZF566aU3NBMAAKxtPi4MAADWoZUrV+bKK6/MzJkz88QTT/QenzFjRr74xS/m5ptvzl/91V9lxIgRmTNnTq644op0d3dn1KhRufrqq7NixYo+keXRRx/Nr371q7zpTW9a7fM9/fTTfb6fOnXqau93/fXX57Of/WweeuihPntf1NXV9f7v9vb21NfXr3KOrbfeus/3zzzzTJYsWZK2tra0tbWt0Vx/6o/3ZZkxY0buvvvufPazn02S7LDDDhk7dmzuuuuuTJkyJQ888ECfNflj73jHO9Zo4/uDDz44c+fOzfLly3PfffflzDPPzIsvvpj6+jX/e2nbbLNNn+/r6uqy9dZb53/+53+SpDeAHH300a96jmq1mk033bT3+1f7ef2pM844IwcffHCmT5+eHXbYIfvvv3+OPPLIvPWtb+29zzvf+c5MmjQpCxcuzH777Zeenp5861vfysEHH9wbh6ZOnZqTTjop55xzThYuXJi//Mu/zEEHHZQjjjiiN8C8miI/96ampj7fv/IcU6ZMWeV4T09PqtXq637UGwAArEsiCwAArEO33HJLfvvb3+bKK6/MlVdeucrtCxcuzF/91V8lSQ477LBccsklueGGG3LIIYfkqquuyrbbbpuddtqp9/49PT3Zcccdc84556z2+f70D6v/+IqVV/zkJz/JQQcdlL322isXXXRRJk2alJEjR2bBggW54oor3vBrfOVqjCOOOOJVg8If/+H/6uy0007ZZJNNcuedd+Zd73pXnn322d4rWerr6zNjxozceeed2WqrrbJ8+fJ+b3q/5ZZbZtasWUmSd73rXZkwYULmzp2bmTNn5n3ve1+/zv2KV9bl85//fP78z/98tffZeOON+3y/up/X6uy111757//+73z/+9/Pj370o3z1q1/Nueeem4svvjh/+7d/myTZYIMN8qEPfShf+cpXctFFF+Wuu+7Kb37zmxxxxBF9zvXFL34xxxxzTO+5PvrRj2b+/Pm59957s+WWW77u63sjP/cNNthgtfd7teO119iXBgAAyiCyAADAOrRw4cJsvvnmufDCC1e57eqrr84111yTiy++OKNHj85ee+2VSZMm5dvf/nb23HPP3HLLLZk3b16fx2y11Vb5z//8z+y33359rjp5I773ve+lUqnkhz/8YUaNGtV7fMGCBX3u19zcnJ6enjzxxBN9rtp47LHH+tzvTW96UzbZZJOsXLmyN1y8URtssEF23XXX3HXXXbnzzjszduzY7Ljjjr2377777vn2t7/dexVNfyPLn/rIRz6Sc889N6ecckre+973rtHa/ulHddVqtTz22GO9YeGVzeHHjh1beF1ey/jx43Psscfm2GOPzfPPP5+99torp59+em9kSV7+eK4vfvGLue6663LDDTfkTW96U2bPnr3KuXbcccfsuOOOOeWUU3L33Xdnjz32yMUXX9x7NdHq1mMgfu4AADDU2JMFAADWkWXLluXqq6/Ou9/97hx66KGrfM2dOzfPPfdcfvCDHyR5+YqNQw89NNddd10uv/zyvPTSS6t8LNZf//Vf56mnnspXvvKV1T7fCy+88LpzbbDBBqmrq+vdDyZJ/ud//ifXXnttn/u98ofxF110UZ/jF1xwwSrnmzNnTr73ve/lv/7rv1Z5vmeeeeZ1Z0peDifPPPNMFixYkBkzZvT56K7dd989Dz/8cL7//e9ns802y3bbbbdG51xTI0aMyD/+4z/mV7/6Vb7//e+v0WMuu+yyPPfcc73ff/e7381vf/vbHHDAAUmSnXfeOVtttVW+8IUv5Pnnn1/l8Wu6Lqvz+9//vs/3G2+8cbbeeus+H/2WvHwlyVvf+tZ89atfzfe+970cdthhGTHi//7u3dKlS1fZ92THHXdMfX19n3ONGTMmS5Ys6XO/gfq5AwDAUOJKFgAAWEd+8IMf5LnnnstBBx202tt33XXXvOlNb8rChQt7Y8oHPvCBXHDBBTnttNOy4447rhITjjzyyFx11VX5u7/7u9x6663ZY489snLlyvz617/OVVddlR/+8IevuyfJgQcemHPOOSf7779/PvShD+Xpp5/OhRdemK233jo/+9nPeu+38847Z86cOTnvvPPy+9//Prvuumtuv/32PPLII0n6Xt3wuc99LrfeemtmzJiR4447Lttvv32effbZPPjgg/nxj3+cZ5999nXX65WrU+65556cfvrpq6xVXV1d7r333rznPe951StNbrjhhvz6179e5fjuu++eadOmvebzH3PMMTn11FNz1lln5ZBDDnndecePH58999wzxx57bDo7O3Peeedl6623znHHHZfk5Wj21a9+NQcccEDe8pa35Nhjj80WW2yRp556KrfeemvGjh2b66677nWfZ3W233777LPPPtl5550zfvz43H///fnud7+buXPnrnLfo446Kv/0T/+UJKt8VNgtt9ySuXPn5v3vf3+mT5+el156KZdffnlvQHnFzjvvnB//+Mc555xzMnny5EydOjUzZswYkJ87AAAMJSILAACsIwsXLkylUsk73/nO1d5eX1+fAw88MAsXLszvf//7bLbZZtl9990zZcqUPPnkk6vd3L2+vj7XXnttzj333Fx22WW55pprstFGG2XatGn52Mc+lunTp7/uXPvuu2++9rWv5XOf+1xOPPHETJ06NWeddVb+53/+p09kSV6+WmPixIn51re+lWuuuSazZs3Kt7/97fzZn/1ZKpVK7/0aGxvz05/+NGeccUauvvrqXHTRRdlss83ylre8JWedddYardeuu+6aESNG5KWXXurdj+UVY8eOzQ477JCf/exnr/lRYaeeeupqjy9YsOB1I8vo0aMzd+7cnH766bntttuyzz77vOb9/+Vf/iU/+9nPMn/+/Dz33HPZb7/9ctFFF2WjjTbqvc8+++yTe+65J5/5zGfyr//6r3n++eczceLEzJgxIx/5yEde8/yv5aMf/Wh+8IMf5Ec/+lG6u7vT3Nycz372s/nnf/7nVe57+OGH5xOf+ES22mqrvOMd7+hz20477ZTZs2fnuuuuy1NPPZWNNtooO+20U2644Ybsuuuuvfc755xz0tLSklNOOSXLli3L0UcfnRkzZgzIzx0AAIaSupqdAwEAgH546KGH8ra3vS3f/OY3c/jhh5c9zjp32223ZebMmfnOd76TQw89tOxxXtfvfve7TJo0Kaeeemo+9alPlT0OAAAMafZkAQAA1tiyZctWOXbeeeelvr4+e+21VwkT8UZdeumlWblyZY488siyRwEAgCHPx4UBAABr7Oyzz84DDzyQmTNnZsSIEbnhhhtyww03pKWlJVOmTCl7PF7DLbfckl/+8pdpbW3NIYcckje/+c1ljwQAAEOeyAIAAKyx3XffPTfddFM+85nP5Pnnn09TU1NOP/30zJs3r+zReB1nnHFG7r777uyxxx654IILyh4HAADWC6XuyXLHHXfk85//fB544IH89re/zTXXXJNDDjkkSbJixYqccsop+fd///c8/vjjaWhoyKxZs/K5z30ukydP7j3Hs88+mxNOOCHXXXdd6uvrM2fOnHzpS1/KxhtvXNKrAgAAAAAAhoNS92R54YUXstNOO+XCCy9c5bYXX3wxDz74YD71qU/lwQcfzNVXX52HH344Bx10UJ/7HX744fnFL36Rm266Kddff33uuOOOtLS0rKuXAAAAAAAADFOlXsnyx+rq6vpcybI69913X97xjnekvb09TU1N+dWvfpXtt98+9913X3bZZZckyY033ph3vetd+d///d8+V7z8se7u7nR3d/d+39PTk2effTabbbZZ6urqBvR1AQAAAAAAQ0utVstzzz2XyZMnp77+1a9XGVJ7slSr1dTV1WXcuHFJknvuuSfjxo3rDSxJMmvWrNTX12fRokV573vfu9rzzJ8/P5/+9KfXxcgAAAAAAMAQ9eSTT2bLLbd81duHTGTp6urKJz7xiXzwgx/M2LFjkySLFy/O5ptv3ud+I0aMyPjx47N48eJXPdfJJ5+ck046qff7arWapqamPPnkk73nBgAAAAAAhqelS5dmypQp2WSTTV7zfkMisqxYsSJ//dd/nVqtli9/+cv9Pt+oUaMyatSoVY6PHTtWZAEAAAAAAJLkdbcYGfSR5ZXA0t7enltuuaVPBJk4cWKefvrpPvd/6aWX8uyzz2bixInrelQAAAAAAGAYefXdWgaBVwLLo48+mh//+MfZbLPN+ty+2267ZcmSJXnggQd6j91yyy3p6enJjBkz1vW4AAAAAADAMFLqlSzPP/98Hnvssd7vn3jiiTz00EMZP358Jk2alEMPPTQPPvhgrr/++qxcubJ3n5Xx48dnww03zHbbbZf9998/xx13XC6++OKsWLEic+fOzWGHHZbJkyeX9bIAAAAAAIBhoK5Wq9XKevLbbrstM2fOXOX40UcfndNPPz1Tp05d7eNuvfXW7LPPPkmSZ599NnPnzs11112X+vr6zJkzJ+eff3423njjNZ5j6dKlaWhoSLVatScLAAAAAAAMc2vaDUqNLIOFyAIAAAAAALxiTbvBoN6TBQAAAAAAYLASWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoYUfYAAAAAAADA0NHV1ZWOjo6yx0hTU1MqlUqpM4gsAAAAAADAGuvo6EhLS0vZY6StrS3Tp08vdQaRBQAAAAAAWGNNTU1pa2sr/Pj29va0trZm3rx5aW5u7tccZRNZAAAAAACANVapVAbkCpLm5ubSr0TpLxvfAwAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFFBqZLnjjjvynve8J5MnT05dXV2uvfbaPrfXarWceuqpmTRpUkaPHp1Zs2bl0Ucf7XOfZ599NocffnjGjh2bcePG5cMf/nCef/75dfgqAAAAAACA4ajUyPLCCy9kp512yoUXXrja288+++ycf/75ufjii7No0aKMGTMms2fPTldXV+99Dj/88PziF7/ITTfdlOuvvz533HFHWlpa1tVLAAAAAAAAhqkRZT75AQcckAMOOGC1t9VqtZx33nk55ZRTcvDBBydJLrvssjQ2Nubaa6/NYYcdll/96le58cYbc99992WXXXZJklxwwQV517velS984QuZPHnyOnstAAAAAADA8DJo92R54oknsnjx4syaNav3WENDQ2bMmJF77rknSXLPPfdk3LhxvYElSWbNmpX6+vosWrToVc/d3d2dpUuX9vkCAAAAAAB4IwZtZFm8eHGSpLGxsc/xxsbG3tsWL16czTffvM/tI0aMyPjx43vvszrz589PQ0ND79eUKVMGeHoAAAAAAGB9N2gjy9p08sknp1qt9n49+eSTZY8EAAAAAAAMMYM2skycODFJ0tnZ2ed4Z2dn720TJ07M008/3ef2l156Kc8++2zvfVZn1KhRGTt2bJ8vAAAAAACAN2LQRpapU6dm4sSJufnmm3uPLV26NIsWLcpuu+2WJNltt92yZMmSPPDAA733ueWWW9LT05MZM2as85kBAAAAAIDhY0SZT/7888/nscce6/3+iSeeyEMPPZTx48enqakpJ554Yj772c9mm222ydSpU/OpT30qkydPziGHHJIk2W677bL//vvnuOOOy8UXX5wVK1Zk7ty5OeywwzJ58uSSXhUAAAAAADAclBpZ7r///sycObP3+5NOOilJcvTRR+fSSy/Nxz/+8bzwwgtpaWnJkiVLsueee+bGG29MpVLpfczChQszd+7c7Lfffqmvr8+cOXNy/vnnr/PXAgAAAAAADC91tVqtVvYQZVu6dGkaGhpSrVbtzwIAAAAAAGvRI488kpaWlrS1tWX69Ollj7Naa9oNBu2eLAAAAAAAAIOZyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFDAiLIHAAAAAACAdaGrqysdHR1lj5EkaWpqSqVSKXsM+klkAQAAAABgWOjo6EhLS0vZYyRJ2traMn369LLHoJ9EFgAAAAAAhoWmpqa0tbUVfnx7e3taW1szb968NDc393sWhj6RBQAAAACAYaFSqQzI1SPNzc2uQiGJje8BAAAAAAAKEVkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKGFH2AAAAAAAAvLaurq50dHSUPUaSpKmpKZVKpewxYFAQWQAAAAAABrmOjo60tLSUPUaSpK2tLdOnTy97DBgURBYAAAAAgEGuqakpbW1t/TpHe3t7WltbM2/evDQ3N/drFuBlIgsAAAAAwCBXqVQG7OqR5uZmV6LAALHxPQAAAAAAQAEiCwAAAAAAQAEiCwAAAAAAQAEiCwAAAAAAQAEiCwAAAAAAQAGDOrKsXLkyn/rUpzJ16tSMHj06W221VT7zmc+kVqv13qdWq+XUU0/NpEmTMnr06MyaNSuPPvpoiVMDAAAAAADDwaCOLGeddVa+/OUv51//9V/zq1/9KmeddVbOPvvsXHDBBb33Ofvss3P++efn4osvzqJFizJmzJjMnj07XV1dJU4OAAAAAACs70aUPcBrufvuu3PwwQfnwAMPTJK8+c1vzre+9a389Kc/TfLyVSznnXdeTjnllBx88MFJkssuuyyNjY259tprc9hhh632vN3d3enu7u79funSpWv5lQAAAAAAAOubQX0ly+67756bb745jzzySJLkP//zP3PnnXfmgAMOSJI88cQTWbx4cWbNmtX7mIaGhsyYMSP33HPPq553/vz5aWho6P2aMmXK2n0hAAAAAADAemdQX8nyyU9+MkuXLs22226bDTbYICtXrkxra2sOP/zwJMnixYuTJI2NjX0e19jY2Hvb6px88sk56aSTer9funSp0AIAAAAAALwhgzqyXHXVVVm4cGGuuOKKvOUtb8lDDz2UE088MZMnT87RRx9d+LyjRo3KqFGjBnBSAAAAAABguBnUkeWf//mf88lPfrJ3b5Udd9wx7e3tmT9/fo4++uhMnDgxSdLZ2ZlJkyb1Pq6zszN//ud/XsbIAAAAAADAMDGo92R58cUXU1/fd8QNNtggPT09SZKpU6dm4sSJufnmm3tvX7p0aRYtWpTddtttnc4KAAAAAAAML4P6Spb3vOc9aW1tTVNTU97ylrfkP/7jP3LOOefkb/7mb5IkdXV1OfHEE/PZz34222yzTaZOnZpPfepTmTx5cg455JByhwcAAAAAANZrgzqyXHDBBfnUpz6Vv//7v8/TTz+dyZMn5yMf+UhOPfXU3vt8/OMfzwsvvJCWlpYsWbIke+65Z2688cZUKpUSJwcAAAAAANZ3gzqybLLJJjnvvPNy3nnnvep96urqcsYZZ+SMM85Yd4MBAAAAAADD3qDekwUAAAAAAGCwElkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKGFH2AAAAAAweXV1d6ejoKHuMJElTU1MqlUrZY7xh1hAAGOw6OztTrVZLe/729vY+v5ahoaEhjY2N/T6PyAIAAECvjo6OtLS0lD1GkqStrS3Tp08ve4w3zBoCAINZZ2dnjjjyqKxY3l32KGltbS3tuUduOCrfvPyyfocWkQUAAIBeTU1NaWtrK/z49vb2tLa2Zt68eWlubu73LENRf9cwGbh1HKprCACsPdVqNSuWd2fZtL3TU2koe5xS1HdVk8dvT7VaFVkAAAAYOJVKZUCufGhubh62V1AM1Bomw3sdAYC1q6fSkJ4xE8oeY8iz8T0AAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABgz6yPPXUUzniiCOy2WabZfTo0dlxxx1z//33995eq9Vy6qmnZtKkSRk9enRmzZqVRx99tMSJAQAAAACA4WBQR5Y//OEP2WOPPTJy5MjccMMN+eUvf5kvfvGL2XTTTXvvc/bZZ+f888/PxRdfnEWLFmXMmDGZPXt2urq6SpwcAAAAAABY340oe4DXctZZZ2XKlClZsGBB77GpU6f2/u9arZbzzjsvp5xySg4++OAkyWWXXZbGxsZce+21Oeyww9b5zAAAAAAAwPAwqK9k+cEPfpBddtkl73//+7P55pvnbW97W77yla/03v7EE09k8eLFmTVrVu+xhoaGzJgxI/fcc8+rnre7uztLly7t8wUAAAAAAPBGDOrI8vjjj+fLX/5yttlmm/zwhz/M//t//y8f/ehH841vfCNJsnjx4iRJY2Njn8c1Njb23rY68+fPT0NDQ+/XlClT1t6LAAAAAAAA1kuDOrL09PTkL/7iL3LmmWfmbW97W1paWnLcccfl4osv7td5Tz755FSr1d6vJ598coAmBgAAAAAAhotBHVkmTZqU7bffvs+x7bbbLh0dHUmSiRMnJkk6Ozv73Kezs7P3ttUZNWpUxo4d2+cLAAAAAADgjRjUkWWPPfbIww8/3OfYI488kubm5iTJ1KlTM3HixNx88829ty9dujSLFi3Kbrvttk5nBQAAAAAAhpcBiyxdXV35whe+MFCnS5L8wz/8Q+69996ceeaZeeyxx3LFFVekra0txx9/fJKkrq4uJ554Yj772c/mBz/4QX7+85/nqKOOyuTJk3PIIYcM6CwAAAAAAAB/7A1FlmeeeSbXX399fvSjH2XlypVJkhUrVuRLX/pS3vzmN+dzn/vcgA739re/Pddcc02+9a1vZYcddshnPvOZnHfeeTn88MN77/Pxj388J5xwQlpaWvL2t789zz//fG688cZUKpUBnQUAAAAAAOCPjVjTO955551597vfnaVLl6auri677LJLFixYkEMOOSQjRozI6aefnqOPPnrAB3z3u9+dd7/73a96e11dXc4444ycccYZA/7cAAAAAAAAr2aNr2Q55ZRT8q53vSs/+9nPctJJJ+W+++7Le9/73px55pn55S9/mb/7u7/L6NGj1+asAAAAAAAAg8YaR5af//znOeWUU7LDDjvkjDPOSF1dXc4+++wceuiha3M+AAAAAACAQWmNPy7sD3/4QyZMmJAkGT16dDbaaKPssMMOa20wAAAAAChbV1dXOjo6yh4jSdLU1GQfYoBBZo0jS5L88pe/zOLFi5MktVotDz/8cF544YU+93nrW986cNMBAAAAQIk6OjrS0tJS9hhJkra2tkyfPr3sMQD4I28osuy3336p1Wq937+yIX1dXV1qtVrq6uqycuXKgZ0QAAAAAErS1NSUtra2fp2jvb09ra2tmTdvXpqbm/s1CwCDyxpHlieeeGJtzgEAAAAAg06lUhmwq0eam5tdiQKwnlnjyNKfyg4AAAAADF+DZW8b+9oAA22NI8vZZ5+dE044IaNHj06S3HXXXdlll10yatSoJMlzzz2XT3ziE7nooovWzqQAAAAAwJA0WPa2sa8NMNDWOLKcfPLJOeaYY3ojywEHHJCHHnoo06ZNS5K8+OKLueSSS0QWAAAAAKCP/u5tY18bYLBa48jyxxver+57AAAAAIDVGai9bexrAww29WUPAAAAAAAAMBSJLAAAAAAAAAWs8ceFJclXv/rVbLzxxkmSl156KZdeemkmTJiQ5OWN7wEAAAAAAIaLNY4sTU1N+cpXvtL7/cSJE3P55Zevch8AAAAAAIDhYI0jy6233pqpU6euzVkAAAAAAACGjDWOLFtttVWam5szc+bM7Lvvvpk5c2a22GKLtTkbAAAAAP3Q1dWVjo6OssdIU1NTKpVK2WMAwIBb48hyyy235Lbbbsttt92Wb33rW1m+fHmmTZvWG1xmzpyZxsbGtTkrAAAAAG9AR0dHWlpayh4jbW1tmT59etljAMCAW+PIss8++2SfffZJ8vLfgrj77rt7o8s3vvGNrFixIttuu21+8YtfrK1ZAQAAAHgDmpqa0tbWVvjx7e3taW1tzbx589Lc3NyvOQBgfbTGkeWPVSqV7Lvvvtlzzz0zc+bM3HDDDbnkkkvy61//eqDnAwAAAKCgSqUyIFeQNDc3uxIFAFbjDUWW5cuX5957782tt96a2267LYsWLcqUKVOy11575V//9V+z9957r605AQAAAAAABpU1jiz77rtvFi1alKlTp2bvvffORz7ykVxxxRWZNGnS2pwPAAAAAABgUFrjyPKTn/wkkyZNyr777pt99tkne++9dzbbbLO1ORsAAAAAAMCgVb+md1yyZEna2tqy0UYb5ayzzsrkyZOz4447Zu7cufnud7+bZ555Zm3OCQAAAAAAMKis8ZUsY8aMyf7775/9998/SfLcc8/lzjvvzK233pqzzz47hx9+eLbZZpv813/911obFgAAAAAAYLBY4ytZ/tSYMWMyfvz4jB8/PptuumlGjBiRX/3qVwM5GwAAAAAAwKC1xley9PT05P77789tt92WW2+9NXfddVdeeOGFbLHFFpk5c2YuvPDCzJw5c23OCgAAAAAAMGiscWQZN25cXnjhhUycODEzZ87Mueeem3322SdbbbXV2pwPAAAAAABgUFrjyPL5z38+M2fOzPTp09fmPAAAAAAAAEPCGkeWj3zkI2tzDgAAAAAAgCGl8Mb3AAAAAAAAw5nIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUMCIsgcAAAAA+FNdXV3p6Ogoe4wkSVNTUyqVStljAACDkMgCAAAADDodHR1paWkpe4wkSVtbW6ZPn172GADAICSyAAAAAINOU1NT2traCj++vb09ra2tmTdvXpqbm/s9CwDA6ogsAAAAwKBTqVQG5OqR5uZmV6EAAGuNje8BAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKGFH2AAAADG1dXV3p6Ogoe4wkSVNTUyqVStljAAAAMEyILAAA9EtHR0daWlrKHiNJ0tbWlunTp5c9BgAAAMOEyAIAQL80NTWlra2t8OPb29vT2tqaefPmpbm5ud+zAAAAwLoisgAA0C+VSmVArh5pbm52FQoAAABDio3vAQAAAAAAChBZAAAAAAAACvBxYQAAAAAADBmdnZ2pVqulPHd7e3ufX8vS0NCQxsbGUmfgZSILAAAAAABDQmdnZ4448qisWN5d6hytra2lPv/IDUflm5dfJrQMAiILAAAAAABDQrVazYrl3Vk2be/0VBrKHqcU9V3V5PHbU61WRZZBQGQBAAAAAGBI6ak0pGfMhLLHAJEFAAAAAACGm/plS8oeoTQD+dpFFgAAGAS6urrS0dFR9hhpampKpVIpewwAAGAtG/3EHWWPsF4QWQAAYBDo6OhIS0tL2WOkra0t06dPL3sMAABgLVs2da/0jB5X9hilqF+2ZMAik8gCAACDQFNTU9ra2go/vr29Pa2trZk3b16am5v7NQcAALD+6xk9zr42A0BkAQCAQaBSqQzIFSTNzc2uRAEAAFhH6sseAAAAAAAAYCgSWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoYUfYAAAAAA6GrqysdHR1lj5EkaWpqSqVSKXsMAABgLRNZAACA9UJHR0daWlrKHiNJ0tbWlunTp5c9BgAAsJaJLAAAwHqhqakpbW1t/TpHe3t7WltbM2/evDQ3N/drFgAAYP0nsgAAAOuFSqUyYFePNDc3uxIFAAB4XTa+BwAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKGBIRZbPfe5zqaury4knnth7rKurK8cff3w222yzbLzxxpkzZ046OzvLGxIAAAAAABgWhkxkue+++3LJJZfkrW99a5/j//AP/5Drrrsu3/nOd3L77bfnN7/5Td73vveVNCUAAAAAADBcDInI8vzzz+fwww/PV77ylWy66aa9x6vVar72ta/lnHPOyb777pudd945CxYsyN1335177733Vc/X3d2dpUuX9vkCAAAAAAB4I4ZEZDn++ONz4IEHZtasWX2OP/DAA1mxYkWf49tuu22amppyzz33vOr55s+fn4aGht6vKVOmrLXZAQAAAACA9dOgjyxXXnllHnzwwcyfP3+V2xYvXpwNN9ww48aN63O8sbExixcvftVznnzyyalWq71fTz755ECPDQAAAAAArOdGlD3Aa3nyySfzsY99LDfddFMqlcqAnXfUqFEZNWrUgJ0PAAAAAAAYfgb1lSwPPPBAnn766fzFX/xFRowYkREjRuT222/P+eefnxEjRqSxsTHLly/PkiVL+jyus7MzEydOLGdoAAAAAABgWBjUV7Lst99++fnPf97n2LHHHpttt902n/jEJzJlypSMHDkyN998c+bMmZMkefjhh9PR0ZHddtutjJEBAAAAAIBhYlBHlk022SQ77LBDn2NjxozJZptt1nv8wx/+cE466aSMHz8+Y8eOzQknnJDddtstu+66axkjAwAAAAAAw8Sgjixr4txzz019fX3mzJmT7u7uzJ49OxdddFHZYwEAAAAAAOu5IRdZbrvttj7fVyqVXHjhhbnwwgvLGQgAAAAAABiWBvXG9wAAAAAAAIOVyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFDAiLIHAACK6erqSkdHR9ljJEmamppSqVTKHgMAAGBQ6+zsTLVaLe3529vb+/xahoaGhjQ2Npb2/DDQRBYAGKI6OjrS0tJS9hhJkra2tkyfPr3sMQAAAAatzs7OHHHkUVmxvLvsUdLa2lrac4/ccFS+efllQgvrDZEFAIaopqamtLW1FX58e3t7WltbM2/evDQ3N/d7FgAAAF5dtVrNiuXdWTZt7/RUGsoepxT1XdXk8dtTrVZFFtYbIgsADFGVSmVArh5pbm52FQoAAMA60lNpSM+YCWWPAQwQG98DAAAAAAAUILIAAAAAAAAUILIAAAAAAAAUILIAAAAAAAAUILIAAAAAAAAUILIAAAAAAAAUMKLsAQAYfrq6utLR0VH2GEmSpqamVCqVsscAAAAAYAgSWQBY5zo6OtLS0lL2GEmStra2TJ8+vewxAAAAABiCRBYA1rmmpqa0tbX16xzt7e1pbW3NvHnz0tzc3K9ZAAAAAKAIkQWAda5SqQzY1SPNzc2uRKFfBsvH1/noOgAAABh6RBYAYFgbLB9f56PrAAAAYOgRWQCAYa2/H1/no+sAAABg+BJZAIBhbaA+vs5H1wEAAMDwU1/2AAAAAAAAAEORyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFDAiLIHABhqurq60tHRUfYYaWpqSqVSKXsMAAAAABi2RBaAN6ijoyMtLS1lj5G2trZMnz697DEAAAAAYNgSWQDeoKamprS1tRV+fHt7e1pbWzNv3rw0Nzf3aw4AAAAAoDwiC8AbVKlUBuQKkubmZleiAAAAAMAQZuN7AAAAAACAAlzJAgAAAAAAw0x9V7XsEUozkK9dZAEAAAAAgGGioaEhIzcclTx+e9mjlGrkhqPS0NDQ7/OILAAAAAAAMEw0Njbmm5dflmq1vCtZ2tvb09ramnnz5qW5ubmUGRoaGtLY2Njv84gsAAAAAAAMKfXLlpQ9QmkG4rU3NjYOSGDor+bm5kyfPr3sMfpFZAEAAAAAYEgZ/cQdZY8ASUQWAAAAAACGmGVT90rP6HFlj1GK+mVLRKZBRGQBAAAAAGBI6Rk9Lj1jJpQ9BqS+7AEAAAAAAACGIpEFAAAAAACgAJEFAAAAAACgAJEFAAAAAACgAJEFAAAAAACgAJEFAAAAAACgAJEFAAAAAACgAJEFAAAAAACgAJEFAAAAAACgAJEFAAAAAACggBFlDwAAAMDA6uzsTLVaLeW529vb+/xaloaGhjQ2NhZ+fJlrmAyOdezvGgIADAciCwAAwHqks7MzRxx5VFYs7y51jtbW1lKff+SGo/LNyy8rFAkGyxom5a5jf9YQAGC4EFkAAADWI9VqNSuWd2fZtL3TU2koe5xS1HdVk8dvT7VaLRQIrGH/1xAAYLgQWQAAANZDPZWG9IyZUPYYQ5o1BADg9dj4HgAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoAAb3wMAAACwXuvs7Ey1Wi3t+dvb2/v8WoaGhoY0NjaW9vwA6yuRBYaRrq6udHR0lD1GkqSpqSmVSqXsMQAAAFjPdXZ25ogjj8qK5d1lj5LW1tbSnnvkhqPyzcsvE1oABpjIAsNIR0dHWlpayh4jSdLW1pbp06eXPQYAAADruWq1mhXLu7Ns2t7pqTSUPU4p6ruqyeO3p1qtiiwAA0xkgWGkqakpbW1t/TpHe3t7WltbM2/evDQ3N/drFgAAAFhXeioN6RkzoewxhiwfufYyH7sG/CmRBYaRSqUyYFePNDc3uxIFAAAAhgEfufZ/fOwa8KdEFgAAAADgVfnItZf52DVgdUQWAAAAAOB1+cg1gFWJLAAAAACDlH0wXmYfDAAGK5EFAAAAYBCyD8b/sQ8GAIOVyLIOdHV1paOjo+wxkiRNTU2pVCpljwEAAAC8DvtgvMw+GAAMZiLLOtDR0ZGWlpayx0iStLW1Zfr06WWPAQAAAKwh+2AAwOAlsqwDTU1NaWtrK/z49vb2tLa2Zt68eWlubu73LAAAAAAAQP+JLOtApVIZkKtHmpubXYUCAAAAAACDRH3ZAwAAAAAAAAxFIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABI8oeANZUV1dXOjo6yh4jTU1NqVQqZY8BAAAAAEDJBnVkmT9/fq6++ur8+te/zujRo7P77rvnrLPOyp/92Z/13qerqyv/+I//mCuvvDLd3d2ZPXt2LrroojQ2NpY4OWtDR0dHWlpayh4jbW1tmT59etljAAAAAABQskEdWW6//fYcf/zxefvb356XXnop//Iv/5K/+qu/yi9/+cuMGTMmSfIP//AP+bd/+7d85zvfSUNDQ+bOnZv3ve99ueuuu0qenoHW1NSUtra2wo9vb29Pa2tr5s2bl+bm5n7NAQAAAAAAgzqy3HjjjX2+v/TSS7P55pvngQceyF577ZVqtZqvfe1rueKKK7LvvvsmSRYsWJDtttsu9957b3bdddcyxmYtqVQqA3IFSXNzsytRAAAAAADot0EdWf5UtVpNkowfPz5J8sADD2TFihWZNWtW73223XbbNDU15Z577nnVyNLd3Z3u7u7e75cuXboWpwYAAIDhqbOzs/e/5de19vb2Pr+WpaGhwUeaA8B6bMhElp6enpx44onZY489ssMOOyRJFi9enA033DDjxo3rc9/GxsYsXrz4Vc81f/78fPrTn16b4wIAAMCw1tnZmSOOPCorlne//p3XotbW1lKff+SGo/LNyy8TWgBgPTVkIsvxxx+f//qv/8qdd97Z73OdfPLJOemkk3q/X7p0aaZMmdLv8wIAAAAvq1arWbG8O8um7Z2eSkPZ45SivquaPH57qtWqyAIA66khEVnmzp2b66+/PnfccUe23HLL3uMTJ07M8uXLs2TJkj5Xs3R2dmbixImver5Ro0Zl1KhRa3NkAAAAIElPpSE9YyaUPQYAwFpRX/YAr6VWq2Xu3Lm55pprcsstt2Tq1Kl9bt95550zcuTI3Hzzzb3HHn744XR0dGS33XZb1+MCAAAAAADDyKC+kuX444/PFVdcke9///vZZJNNevdZaWhoyOjRo9PQ0JAPf/jDOemkkzJ+/PiMHTs2J5xwQnbbbbdX3fQeAAAAAABgIAzqyPLlL385SbLPPvv0Ob5gwYIcc8wxSZJzzz039fX1mTNnTrq7uzN79uxcdNFF63hSAAAAAABguBnUkaVWq73ufSqVSi688MJceOGF62AiAAAAAACAlw3qPVkAAAAAAAAGK5EFAAAAAACgAJEFAAAAAACggEG9JwsAAOtGZ2dnqtVqKc/d3t7e59eyNDQ0pLGxsdQZAAAAGFpEFgCAYa6zszNHHHlUVizvLnWO1tbWUp9/5Iaj8s3LLxNaAAAAWGMiCwDAMFetVrNieXeWTds7PZWGsscpRX1XNXn89lSrVZEFAACANSayAACQJOmpNKRnzISyxxiyyvzItcTHrgEAAJRBZAEAgH4aLB+5lvjYNQAAgHVJZAEAgH7ykWsv87FrAADAcCOyAADAAPGRawAAAMNLfdkDAAAAAAAADEUiCwAAAAAAQAE+LgwAABg0Ojs7U61WS3v+9vb2Pr+WoaGhwZ42ALAeq1+2pOwRSjOcXzvrL5EFAAAYFDo7O3PEkUdlxfLuskdJa2trac89csNR+ebllwktALCeGv3EHWWPAAwgkQUAABgUqtVqVizvzrJpe6en0lD2OKWo76omj9+earUqsgDAemrZ1L3SM3pc2WOUon7ZEpGJ9Y7IAgAADCo9lYb0jJlQ9hgAAGtFz+hx/r8OrEdsfA8AAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFCAyAIAAAAAAFDAiLIHAAAAAACAN6K+q1r2CKUZzq99MBJZAAAAAAAYEhoaGjJyw1HJ47eXPUqpRm44Kg0NDWWPQUQWAChVZ2dnqtVy/gZKe3t7n1/L0tDQkMbGxlJnAAAAYGhobGzMNy+/rNT/lm5tbc28efPS3NxcygyJ/5YeTEQWAChJZ2dnjjjyqKxY3l3qHK2traU+/8gNR+Wbl1/m/xwCAACwRhobG0v/b8jm5uZMnz691BkYHEQWAAop8wqMZHBchdHfvzVSrVazYnl3lk3bOz2V4XmJb31XNXn89lSr1cJr6b34Mn+LCQAAANY9kQWAN2ywXIGRlHsVxkBdgdFTaUjPmAkDNNXw4r34f1wRBAAAAOueyALAG+YKjIG5AoP+8158mfcjAAAAlENkAaAwV2AwWHgvAgAAAGWoL3sAAAAAAACAoUhkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKMDG9wAAAADA66pftqTsEUo13F8/sHoiCzAsdXZ2plqtlvLc7e3tfX4tS0NDQxobG0udAQAAgKFj9BN3lD0CwKAjsgDDTmdnZ4448qisWN5d6hytra2lPv/IDUflm5dfJrQAAACwRpZN3Ss9o8eVPUZp6pctEZqAVYgswLBTrVazYnl3lk3bOz2VhrLHKUV9VzV5/PZUq1WRBQAAgDXSM3pcesZMKHsMgEFFZAGGrZ5Kg/9zCAAAAAAUJrIAAAAAsN4bzpuWD+fXDrC2iSwAAAAArPfspQHA2iCyAAAAALDeG86bttuwHWDtEVkAAAAAWO/ZtB2AtaG+7AEAAAAAAACGIleyAAAAAAxiw33T8uH++gEY3EQWAAAAgEHMXhoAMHiJLAAAAACD2HDesD2xaTsAg5vIAgAAADCI2bAdAAYvG98DAAAAAAAUILIAAAAAAAAU4OPCYIjp7OxMtVot7fnb29v7/FqGhoaGNDY2lvb8AAAAAACJyAJDSmdnZ4448qisWN5d9ihpbW0t7blHbjgq37z8MqEFAAAAACiVyLKGyrx6YDBcOZC4emAwqFarWbG8O8um7Z2eSkPZ45SivquaPH57qtWq9yMAAAwB9cuWlD1CaYbzaweA4UJkWQOD5eqBMq8cSFw9MJj0VBrSM2ZC2WMAAAC8rtFP3FH2CAAAa43IsgZcPeDqAQAAAIpZNnWv9IweV/YYpahftkRkAoD1nMjyBrh6AAAAAN6YntHj/Lc0ALDeEllYZ8rc1yaxtw0AAMPLcN4LYqBeuzUEAOD1iCysE4NlX5vE3jYAAAwPPqKo/6whAACvR2RhnbCvzcvsbQMAwLpiH4z+BxJrKDIBALwekYV1yr42AACwbtgHo/+sIQAAr6e+7AEAAAAAAACGIleyAAAAg8pw3nB7OL92AAAYikQWAABgULEPBAAAMFSILAAAwKBis3GRCQAAhgqRBQAAGFRsNg4AAAwVIgsAAAyQ4b6fxnB//QAAwPAjsgAAwADxMU8AAADDi8gCAECS4X0VwkC99uG8l0hiPxEAAGD4EVkAAEjiKoyBYC8RAACA4UVkAQAgyfC+CsMVGAAAABQhsgAAkMRVGAAAAPBG1Zc9AAAAAAAAwFAksgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQwouwBAAD6q37ZkrJHKNVwf/0AAABQFpEFgMKG8x/sDuRrt479N/qJOwbkPAAAAABvhMgCQGH+YHtgWMf+WzZ1r/SMHlf2GKWpX7bE+wgAAABKILIAUNhw/oPtgfxDbevY/3XsGT0uPWMmDMBEAAAAAGtOZAGgMH+wPTCsIwAAAMDQVF/2AAAAAAAAAEORyAIAAAAAAFCAyAIAAAAAAFCAPVmAYat+2ZKyRyjNcH7tAAAAADBQRBZg2Br9xB1ljwAAAAAADGEiCzBsLZu6V3pGjyt7jFLUL1siMgEAAABAP4kswLDVM3pcesZMKHsMAAAAAGCIsvE9AAAAAABAASILAAAAAABAASILAAAAAABAASILAAAAAABAASILAAAAAABAASILAAAAAABAASILAAAAAABAASILAAAAAABAAetNZLnwwgvz5je/OZVKJTNmzMhPf/rTskcCAAAAAADWY+tFZPn2t7+dk046KaeddloefPDB7LTTTpk9e3aefvrpskcDAAAAAADWUyPKHmAgnHPOOTnuuONy7LHHJkkuvvji/Nu//Vu+/vWv55Of/OQq9+/u7k53d3fv90uXLl2j59mg+r+pX7bkjQ9YW5m65S++8cetBbUNN0rqNnjDj6tb/vyAPH/hNUwGzToWXcNkEKzjIFnDpPz3YpLUd1WLPbDnpdR3D9wcRfWM2jipL/av8cKvfaDOM0jWMCm+jgO1hv06l3UcmPMMknX0z/TA8F7sP+/FgVH2e7Ff57KO/T+PNRyYc1nHgTnPIFlHv78MDO/F/vNeHBhlvxf7o6urKx0dHYUf397e3ufX/mhqakqlUun3ecowWNZxMKzhkI8sy5cvzwMPPJCTTz6591h9fX1mzZqVe+65Z7WPmT9/fj796U+v8XM0NDSkvn6DVJ56sN/zDmX19RukoaGh0GOt4f+xjv3XnzVMXl7HkRuOSh6/fQCnGnpGbjiqX+9Fa9i/NUys4yu8FweGdew/azgwrGP/+f1lYHgv9p/34sDwXhwY1rH/rOHAsI7919/fX/qro6MjLS0t/T5Pa2trv8/R1taW6dOn9/s8ZRgs6zgY1rCuVqvVSp2gn37zm99kiy22yN13353ddtut9/jHP/7x3H777Vm0aNEqj1ndlSxTpkxJtVrN2LFjV/s8v/71r/Pkk08WmnHFihX53e9+V+ixA23ChAkZOXJkocdOmTIl2267beHn7s8aJoNnHfuzhkm56zhY1jAp972YJJ2dnalWi/3tie7u7ixevLhfzz8QJk6cmFGjRhV+fENDQxobGws/fn1Yw6R/69jfNUysY1LuezEZPOvon+mB4b3Yf96LA8PvLwNjqP4zbQ3/j3X0+8sr/P4yMLwX+897cWCU/ftLf/T3CoyBNBiuwihqsKzj2lzDpUuXpqGh4TW7QTJMI8ufWtPFAgAAAAAA1n9r2g2G/Mb3EyZMyAYbbJDOzs4+xzs7OzNx4sSSpgIAAAAAANZ3Qz6ybLjhhtl5551z88039x7r6enJzTff3OfKFgAAAAAAgIE05De+T5KTTjopRx99dHbZZZe84x3vyHnnnZcXXnghxx57bNmjAQAAAAAA66n1IrJ84AMfyDPPPJNTTz01ixcvzp//+Z/nxhtvLHUDJQAAAAAAYP025De+Hwg2vgcAAAAAAF4xbDa+BwAAAAAAKIPIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUMCIsgcYDGq1WpJk6dKlJU8CAAAAAACU7ZVe8Eo/eDUiS5LnnnsuSTJlypSSJwEAAAAAAAaL5557Lg0NDa96e13t9TLMMNDT05Pf/OY32WSTTVJXV1f2OKtYunRppkyZkieffDJjx44te5whyzoODOvYf9ZwYFjH/rOGA8M69p81HBjWcWBYx/6zhgPDOvafNRwY1nFgWMf+s4YDwzr2nzUcGENhHWu1Wp577rlMnjw59fWvvvOKK1mS1NfXZ8sttyx7jNc1duzYQfuGG0qs48Cwjv1nDQeGdew/azgwrGP/WcOBYR0HhnXsP2s4MKxj/1nDgWEdB4Z17D9rODCsY/9Zw4Ex2Nfxta5geYWN7wEAAAAAAAoQWQAAAAAAAAoQWYaAUaNG5bTTTsuoUaPKHmVIs44Dwzr2nzUcGNax/6zhwLCO/WcNB4Z1HBjWsf+s4cCwjv1nDQeGdRwY1rH/rOHAsI79Zw0Hxvq0jja+BwAAAAAAKMCVLAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILKz3Xnrppfz4xz/OJZdckueeey5J8pvf/CbPP/98yZMBAPTPGWeckRdffHGV48uWLcsZZ5xRwkQMV96LA+Oyyy5Ld3f3KseXL1+eyy67rISJAMo1bdq0/P73v1/l+JIlSzJt2rQSJmK4W758eR5++OG89NJLZY8yJJ122mlpb28ve4wBV1er1WplD8Ga++///u8cd9xxueWWW8oeZUhob2/P/vvvn46OjnR3d+eRRx7JtGnT8rGPfSzd3d25+OKLyx5x0Pvf//3fjBs3LhtvvHGf4ytWrMg999yTvfbaq6TJ1g+dnZ255JJLcuqpp5Y9ypCw6aabpq6ubpXjdXV1qVQq2XrrrXPMMcfk2GOPLWG6oeFtb3vbGq3hzJkzS5huaLnvvvty66235umnn05PT0+f284555ySphpa7rvvvvT09GTGjBl9ji9atCgbbLBBdtlll5ImGzo22GCD/Pa3v83mm2/e5/jvf//7bL755lm5cmVJkw0tjz766Kv+8+z36DXjvTgwrCODxcqVK3PppZfm5ptvXu2/G/2ZxOqdf/75a3zfj370o2txkvVHfX19Fi9evMq/Fzs7O9PU1LTaMM2qbr755lf95/nrX/96SVMNLS+++GJOOOGEfOMb3/j/2LvzsBrz9w/g71No35A97RNtpMY+tsg22oytCCXLkCbZKbJvpcEMmshemmRfihAlRBtTSYUs2ScmiZbz+8Pl/JzvSU519DlP3a/rmuun55zvdb2v59fTec5zfz73DQCCZ4weHh5o3bo15s+fzzghN3Ts2BG3b99G79694ebmhuHDh0NOTo51rBprwDoAqZrCwkLExsayjsEZnp6esLKyQmpqKpo0aSI47uDgAHd3d4bJpF9+fj7s7Oxw8+ZN8Hg8ODk54c8//xQUW16/fo2+ffvSF70aevr0Kfz8/OgBjph8fX2xcuVKDB48GJ07dwYAXL9+HWfOnMH06dNx7949TJs2DaWlpXSNf8WgQYOwdetWmJmZCc5hYmIi0tLSMGHCBKSnp6N///6IjIyEnZ0d47TSa9WqVVi8eDGMjIzQvHlzocJVRUUsUrHp06dj7ty5IkWWx48fY+3atbh27RqjZNzB5/Mr/J1LTU1F48aNGSTinr/++gvTpk1D06ZN0aJFC5HrmT6jxUO/i5LxtfP46NEjqKmpMUjEHV9bSFKRpKSk75yG+zw9PbFr1y4MHToUpqamdH8jpo0bN4r1Ph6PR0WWbzh27Jjg31FRUUJ/A8vKyhATEwMdHR0GybjHz88Py5Ytg5WVFVq2bEnXczUtWLAAqampuHjxIgYNGiQ43r9/fyxdupSKLGJKSUlBcnIyQkJC4OnpienTp2P06NFwdXXFjz/+yDpetVGRRcp8a9XD48ePaylJ3XD58mVcuXIFjRo1Ejquo6ND5/Ib5s+fDxkZGVy7dg0FBQWYP38++vbti+joaGhoaAD49CWQVC4tLa3S1+/cuVNLSeqGuLg4rFixAlOnThU6vn37dkRHR+PQoUMwNzfHpk2bqMjyFS9fvoS3tzd8fHyEjq9YsQIPHjxAdHQ0lixZguXLl1ORpRK///47du7ciQkTJrCOwmnp6eno1KmTyHELCwukp6czSMQdn3f28Xg8/PDDD0JflsvKylBYWCjyt5JUbMWKFVi5ciXmzZvHOgon0e+iZHwuEPB4PFhbW6NBg///ql5WVoZ79+4JPdAhouzt7VlHqFPCwsIQHh6OIUOGsI7CKffu3WMdoc74fE3zeDyMHz9e6LWGDRtCR0cH/v7+DJJxz7Zt27Br1y6MGzeOdRROO3LkCA4ePIiuXbsK3e+YmJggJyeHYTLusbCwgIWFBfz9/XH8+HGEhISgR48eaNeuHdzc3DBhwgTOLS6hIouU+e2339CyZUuRosBnHz9+rOVE3FZeXl7hTotHjx5BRUWFQSLuOHfuHA4fPixo1RIfH48RI0agX79+iImJAUCrtcXRsWNH8Hi8CgtSn4/TeRRfVFQU1q5dK3Lc2toa3t7eAIAhQ4bQCpJKhIeH4+bNmyLHR48eDUtLS/z1118YM2YMtbv6BhkZGfTo0YN1DM6Tk5PDs2fPRPpp5+fnCz1gJKICAwPB5/Ph6uoKPz8/oS8hjRo1go6ODrp168YwIXf8+++/GDFiBOsYnEW/i5Lx+WFiSkoKBg4cKNSq9/N5HD58OKN03LBkyRLWEeqURo0awcDAgHUMUo99bmmlq6uLxMRENG3alHEi7vr48SO6d+/OOgbnvXjxQqRtHQC8e/eOnutUE5/PR0lJCT5+/Ag+nw8NDQ1s2bIFPj4++OuvvzBq1CjWEcVG316ljLa2NtauXYuRI0dW+HpKSgosLS1rORV32djYIDAwEEFBQQA+PdQuLCzEkiVLaEXON7x580awYwX49CAsMjISI0aMQN++fbFv3z6G6bijcePGWLduHaytrSt8/Z9//sGwYcNqORV3NW7cGMePH4eXl5fQ8ePHjwtakbx7946KqJWQl5fHlStXRL40X7lyBfLy8gA+faH5/G9SMS8vL/zxxx8IDAxkHYXTbGxssGDBAhw9elTwYLagoAALFy7EgAEDGKeTbuPHj0dpaSl4PB769esHLS0t1pE4a8SIEYiOjqbdFtX0eXWxrq4uevToQQXSalqyZAnKysqgo6MDGxsbtGzZknUkUs95e3vj999/x5YtW+jhYRXMmjVL7PfSoibx0O6gmps0aRIOHDgg0s2AVI2VlRVOnjwJDw8PAP+/8Dg4OJgWlFTRzZs3ERISgtDQUMjJycHFxQV//PGH4DnF5s2bMXPmTCqykOqztLTEzZs3v1pk+dqKeFIxf39/DBw4EMbGxiguLoaTkxPu3r2Lpk2bIjQ0lHU8qaanp4e0tDQYGhoKjjVo0AB///03RowYgZ9//plhOu6wtLTEkydPoK2tXeHrBQUFdE1XgY+PD6ZNm4YLFy4IzRM5deoUtm3bBgA4e/YsevfuzTKmVPPw8MDUqVNx8+ZNQb/TxMREBAcHY+HChQA+7Rjq2LEjw5TSb/bs2Rg6dCj09fVhbGyMhg0bCr0eGRnJKBm3bNiwAb169YK2tjYsLCwAfFpQ0rx5c+zdu5dxOunXoEEDTJs2DRkZGayjcM6XLXoNDAzg4+ODq1evwszMTOR6pp754lFRUUFGRgbMzMwAAEePHkVISAiMjY2xdOnSr+7UJ/9PVlYWU6ZMoWu6mj63rhPH69evv3MabnJ0dBT6+fz58zh9+jRMTEzoXkdMycnJYr2PCleV+1Yr/S/R53TFviz4lZeXIygoCOfOnYO5ubnI9UwFP/GsWrUKgwcPRnp6OkpLS/H7778jPT0dV65cofnZVWBmZobMzEzY2Nhgx44dGDZsGGRlZYXeM2bMGHh6ejJKWD08Pj3dkyrp6ekoKioStGj6XyUlJZU+sCWiSktLERYWhrS0NBQWFqJTp05wdnaGgoIC62hSbd68eUhJSUFUVJTIa6WlpRg+fDhOnDhBg++/4fDhw3j37h3Gjh1b4ev//vsvjh07JtJjlnxdfHw8tmzZIphnY2RkBA8PD9r+XAX79++v8Bw6OTkBAN6/fw8ej0e7WSoxY8YMBAcHo2/fviKD7wEgJCSEUTLueffuHfbv34/U1FQoKCjA3NwcY8aMEfnyRyrWp08f/PbbbzSLoIp0dXXFeh+Px0Nubu53TlM3/Pjjj5g/fz6GDx+O3NxcGBsbw9HREYmJiRg6dCjt/BOTlZUV1q5d+9Vd0OTrdu/eLfZ76d67YhMnThT7vXSvQ74n+pyuub59+4r1Ph6Ph/Pnz3/nNHVHTk4O1qxZg9TUVMEzxnnz5gkWmZBvW758OVxdXdG6dWvWUSSKiiyEkAqVlpaiqKgIqqqqX3398ePHVPAjhNRLKioqCAsLw9ChQ1lHIfVceHg4FixYAC8vL1haWkJJSUnodXNzc0bJSH2jpqaGpKQk6OvrY+3atTh//jyioqIQHx+P0aNH4+HDh6wjcsKZM2ewYMECLF++vMJr+mv35oQQQgghhB0qsnDAmjVrMHXqVKirq7OOwjnHjh2r8PjnFdoGBgZir5Cor+Li4tCzZ0/WMTiPzqPklJeXIzs7G8+fPxcMQ/ysV69ejFJxz8ePHys8h23btmWUiFu0tbURFRWFdu3asY7CeXfu3MHmzZsF7XHat2+PGTNm0LkVk4yMjMixz+1leTwe7TithrKyMty6dQva2tpC8+lI5VRVVXHz5k0YGhpiwIAB+Pnnn+Hp6Ym8vDwYGRnh/fv3rCNywpfX9Je7JOmarr7i4mJ8/PhR6BgVq77t3r17KC0tFWofDQB3795Fw4YNoaOjwyYYx9y4cQPh4eHIy8sT+T2klmuElbdv3+L8+fNo164d3XNXQVJSEho2bEitUWuorKwMu3btQkxMTIXPJLi6s4qKLBygqqqKlJQU6OnpsY7COTIyMhXOsfny4UPPnj1x5MgR+hL9FY0aNULr1q0xZswYjB07FsbGxqwjcRKdR8m4evUqnJyc8ODBgwqva3rw8G13796Fq6srrly5InScHt5UTUhICM6cOYOQkBAoKiqyjsNZhw4dwujRo2FlZSUYFnn16lUkJiYiLCwMw4cPZ5xQ+j148KDS12nH6bf99ttvMDMzg5ubG8rKytCrVy8kJCRAUVERJ06cQJ8+fVhH5IR+/fpBS0sL/fv3h5ubG9LT02FgYIDY2FiMHz8e9+/fZx2RE77V053mzonn3bt3mDdvHsLDw/Hq1SuR1+l+59t69+4NV1dXkdZq+/btQ3BwMC5evMgmGIeEhYXBxcUFAwcORHR0NGxsbJCVlYVnz57BwcGBWq6JydXVtdLXd+7cWUtJuGvkyJHo1asXZsyYgffv36NDhw64f/8++Hw+3XNXAbVGlYwZM2Zg165dGDp0KFq2bCnSenvjxo2MktUMFVk4QEVFBampqVRkqYaYmBgsWrQIK1euFAzJvn79Onx8fLB48WKoqalhypQp6NKlC3bs2ME4rXR6+fIlwsLCEBoaioSEBJibm8PZ2RljxoxBmzZtWMfjDDqPktGxY0f88MMP8PPzq/DDWE1NjVEy7ujRowcaNGiA+fPnV3gOO3TowCgZt1hYWCAnJwd8Ph86Ojoi80OSkpIYJeMWfX19ODs7Y9myZULHlyxZgn379iEnJ4dRMlKftGnTBkeOHIGVlRWOHDmC6dOn48KFC9i7dy/Onz+P+Ph41hE5IS0tDc7OzsjLy8OsWbOwZMkSAICHhwdevXqFAwcOME5I6pPP1/Hy5csxbtw4/PHHH3j8+DG2b9+ONWvWwNnZmXVEqaeqqoqkpCQYGBgIHc/OzoaVlRUKCgrYBOMQc3NzTJkyBdOnTxc819HV1cWUKVPQsmVL+Pn5sY7ICQ4ODkI/l5SU4Pbt2ygoKEC/fv1oR5AYWrRogaioKHTo0AEHDhzAkiVLkJqait27dyMoKAjJycmsI3ICtUaVjKZNm2LPnj0YMmQI6ygSRUUWKcTn8/Hw4UM0a9YM8vLyVGSpAVNTUwQFBYkMxI6Pj8fkyZPxzz//4Ny5c3B1dUVeXh6jlNxx7949HDhwAKGhocjMzESvXr04u42PJTqP1aekpITU1FSRL3tEfEpKSrh58yZtC6+hb30p/vxwkVROUVERaWlpItf03bt30aFDBxQVFTFKxi05OTkIDAwUtFwzNjaGp6cn9PX1GSfjBnl5eWRnZ6NNmzaYPHkyFBUVERgYiHv37qFDhw54+/Yt64icVlxcDFlZWZFiNPm6goIC7NixQ3BNm5iYwNXVlRaTVEHbtm2xZ88e9OnTR6hYsHfvXoSGhuLUqVOsI0o9NTU1XLx4ERYWFkLHb968iT59+uC///5jlIw7lJSU8M8//0BHRwdNmjTBxYsXYWZmhoyMDPTr1w/5+fmsI3JWeXk5pk2bBn19fcydO5d1HKmnoKCArKwsaGlpwcXFBa1atcKaNWuQl5cHY2NjFBYWso7ICdQaVTJatWqFixcv4ocffmAdRaIasA5ARPH5fBgYGOCff/6BoaEh0tPT0apVK9axOCknJ6fCfruqqqrIzc0FABgaGuLly5e1HY2TdHV1MX/+fHTo0AE+Pj7fbGdAKkbnsfq6dOmC7OxsKrLUgLGxMf3NkwAqokhGnz59cPnyZZFrOi4uDj/99BOjVNwSFRUFW1tbdOzYET169ADwaTGJiYkJjh8/jgEDBjBOKP2aN2+O9PR0tGzZEmfOnMHWrVsBAEVFRZCVlWWcjlsKCgoQERGBnJwczJkzB40bN0Z6ejqaN2+O1q1bs47HCTdu3MDAgQOhoKAg2IkfEBCAlStXIjo6Gp06dWKckBtev34tWKSoqqqK169fAwB69uyJadOmsYzGGb169cLq1asRGhoq+FtYVlaG1atX06xJMWloaAiKUa1bt8bt27dhZmaGgoICWkhSQzIyMpg1axb69OlDRRYxaGlpISEhAY0bN8aZM2cQFhYGAPj3338hLy/POB13WFlZYcWKFejfvz9iY2MF94z37t1D8+bNGafjDm9vb/z+++/YsmWLSGcNLqMiixSSkZGBoaEhXr16BUNDQ2hpabGOxFmWlpaYM2cO9uzZA01NTQDAixcvMHfuXPz4448APq2WpXP8bfHx8di/fz8iIiJQXFwMOzs7rF69mnUszqHzWDMeHh7w9vbG06dPYWZmJrIq1tzcnFEy7li7di3mzp2LVatWVXgOaRAsqU22traYN28ebt68ia5duwL4NJPl77//hp+fH44dOyb0XiJq/vz58PLywpo1a0SOz5s3j4osYpg4cSJGjhwpaKHYv39/AMC1a9do118VpKWlwdraGurq6rh//z7c3d3RuHFjREZGIi8vD3v27GEdkRO8vLxga2uLv/76Cw0afPq6XlpaikmTJuG3337DpUuXGCfkBj09Pdy7dw9t27ZFu3btEB4ejs6dO+P48eNQV1dnHY8T1qxZg969e8PIyEiw8OHy5cuCgdnk23r16oWzZ8/CzMwMI0aMgKenJ86fP4+zZ8/C2tqadTzOy8nJQWlpKesYnPDbb7/B2dkZysrK0NbWFsybu3TpkmCIO/m2wMBAODs748iRI1i0aJFgoVhERIRIBx3ydXFxcbhw4QJOnz4NExMTkWcSXG0BSO3CpNTx48exbt06bN26FaampqzjcFZmZibs7e1x7949QSHl4cOH0NPTw9GjR/HDDz/gyJEj+O+//zBu3DjGaaXTggULEBYWhidPnmDAgAFwdnaGnZ0dDXquIjqPkiEjIyNyjMfj0dD2Kvh8Dv93xQidw6qRkZGpdNUNnUfxVHRNV4R+N79OXl4et27dgqGhodDxrKwsmJubo7i4mFEybomIiMDDhw8xYsQIway03bt3Q11dHXZ2dozTcUP//v3RqVMnrFu3Tqjd8ZUrV+Dk5ESD78WkoKCA5ORkkQJfeno6rKysaPW7mDZu3AhZWVnMnDkT586dw7Bhw8Dn81FSUoKAgAB4enqyjsgJT548wZYtW5CamgoFBQWYm5tjxowZaNy4MetonPD69WsUFxejVatWKC8vx7p163DlyhUYGhpi8eLF0NDQYB2RE2bNmiX0M5/PR35+Pk6ePInx48djy5YtjJJxy40bN/Dw4UMMGDAAysrKAICTJ09CXV1dsBuaVA+1Rq2aiRMnVvp6SEhILSWRLCqySCkNDQ0UFRWhtLQUjRo1goKCgtDrn7c7k28rLy9HdHQ0srKyAABGRkYYMGCA2A926rsePXrA2dkZI0eORNOmTVnH4Sw6j5Lx4MGDSl/X1taupSTc9a32dL17966lJNx29OhRoZ9LSkqQnJyM3bt3w8/PD25uboySkfpGS0sLAQEBGDFihNDx8PBwzJ49m2bOkVrz5TDYL4ssDx48gJGRERX8xNS8eXPs3bsXNjY2QsejoqLg4uKCZ8+eMUrGbQ8ePMDNmzdhYGBAO5/FUFJSgkGDBmHbtm0iRXxCalvfvn2FfpaRkYGmpib69esHV1dXwa4/Qghhif4SSanAwEDWETivpKQECgoKSElJwaBBgzBo0CDWkTgpPj5e8O/Q0FDY2tpCSUmJYSJuovMoGVREqTkqokhGRSvbf/nlF5iYmODgwYNUZJEwMzMznDp1itp7VsDd3R2TJ09Gbm6uoE1BfHw81q5dK7Lyk/y/TZs2YfLkyZCXl8emTZsqfe/MmTNrKRW3ycnJ4e3btyLHs7KyBG17ybeNGjUKbm5u2LBhg9A1PWfOHIwZM4ZxOm569OgRtLS06D6yCho2bIi0tDTWMeqM58+f4/nz5ygvLxc6TgU/8Vy4cIF1BE6aNWsWli9fDiUlpW/eEwYEBNRSKm4rKyvDxo0bER4ejry8PHz8+FHodVoQX7/RThZSp+np6eHw4cPo0KED6yh1gqqqKlJSUgRDJEn10HmsmZycHAQGBiIjIwPAp0Hunp6e0NfXZ5yMOwoKCrBjxw7BOTQxMYGrqyvU1NQYJ+O+3NxcmJubo7CwkHWUOuXLVfFEGJ/PR2BgIPz9/fHkyRMAQKtWrTBnzhzMnDmzTg2TlCRdXV3cuHEDTZo0ga6u7lffx+PxkJubW4vJuGvSpEl49eoVwsPD0bhxY6SlpUFWVhb29vbo1asXLSIT08ePHzFnzhxs27ZNMGugYcOGmDZtGtasWQM5OTnGCbmH7r2rx8vLC3JyciIzv4j4bt68ifHjxyMjIwP/++iNWqGS761v3744fPgw1NXVRXYDfYnH49GcJTH5+voiODgY3t7eWLx4MRYtWoT79+/jyJEj8PX1pYU5lejUqRNiYmKgoaEBCwuLSr+jJCUl1WIyyaEiixTLyclBSEgIcnJy8Pvvv6NZs2Y4ffo02rZtCxMTE9bxOGHHjh2IjIzE3r17qW+sBNBDLsmg81h9UVFRsLW1RceOHQV9Y+Pj45Gamorjx4/TgGcx3LhxAwMHDoSCggI6d+4MAEhMTMT79+8RHR2NTp06MU7IXe/fv8eCBQtw+vRp3Llzh3WcOoX+bornv//+A/DpfBFS2968eYNffvkFN27cwH///YdWrVrh6dOn6NatG06dOkU7eKuoqKgIOTk5AAB9fX2a41cD9BlSPR4eHtizZw8MDQ1haWkpcg3Tyvdv69ChA/T19TFv3jw0b95c5KEi7a4SX0RExFd3D3D1gSzhHn19fWzatAlDhw6FiooKUlJSBMeuXr2KAwcOsI4otfz8/DBnzhwoKipi6dKllRZZlixZUovJJIeKLFIqNjYWgwcPRo8ePXDp0iVkZGRAT08Pa9aswY0bNxAREcE6IidYWFggOzsbJSUl0NbWFrkxpA/jqqEvKJJB57H6LCwsMHDgQJEVdfPnz0d0dDRd02L46aefYGBggL/++kvQv7i0tBSTJk1Cbm4uLl26xDghN2hoaAjdGPL5fPz3339QVFTEvn37YGtryzBd3UN/Nwnhjs+LHwoLC9GpUyf079+fdSRSz9FnSPXQyveaU1FRQXJyMgwMDFhH4bRNmzZh0aJFmDBhAoKCgjBx4kTk5OQgMTER06dPx8qVK1lHJPWEkpISMjIy0LZtW7Rs2RInT55Ep06dkJubCwsLC7x584Z1RMIQzWSRUvPnz8eKFSswa9YsodWI/fr1w5YtWxgm4xZ7e3vWEeqU06dPo3Xr1qxjcB6dx+rLyMhAeHi4yHFXV1dqQyKmGzduCBVYAKBBgwaYO3curKysGCbjlo0bNwoVWT4P4OzSpQs0NDQYJiP1zbNnzzB79mzExMTg+fPnIu1IqBVJxaoyr4ZWa4tnz549GDVqFHr06CHYbQp8an8VFhYGFxcXhum44927d1izZo3gmv7fGQ7Uvq7qFi5cSF0NqoHmYNSctbU1UlNTqchSQ3/++SeCgoIwZswY7Nq1C3PnzoWenh58fX1pBkYlHB0dxX5vZGTkd0xSd7Rp0wb5+flo27Yt9PX1BZ0gEhMTqZ1nFejp6SExMRFNmjQROl5QUCAoWnERFVmk1K1btyrcZtasWTO8fPmSQSJu4uoWM2lTWlqKixcvIicnBx06dICcnByePHkCVVVVKCsrs47HGXQea05TUxMpKSkwNDQUOp6SkoJmzZoxSsUtqqqqyMvLQ7t27YSOP3z4kFoMVcGECRNYRyAEwKffxby8PPj4+KBly5Y0g0VMycnJYr2Pzqf4Jk6ciEGDBol8Hv/333+YOHEiFVnENGnSJMTGxmLcuHF0TUvI/PnzWUcg9VRwcDDGjx+P27dvw9TUFA0bNhR6nXY+iycvLw/du3cHACgoKAjao44bNw5du3alhchfQfM2Jc/BwQExMTHo0qULPDw8MHbsWOzYsQN5eXnw8vJiHY8z7t+/X+FCsA8fPuDRo0cMEkkGFVmklLq6OvLz80UGcSYnJ9MKeFKrHjx4gEGDBiEvLw8fPnzAgAEDoKKigrVr1+LDhw/Ytm0b64icQOdRMtzd3TF58mTk5uYKbrTj4+Oxdu3aKq1Krs9GjRoFNzc3bNiwQegczpkzB2PGjGGcTrqlpaXB1NQUMjIySEtLq/S95ubmtZSK1HdxcXG4fPkyOnbsyDoKp9AKbcnj8/kVFgQePXpED3qq4PTp0zh58qTQbiBSPTt27MDGjRtx9+5dAIChoSF+++03TJo0iXEy7rhx48ZX52DQyvdvS0hIQHx8PE6fPi3yGg2+F1+LFi3w+vVraGtro23btrh69So6dOiAe/fuiezgJf8vJCSEdYQ658u25aNGjULbtm2RkJAAQ0NDDBs2jGEybjh27Jjg31FRUUL3h2VlZYiJiRF5Ds4lVGSRUqNHj8a8efPw999/g8fjoby8HPHx8Zg9ezatAquCsrIybNy48as3hrS19Ns8PT1hZWWF1NRUoa18Dg4OcHd3Z5iMW+g8SoaPjw9UVFTg7++PBQsWAABatWqFpUuXYubMmYzTccOGDRvA4/Hg4uKC0tJSAEDDhg0xbdo0kVk3RFjHjh3x9OlTNGvWDB07dgSPx6vwix19aa6e4uJiyMvLV/ja9u3b0bx581pOxA1aWlr0gEGCPq+ea9OmDeMk3GFhYQEejwcejwdra2uhdpRlZWW4d+8eBg0axDAht2hoaFBrKwnw9fVFQEAAPDw80K1bNwCfHnh7eXkhLy8Py5YtY5xQ+n1u8zdw4EBER0fDxsYGWVlZePbsGRwcHFjH44TPK919fHzoPqYG+vXrh2PHjsHCwgITJ06El5cXIiIicOPGjSq1xCLAixcvcOfOHQCAkZERNDU1GSfitm7dugk+Y8i3fR7pwOPxMH78eKHXGjZsCB0dHfj7+zNIJhk0+F5Kffz4EdOnT8euXbtQVlaGBg0aoKysDE5OTti1axdkZWVZR+QEX19fBAcHw9vbG4sXL8aiRYtw//59HDlyBL6+vvRQVgxNmjTBlStXYGRkJDQ08v79+zA2NkZRURHriJxA51HyPm8TpxZX1VNUVIScnBwAgL6+PhQVFRknkn4PHjxA27ZtwePx8ODBg0rfq62tXUupuK28vBwrV67Etm3b8OzZM2RlZUFPTw8+Pj7Q0dGBm5sb64hSLzo6Gv7+/ti+fTt0dHRYx+Gk8vJyrFixAv7+/igsLATw6bPF29sbixYtgoyMDOOE0s3Pz0/wf729vYVaoDZq1Ag6OjoYPnw4GjVqxCoip+zbtw9Hjx7F7t276bO5BjQ1NbFp0yaRXbqhoaHw8PCgFtxiMDc3x5QpUzB9+nTB9xddXV1MmTIFLVu2FFz75OtUVFSQkpICfX191lE4rby8HOXl5YIiflhYGK5cuQJDQ0NMmTKFPl/E8O7dO3h4eGDPnj2CWV+ysrJwcXHB5s2b6fOmCu7cuYPNmzcjIyMDANC+fXt4eHjAyMiIcTLu0NXVRWJiIpo2bco6ikTRThYp1ahRI/z111/w8fHB7du3UVhYCAsLC5E5BKRy+/fvx19//YWhQ4di6dKlGDNmDPT19WFubo6rV69SkUUM5eXlFa7IfvToET3crgI6j5JH561mFBUVYWZmxjoGp3xZOKEiimSsWLECu3fvxrp164R29ZmamiIwMJCKLF+hoaEh1Jbp3bt3gmLp//Z7p12737Zo0SLs2LEDa9asEbRoiouLw9KlS1FcXIyVK1cyTijdPs9A1NHRwahRo766I4183efdQJ9lZ2ejefPm0NHREbmmk5KSajseJ5WUlMDKykrkuKWlpWAnL6lcTk4Ohg4dCuDT84l3796Bx+PBy8sL/fr1oyKLGBwdHXHhwgUqslSDo6Mjdu3aBVVVVezbtw+jRo0SFFlGjx6N0aNHM07ILbNmzUJsbCyOHz8udK8zc+ZMeHt7Y+vWrYwTcsOhQ4cwevRoWFlZCXawXL16FaampggLC8Pw4cMZJ+SGe/fuifU+MzMznDp1ClpaWt85kWTQThYO+Pz/Ihp6WHVKSkrIyMhA27Zt0bJlS5w8eRKdOnVCbm4uLCws8ObNG9YRpd6oUaOgpqaGoKAgqKioIC0tDZqamrCzs0Pbtm2pz6eY6DxW3/8+eKgMPXioWFW20VN/7a/7sofst9AgU/EYGBhg+/btsLa2Ftrll5mZiW7duuHff/9lHVEq7d69W+z3/u9WfCKqVatW2LZtm8h1e/ToUfz66694/Pgxo2SkvqjKw+rPRS1SOQ8PDzRs2BABAQFCx2fPno3379/jjz/+YJSMO9q0aYPTp0/DzMwM5ubmWLBgAcaMGYOEhAQMGjSIvkuLYeXKlQgMDMTQoUNhZmYmUjSlRZ9f16hRIzx48AAtW7aErKws8vPz0axZM9axOKtp06aIiIhAnz59hI5fuHABI0eOxIsXL9gE4xh9fX04OzuLtJxcsmQJ9u3bJ+gUQSTjy++HXEA7WaQYDeqruTZt2iA/Px9t27aFvr4+oqOj0alTJyQmJkJOTo51PE7w9/fHwIEDYWxsjOLiYjg5OeHu3bto2rQpQkNDWcfjDDqP1fe5byepPho4LBn/+7v4vzNZviwG0kwW8Tx+/BgGBgYix8vLy1FSUsIgETdQ4USyXr9+jXbt2okcb9euHe0EqgKahVh9VDiRjFmzZgn+zePxEBwcjOjoaHTt2hUAcO3aNeTl5dGMUzH16tULZ8+ehZmZGUaMGAFPT0+cP38eZ8+ehbW1Net4nBAcHAxlZWXExsYiNjZW6DUej0dFlkq0a9cOCxYsQN++fcHn8xEeHg5VVdUK30vX9LcVFRVVOBeoWbNm1Lq8CvLz8yv8fRs7dizWr1/PIBGRJrSTRUp9bVDfli1b4OXlRYP6xDR//nyoqqpi4cKFOHjwIMaOHQsdHR3k5eXBy8uLhjyLqbS0FGFhYUhLS0NhYSE6deoEZ2dnKCgosI7GKXQea09oaChsbW2hpKTEOgpnxcfHw8rKigrSX3Hu3DnMmzcPq1atEvqcXrx4MVatWoUBAwYwTsgNlpaW8PLywtixY4VWKi1btgxnz57F5cuXWUeUeklJSWjYsKGg/d/Ro0cREhICY2NjLF26lPqUi6FLly7o0qULNm3aJHTcw8MDiYmJuHr1KqNk3EKzECXj4cOH4PF4aNOmDQDg+vXrOHDgAIyNjTF58mTG6aRb3759xXofj8fD+fPnv3Ma7nv9+jWKi4vRqlUrlJeXY926dYI5GIsXL4aGhgbriKQOu3LlCmbNmoWcnBy8fv0aKioqFXY34PF4VMQXg7W1NZo0aYI9e/YI2nq+f/8e48ePx+vXr3Hu3DnGCblhyJAhGDFiBCZOnCh0PCQkBGFhYYiKimKUrG7i2k4WKrJIKRrU930kJCQgISEBhoaGGDZsGOs4hJDvRFVVFSkpKZz5MJZGdA4rZ2pqim3btqFnz55Cxy9fvozJkycLBiGSyh09ehTjx4/HggULsGzZMvj5+eHOnTvYs2cPTpw4QcUqMfz444+YP38+hg8fjtzcXBgbG8PR0RGJiYkYOnQoAgMDWUeUerGxsRg6dCjatm0rVDR9+PAhTp06hZ9++olxQm7Q19fHpk2bMHToUKFhz5s2bcLVq1dx4MAB1hE54aeffsLkyZMxbtw4PH36FD/88ANMTU1x9+5deHh4wNfXl3VEQkg1lZWV4datW9DW1qYiVRXIyMjg6dOn1C6sBm7fvo2BAwfiw4cP6NChAwAgNTUV8vLyiIqKgomJCeOE0uvLltFPnjyBr68vRo4cKdglefXqVfz999/w8/PD1KlTWcWsk6jIQiRCXV0diYmJIoPus7Ky0LlzZxQUFLAJRuqdr80g4PF4kJeXh4GBAXR1dWs5FffQeaxdXPswlkZ0DiunoKCAxMREmJqaCh1PS0tDly5d8P79e0bJuOfy5ctYtmwZUlNTBbv8fH19YWNjwzoaJ6ipqSEpKQn6+vpYu3Ytzp8/j6ioKMTHx2P06NF4+PAh64ic8OTJE/zxxx/IzMwEALRv3x6//vorWrVqxTgZd9AsRMnQ0NDA1atXYWRkhE2bNuHgwYOIj49HdHQ0pk6ditzcXNYRST2Sk5ODkJAQ5OTk4Pfff0ezZs1w+vRptG3blh7KiuG3336DmZkZ3NzcUFZWhl69eiEhIQGKioo4ceKEyHwMUrEHDx6gbdu2NKe4hoqKirB//36hex3qrPFtMjIyYr2Px+NRy2gJ49ozCZrJIqXGjRuHrVu3igzqCwoKgrOzM6NU3ECDiSXL3t5eZO4A8P+zCHg8Hnr27IkjR47QapxK0HkkpG758ccfMWvWLOzdu1fQ3/jZs2eYM2cOOnfuzDgdt/z00084e/Ys6xicxefzUV5eDuBTG7uff/4ZAKClpUU7n6ugVatWWLlyJesYnEazECWjpKREcL7OnTsn+L7Srl075Ofns4xWJ+Tk5MDd3Z3ahYkhNjYWgwcPRo8ePXDp0iWsXLkSzZo1Q2pqKnbs2IGIiAjWEaVeREQExo4dCwA4fvw47t+/j8zMTOzduxeLFi1CfHw844TcoK2tjcuXL2P79u3IyclBREQEWrdujb1790JXV1dkZzmpmKKiItzd3VnH4JzP99mEfIt45TjCxI4dO2BqaopJkyZh0qRJMDMzw19//QUZGRnMmjVL8B8RZm9vL9Z/Dg4OrKNywtmzZ/Hjjz/i7NmzePPmDd68eYOzZ8+iS5cuOHHiBC5duoRXr15h9uzZrKNKNTqPhNQtO3fuFDxMNDAwgIGBAdq2bYvHjx9jx44drOOResTKygorVqzA3r17BW2vAODevXsVDjglFfv333+xYcMGuLm5wc3NDf7+/tTjvYocHBwQExMD4NM8Gx8fHxgaGsLFxQWurq6M03GHiYkJtm3bhsuXL+Ps2bMYNGgQgE+7rZo0acI4HfcVFhaKDCAnFZs/fz5WrFiBs2fPCs336tevH82qEtPLly/RokULAMCpU6cwYsQI/PDDD3B1dcWtW7cYp+OOQ4cOYeDAgVBQUEBycjI+fPgAAHjz5g1WrVrFOB133LlzBzNmzIC1tTWsra0xY8YMwa4WIllmZma0m1wCtm/fzqnvM9QuTErR0D4iLUxNTREUFITu3bsLHY+Pj8fkyZPxzz//4Ny5c3B1dUVeXh6jlNKPzmPt4tq2UmlE5/Db+Hw+zp49K7Tlvn///tTKoAo0NDS+OsT0cyvFCRMmiAyXJP8vLS0Nzs7OyMvLw6xZs7BkyRIAnx5yv3r1iuZgiOHSpUsYNmwY1NTUYGVlBQC4efMmCgoKcPz4cfTq1YtxQm6iWYjVc/HiRTg4OODt27cYP348du7cCQBYuHAhMjMzERkZyTihdNu0aVOlrz9+/BgbNmygli5iUFZWxq1bt6Crqyt0X3j//n20a9cOxcXFrCNKPW1tbfz111+wtraGrq4utm7diqFDh+Kff/5Bz5498e+//7KOyAkWFhbw8vKCi4uL0O9icnIyBg8ejKdPn7KOKPUOHTqE0aNHw8rKSjB/7urVq0hMTERYWBiGDx/OOGHdQt+lRX3r8/lLM2fO/I5Jvh9qFyalLly4wDpCvWJmZoZTp05BS0uLdRSpk5OTA1VVVZHjqqqqgp7QhoaG1JLkG+g8Eq6hQsG38Xg82NjYoFevXpCTk6NzVg2+vr5YuXIlBg8eLGizdv36dZw5cwbTp0/HvXv3MG3aNJSWllJ7g68wNzevcDXs+vXrISsrK/g5NDQUtra2UFJSqs14nDB9+nSMGjUKW7duFZyzsrIy/Prrr5g+fTqtNq6mbt26CR7kEPH16dMHL1++xNu3b4VayE6ePBmKioqCn+Pj42FlZUWt2P7Hb7/9hpYtWwrtvPjSx48fazkRd6mrqyM/P19kbmRycjJat27NKBW3TJw4ESNHjkTLli3B4/HQv39/AMC1a9fQrl07xum4486dOxUueFBTU6N5xWKaO3cuFixYgGXLlgkdX7JkCebOnUtFFvLdbdy4Uaz38Xg8KrKQ7+vt27c4f/482rVrRx/G38H9+/dRUlLCOoZUsrS0xJw5c7Bnzx5oamoCAF68eIG5c+fixx9/BADcvXuXClTfQOexdmlra6Nhw4asY3AabXStXHl5OVauXIlt27bh2bNnyMrKgp6eHnx8fKCjowM3NzfWETkhLi4OK1aswNSpU4WOb9++HdHR0Th06BDMzc2xadMmKrJUkby8vNDPU6ZMQZcuXWhFXQWys7MREREhVJSSlZXFrFmzsGfPHobJpB/NQvw+ZGVlRWb06ejoCP08ePBgpKSk0DX9P7S1tbF27VqMHDmywtdTUlJgaWlZy6m4afTo0Zg3bx7+/vtv8Hg8lJeXIz4+HrNnz4aLiwvreJywdOlSmJqa4uHDhxgxYoSgKCorK4v58+czTscdLVq0QHZ2tsjfwbi4OPobKKb8/PwKr9uxY8di/fr1DBKR+ubevXusI3x3VGSRUiNHjkSvXr0wY8YMvH//HlZWVrh//z74fD5t5SO1Kjg4GPb29mjTpo2gAPDw4UPo6enh6NGjAD71Nl68eDHLmFKPzqNk6OnpITExUaQneUFBATp16iTYFXT79m0W8eqU//77j3UEqbZixQrs3r0b69atE3r4b2pqisDAQCqyiCkqKgpr164VOW5tbQ1vb28AwJAhQ+hBhARQ4fTrOnXqhIyMDBgZGQkdz8jIQIcOHRil4gZ7e3ux3sfj8ag9k4TRNV0xS0tL3Lx586tFFh6PR+dOTKtWrcL06dOhpaWFsrIyGBsbo6ysDE5OTvSdpQp++eUXkWPjx48X+pk6a1TO3d0dnp6e2LlzJ3g8Hp48eYKEhATMnj0bPj4+rONxQp8+fXD58mUYGBgIHY+Li8NPP/3EKBUhdQsVWaTUpUuXsGjRIgDA4cOHwefzUVBQgN27d2PFihVUZCG1pl27dkhPT0d0dDSysrIAAEZGRhgwYABkZGQAiP8Fuz6j8ygZ9+/fr/AhzYcPH/D48WMGibjl1KlTiIyMROPGjeHq6iq0M/Lff//F8OHDac6XmPbs2YOgoCBYW1sL7cLo0KEDDZCsgsaNG+P48ePw8vISOn78+HE0btwYAPDu3TuoqKiwiEfqiZkzZ8LT0xPZ2dno2rUrgE99yv/44w+sWbMGaWlpgveam5uziimVysvLWUcgRMiyZctQVFT01deNjY3rxWpaSWjUqBH++usv+Pr64tatWygsLISFhQUMDQ1ZR6tzqLNG5ebPn4/y8nJYW1ujqKhI0Kp39uzZ8PDwYB2PE2xtbTFv3jzcvHlT6F7n77//hp+fn9DOVNp5SmrDo0ePcOzYMeTl5Ym08gwICGCUqmZo8L2UUlBQQFZWFrS0tODi4oJWrVphzZo1yMvLg7GxMQoLC1lHrFNoKFXFSkpKoKCggJSUFJiamrKOw1l0Hmvu802fvb09du/eDTU1NcFrZWVliImJwdmzZ3Hnzh1WEaXegQMH4OLigkGDBuHNmze4ceMGgoOD4ezsDAB49uwZWrVqRSuNxaSgoIDMzExoa2sLfYakp6ejc+fO9Dktpr/++gvTpk3DkCFDBDNZEhMTcerUKWzbtg1ubm7w9/fH9evXcfDgQcZpuY3udb7u82KHr/m88p12Y0gGrdiWDLqmJYNm24ivrKwMt27dgra2tkg7O1IzdD2L5+PHj8jOzkZhYSGMjY2hrKzMOhJnfOte5zO615EMuqYrFxMTA1tbW+jp6SEzMxOmpqaC7k2dOnXi7MJP2skipbS0tJCQkIDGjRvjzJkzCAsLA/BppfH/9tgm5Htp2LAh2rZtSx+yNUTnseY+7/Lh8Xgi2+sbNmwIHR0d+Pv7M0jGHevXr0dAQIBgiFx4eDhcXV1RXFxMra2qwdjYGJcvX4a2trbQ8YiICFhYWDBKxT3u7u4wNjbGli1bEBkZCeDTLr/Y2Fh0794dAARtwwj5XmhVe+2iFdtEmtBsm6/77bffYGZmBjc3N5SVlaF37964cuUKFBUVceLECfTp04d1RFLPNGrUCMbGxqxjcBLtPK1d27dvR/PmzVnHkFoLFizA7Nmz4efnBxUVFRw6dAjNmjWDs7MzBg0axDpetVGRRUr99ttvcHZ2hrKyMrS1tQU3MJcuXYKZmRnbcKReWbRoERYuXIi9e/cKWreQqqPzWDOfbwp1dXWRmJiIpk2bMk7EPXfv3sWwYcMEP48cORKampqwtbVFSUkJHBwcGKbjHl9fX4wfPx6PHz9GeXk5IiMjcefOHezZswcnTpxgHY8TSkpKMGXKFPj4+CA0NJR1HFKP/W+xlBAu4PF4rCPUCdTY4+siIiIwduxYAJ/aeObm5iIzMxN79+7FokWLEB8fzzghqcscHR3Ffu/nhTpEPI8ePUKrVq3E3t1S323atEns935e0Ojk5PS94tQJGRkZgu9/DRo0wPv376GsrIxly5bBzs4O06ZNY5yweqjIIqV+/fVXdO7cGQ8fPhSa2aCnp4cVK1YwTlf3UJX567Zs2YLs7Gy0atUK2traUFJSEno9KSmJUTJuofMoGRWtNi4oKIC6unrth+EYVVVVPHv2DLq6uoJjffv2xYkTJ/Dzzz/j0aNHDNNxj52dHY4fP45ly5ZBSUkJvr6+6NSpE44fP44BAwawjscJDRs2xKFDh2hgaS3R1tZGw4YNWceQeqqqqrSqnXACFQfI9/by5Uu0aNECwKe5fiNHjsQPP/wAV1dX/P7774zTkbruy/bQfD4fhw8fhpqaGqysrAAAN2/eREFBQZWKMeQTY2Njutepgo0bN4r1Ph6PJyiykMopKSkJ5rC0bNkSOTk5MDExAfDps4erqMgixaysrAQfIJ8NHTqUURruoCqzZNEwdsmg8ygZa9euhY6ODkaNGgUAGDFiBA4dOoSWLVvi1KlT6NChA+OE0qtz5844ffq0YNDhZ71798bx48fx888/M0rGXT/99BPOnj3LOgan2dvb48iRIyKD74n49PT0kJiYiCZNmggdLygoQKdOnZCbmwsAuH37Not4nEMPrglX/Pfff6wjkDquefPmSE9PR8uWLXHmzBls3boVAFBUVARZWVnG6UhdFxISIvj3vHnzMHLkSGzbtk3wu1dWVoZff/0VqqqqrCJyFt3rVA21lZW8rl27Ii4uDu3bt8eQIUPg7e2NW7duITIyUuR5BZdQkUWKzJo1C8uXL4eSkhJmzZpV6XsDAgJqKRX3UJVZspYsWcI6Qp1A51Eytm3bhv379wMAzp49i3PnzuHMmTMIDw/HnDlzEB0dzTih9PLy8sKVK1cqfK1Pnz44fvw49uzZU8up6obCwkKRPsf0hU88hoaGWLZsGeLj42FpaSmyy48+p7/t/v37Fc78+vDhAx4/fswgESGkuk6dOoXIyEg0btwYrq6uaNeuneC1f//9F8OHD+fsMFjCPRMnTsTIkSPRsmVL8Hg89O/fHwBw7do1od9NUnPUWaNyO3fuRFxcnFBxT1ZWFrNmzUL37t2xfv16hukIIVUVEBCAwsJCAICfnx8KCwtx8OBBGBoacvp5NxVZpEhycrJgCGRycvJX30f9dytHVWZC6q6nT59CS0sLAHDixAmMHDkSNjY20NHRQZcuXRink269e/dG7969v/p637590bdv31pMxG337t3DjBkzcPHiRRQXFwuO8/l88Hi8Ch96E1E7duyAuro6bt68iZs3bwq9RoshKnfs2DHBv6OiooTaapSVlSEmJgY6OjoMknHb2LFjqUhKmDhw4ABcXFwwaNAg3LlzB5s3b0ZwcDCcnZ0BAB8/fkRsbCzjlHUPfbf+uqVLl8LU1BQPHz7EiBEjICcnB+DTw+358+czTie9qLOG5JWWliIzMxNGRkZCxzMzM2mgezUsXLiQ5sTWwKNHj3Ds2DHk5eUJWl59xuUCQW36slWdkpIStm3bxjCN5PD4tE+MEFKJsrIybNy4EeHh4RV+iLx+/ZpRMm6h8ygZrVq1QkREBLp37w4jIyOsWLECI0aMwJ07d/Djjz/i7du3rCNKvf79+2Ps2LFwdHSkB4k10KNHD/D5fHh6eqJ58+YiD2kqK2gRIgmf5/XxeDyRtg8NGzaEjo4O/P39qRUgYaK4uBjy8vIVvnbgwAHY2dmJ7Fyr7ywsLDBx4kTBQ9fw8HDB7As3Nzc8e/YMrVq1oiK+hKmoqCA1NZVmE9SAmZkZTp06JVgIVd99Of+wMjweT9DSk1Ru1qxZ2LNnDxYuXIjOnTsD+LSjas2aNRg3bhw92Ca1JiYmBra2ttDT00NmZiZMTU1x//598Pl8dOrUiXabiikxMRHl5eUiC2WvXbsGWVlZkdEZXEE7WUidR1XmmvHz80NwcDC8vb2xePFiLFq0CPfv38eRI0fg6+vLOh5n0HmUDEdHRzg5OcHQ0BCvXr3C4MGDAXza/WdgYMA4HTeYmJhgwYIF+PXXXzF06FCMHTsWQ4YMoYHYVZSamoqbN2+KrKgjpLZ8Xrmpq6uLxMRENG3alHEibouJicHGjRuRkZEBAGjfvj1+++03QXsc8m3l5eVYuXIltm3bhmfPniErKwt6enrw8fGBjo4O3NzcANCK7a+5e/cuhg0bJvh55MiR0NTUhK2tLUpKSuDg4MAwHfe8f/8efD4fioqKAIAHDx7g8OHDMDY2ho2NjeB9NNum5u7fvy/oyEGos8b3sGHDBrRo0QL+/v7Iz88H8GlY9pw5c+Dt7c04nfQ7e/Ys4uLi0Lt3b/Tr1w+XLl3C6tWr8eHDB4wbNw4TJ05kHZEzFixYgNmzZ8PPzw8qKio4dOgQmjVrBmdnZwwaNIh1PM6YPn065s6dK1Jkefz4MdauXYtr164xSlYztJNFSr179w5r1qxBTEwMnj9/LrIFklY8iIeqzDWnr6+PTZs2YejQoVBRUUFKSorg2NWrV3HgwAHWETmBzqNklJSU4Pfff8fDhw8xYcIEWFhYAPg0i0lFRQWTJk1inJAbysvLce7cORw4cACHDx+GrKwsfvnlFzg7O9MODDH17dsXixYtogewEkCLISSvoKAA6urqrGNwxp9//glPT0/88ssv6NatGwDg6tWriIiIwMaNGzF9+nTGCblh2bJl2L17N5YtWwZ3d3fcvn0benp6OHjwIAIDA5GQkMA6olRr1apVhQNfY2Nj8fPPP8PT0xOrV6+mnSxisrGxgaOjI6ZOnYqCggK0a9cODRs2xMuXLxEQEIBp06axjlhn0G4gUps+dy6oaEd+fHw8rKysBK3tCLBv3z5MnDgR5ubmyMrKwubNm+Hl5YVffvkF5eXl2LdvH/bv349ffvmFdVRO+PJZjoaGBuLi4mBiYoLU1FTY2dnh/v37rCNygrKyMtLS0kQ+N+7duwdzc3POLoCgIouUGjNmDGJjYzFu3DjBoLkveXp6MkrGLZ07d8bgwYMFVebU1FShKjPdXH+bkpISMjIy0LZtW7Rs2RInT55Ep06dkJubCwsLC7x584Z1RE6g80ikVXFxMY4fP46VK1fi1q1b9PBGTDk5OZg6dSrGjh0LU1NTkZ1A5ubmjJJxCy2GqLm1a9dCR0cHo0aNAgCMGDEChw4dQsuWLXHq1Cl06NCBcULp16ZNG8yfPx8zZswQOv7HH39g1apVePz4MaNk3GJgYIDt27fD2tpa6KFrZmYmunXrhn///Zd1RKlmb2+PDh06wM/PT+S1ixcv4ueff8b79+/pc1pMTZs2RWxsLExMTBAcHIzNmzcjOTkZhw4dgq+vr2DXGqk5KrJUjhaT1B5VVVWkpKTQ7+IXvmxFGRMTg2HDhmHlypXw8vICAPj7++Pw4cOIi4tjnJQbWrRogQsXLqB9+/YwNjbGmjVrYGtri9TUVPTo0UMwzJ1UrkmTJjhx4oRgcdNnV65cwdChQzl7z0jtwqTU6dOncfLkSfTo0YN1FE7LyMhAaGgoAKBBgwZ4//49lJWVsWzZMtjZ2VGRRQxt2rRBfn4+2rZtC319fURHR6NTp05ITEykFSJVQOdRcvbu3Yvt27cjNzcXCQkJ0NbWRmBgIHR1dWFnZ8c6Hqc8ffoUYWFh2LdvH9LS0gQ9jsm3vXjxAjk5OULb6z/PxqDB9+KjLfc1t23bNuzfvx/Ap3YQ586dw5kzZxAeHo45c+YgOjqacULpV1BQUOHvm42NDebNm8cgETc9fvy4wtad5eXl1EpIDF5eXrhy5UqFr/Xp0wfHjx/Hnj17ajkVdxUVFUFFRQUAEB0dDUdHR8jIyKBr16548OAB43SkvvjWYhIiWbSGXNSXrSitra1RWloKa2trwetDhw7F6tWrWcXjnK5duyIuLg7t27fHkCFD4O3tjVu3blW4E5V8nY2NDRYsWICjR49CTU0NwKf78YULF2LAgAGM01WfDOsApGIaGhpo3Lgx6xicp6SkJFgt0rJlS+Tk5Ahee/nyJatYnOLg4ICYmBgAgIeHB3x8fGBoaAgXFxe4uroyTscddB4lY+vWrZg1axYGDx6MgoICwYNsdXV1BAYGsg3HEW/fvkVISAgGDBgALS0tbN26Fba2trh79y6uXr3KOh5nuLq6wsLCAgkJCcjNzcW9e/eE/i8RT0ZGBlxcXACILoZYu3Yt43Tc8PTpU8Gw4RMnTmDkyJGwsbHB3LlzkZiYyDgdN9ja2uLw4cMix48ePYqff/6ZQSJuMjY2xuXLl0WOR0RECNp7kq/r3bs3FixY8NXX+/bti5CQkFpMxG0GBgY4cuQIHj58iKioKMEclufPn1fYZoiQ7+HzYpJbt25BXl4ehw4dwsOHD9G7d2+MGDGCdTxSDzRs2FBoB5WcnByUlZWFfn7//j2LaJwUEBAgmCPi5+cHa2trHDx4EDo6OtixYwfjdNyxYcMGPHz4ENra2ujbty/69u0LXV1dPH36FP7+/qzjVRvtZJFSy5cvh6+vL3bv3i0Y1keqjqrMNbdmzRrBv0eNGoW2bdsiISEBhoaGQsM5SeXoPErG5s2b8ddff8He3l7onFpZWWH27NkMk3FH8+bNoaGhgVGjRmH16tWwsrJiHYmTHjx4gGPHjlW4apuIr6LFECYmJgBoMYS4NDQ08PDhQ2hpaeHMmTNYsWIFgE+rOWlH1ddt2rRJ8G9jY2OsXLkSFy9eFJrJEh8fTwN1q8DX1xfjx4/H48ePUV5ejsjISNy5cwd79uzBiRMnWMfjjP79+2Ps2LFwdHSkYkAN+Pr6wsnJCV5eXrC2thZc29HR0VT0I7WGOmsQ1gwMDJCZmQkjIyMAn3adft7lB3xqgdymTRtW8Tjny1Z0SkpK2LZtG8M03NW6dWukpaVh//79SE1NhYKCAiZOnIgxY8aItOHmEiqySBELCwuh2SvZ2dlo3rw5dHR0RH7JkpKSajseJwUEBAh6Ivr5+aGwsBAHDx6EoaEh9T+tpm7duon0TSRVR+exeu7du1fhF2M5OTm8e/eOQSLuOXbsGKytrSEjU/lmVhocWbl+/fohNTWViiw1RIshas7R0RFOTk4wNDTEq1evMHjwYABAcnIy/X5WYuPGjUI/a2hoID09Henp6YJj6urq2LlzJxYvXlzb8TjJzs4Ox48fx7Jly6CkpARfX1906tQJx48f53Trh9pmYmKCBQsW4Ndff8XQoUMxduxYDBkyhNMPHVj45Zdf0LNnT+Tn5wvNprK2toaDgwPDZHXP9u3b0bx5c9YxpBItJiGsLVy4EBoaGoKf/7d4f+PGDYwcObK2Y3FWYmIiysvLBbtZPrt27RpkZWVpAWMVKCkpYfLkyaxjSBQNvpciFQ05/JolS5Z8xySkvjt27JjY77W1tf2OSbiNzqPkGRsbY/Xq1bCzsxMasrl582aEhIRQAVqCaHBk5YKCgrBixQq4urrCzMxM5OEXXdPiyc3NRWFhIczNzfHu3Tt4e3vjypUrgsUQ2trarCNKvZKSEvz+++94+PAhJkyYIChEb9y4ESoqKpg0aRLjhKQ+KC0txapVq+Dq6korYiWgvLwc586dw4EDB3D48GHIysril19+gbOzM3r37s06HqnDvtzl9y0zZ878jknqBnt7ewwdOhTu7u6YPXs2jh49igkTJiAyMhIaGho4d+4c64h1Cn1/Id9b586dMXfuXPzyyy9CxyMjI7F27Vpcu3aNUTLuycnJQWBgIDIyMgB8etbj6ekJfX19xsmqj4ospE6jKnP1fGuF+2c03LlydB4lLzg4GEuXLoW/vz/c3NwQHByMnJwcrF69GsHBwRg9ejTriHXGl0UsIqqy65uuaUJIfaSsrIzbt29DR0eHdZQ6pbi4GMePH8fKlStx69Yt+nwRU3FxMTZv3owLFy7g+fPnKC8vF3qdFuZUTFdXV+jnFy9eoKioCOrq6gA+DSZWVFREs2bNaAadGGgxSe2i7y/ke1NWVkZaWprI79i9e/dgbm6O//77j1EybomKioKtrS06duyIHj16APjUSSM1NZXTO6CpXZiU8vX1Rd++fdGtWzfIy8uzjsNZ06dPx9y5c0WKLI8fP6YqcyX+90sIqR46j5I3adIkKCgoYPHixSgqKoKTkxNatWqF33//nQospFbR9U2kyd69e7F9+3bk5uYiISEB2traCAwMhK6uLuzs7FjH46yHDx9iyZIl2LlzJ+sonGBtbY3Y2FgqskjQ06dPERYWhn379iEtLQ2dO3dmHYkz3NzcEB0djV9++QWdO3cWastNvu7evXuCfx84cAB//vknduzYIZjncOfOHbi7u2PKlCmsInIKzW+QnNLSUly8eBE5OTlwcnKCiooKnjx5AlVVVcEgd3rALer69euwtLSErKwsAODEiRNYv349srOz0bJlS8ycORMuLi6MU3KHnJwcnj17JlJkyc/PR4MG9IhdXPPnz4eXl5fQnN3Px+fNm8fZIgvtZJFSAwYMQEJCAkpLS/Hjjz+id+/e6NOnD3r06AEFBQXW8TiDqsy1x8zMDKdOnYKWlhbrKJxG51F8RUVFKCwsRLNmzVhHqZNoJZhk0DUtSkNDQ+yHXa9fv/7Oabhv69at8PX1xW+//YaVK1fi9u3b0NPTw65du7B7925cuHCBdUTOSk1NRadOnWjngJi2bdsGPz8/ODs7w9LSEkpKSkKvUxtF8bx9+xaHDh3CgQMHcPHiRejp6cHZ2RnOzs6cbqFR29TU1HDq1CnBCllSdfr6+oiIiBCZh3jz5k388ssvQgUZUjHqrCEZDx48wKBBg5CXl4cPHz4gKysLenp68PT0xIcPH6h4VQlZWVnk5+ejWbNmOH78OOzt7TF27Fh06dIFycnJ2LVrF8LDw2lWlZjGjBmD/Px8HD16FGpqagA+7fCzt7dHs2bNEB4ezjghN8jLy+PWrVswNDQUOp6VlQVzc3MUFxczSlYzVGaTUmfPnkVpaSmuXbuGS5cuITY2Fps2bcKHDx/w448/Ii4ujnVETqAqc+25f/8+SkpKWMfgPDqPlevXrx8iIyOhrq4ORUVFKCoqAvj0QMLe3h7nz59nnJAQYXRNiwoMDGQdoU7ZvHkz/vrrL9jb2wutBrOyssLs2bMZJpN+35qdRq1wqubXX38FAAQEBIi8Rm0Uxde8eXNoaGhg1KhRWL16NT2ErabWrVtDRUWFdQxOy8/PR2lpqcjxsrIyPHv2jEEi7qHOGpLh6ekJKysrpKamokmTJoLjDg4OcHd3Z5hM+n25rn7dunWYO3cuVq9eLTimq6uLdevWUZFFTBs2bECvXr2gra0tKECnpKSgefPm2Lt3L+N03KGpqYmUlBSRIktKSgqnF9HSU2Yp1qBBA/To0QOamppo3LgxVFRUcOTIEWRmZrKOxhk2NjZYsGCBSJV54cKFnN1+Rkh9dvHiRXz8+FHkeHFxMS5fvswgUd1FbTXI9zJ+/Pgq/2/WrFmDqVOnCnrCk/937949kVXGwKeFJu/evWOQiDvs7e3B4/FQ2cZ++lsoPmqjKBnHjh2DtbX1N2f7xcfHw8rKCnJycrWUjFv8/f0xb948bNu2jeZeVJO1tTWmTJmC4OBgdOrUCcCnXSzTpk1D//79GafjhvT0dMG5+5KFhQXS09MZJOKmy5cv48qVK2jUqJHQcR0dHTx+/JhRKu7JysoSWew0fPhwrF+/nk0gDmrdujXS0tKwf/9+pKamQkFBARMnTsSYMWPQsGFD1vE4w93dHZMnT0Zubi66d+8O4NN9zdq1azFr1izG6aqPiixSKigoCBcvXkRsbCw+fPiAn376CX369MHixYthbm7OOh5nUJWZkLohLS1N8O/09HQ8ffpU8HNZWRnOnDmD1q1bs4hWZ1E3USJNVq1ahZEjR1KRpQK6urpISUkReYh45swZtG/fnlEqbmjZsiX+/PPPr86tSUlJgaWlZS2nIvWduAvBBg8ejJSUFGrr+RVWVlYoLi6Gnp4eFBUVRR5+UTvKb9u5cyfGjx8PKysrwfkrLS3FwIEDERwczDgdN1BnDckoLy+vcDfko0ePaMeaGD5/f1ZQUKhwQURFO9bI1ykpKWHy5MmsY3Caj48PVFRU4O/vjwULFgAAWrVqhaVLl2LmzJmM01Uf/VWXUlOnToWmpia8vb3x66+/CgZ5kaqhKjMhdUPHjh3B4/HA4/HQr18/kdcVFBSwefNmBsm4iQZHEq6hot/XzZo1C9OnT0dxcTH4fD6uX7+O0NBQrF69mh6CfYOlpSVu3rz51SLLt3a5EGHLli2r9HVfX99aSlI/0O9m5caMGYPHjx9j1apVaN68Oe1KqwZNTU2cOnUKWVlZgm4a7dq1ww8//MA4GXdQZw3JsLGxQWBgIIKCggB8+nwuLCzEkiVLMGTIEMbppJ+1tbXgMyM+Ph4//vij4LXk5GS0bduWVTROysnJQWBgIDIyMgAAxsbG8PT0pLlpVcDj8eDl5QUvLy/Bc4e6UDClwfdS6siRI7h06RIuXryIjIwMWFhYoE+fPujTpw969uwpmENAiLSgIdmSQeexYg8ePACfz4eenh6uX78OTU1NwWuNGjVCs2bNICsryzAhd9DgyNpF17Rk0Hms3P79+7F06VLk5OQA+LQSzM/PD25uboyTSbfLly/j3bt3GDRoUIWvv3v3Djdu3EDv3r1rORk3/W/bupKSEty7dw8NGjSAvr4+kpKSGCWrm+jvYuUUFRWRkJCADh06sI5C6rHHjx+jV69eePXqlUhnjbNnz0JLS4txQm549OgRBg4cCD6fj7t378LKygp3795F06ZNcenSJU7PcPjeHjx4IPSzsrKy0FybPXv2AABcXFxqNRdXRUVFwdbWFh07dkSPHj0AfCpcpaam4vjx41Q8reeoyMIBb968weXLl/H3338jNDQUMjIyKC4uZh2LM6jKXDvoi55k0Hkk35u9vT1UVFSwY8cONGnSRPD7dvHiRbi7u+Pu3busI9YpdE1LBp1H8RQVFaGwsJAeNhCp8fbtW0yYMAEODg4YN24c6zh1Cv1drFynTp3w559/omvXrqyjcFZZWRl27dqFmJgYPH/+XKTN0Pnz5xkl45Z3794JddYwNzenzhrVUFpairCwMKSlpaGwsBCdOnWCs7MzFBQUWEcj9YiFhQUGDhyINWvWCB2fP38+oqOjaUFJJSwsLMTeVcrV80jtwqTYq1evEBsbi4sXL+LixYv4559/oKGhgZ9++ol1NM74WpXZxMSEqswStn37djRv3px1DM6j8yie9PR05OXl4ePHj0LHbW1tGSXiDhocWbvomibfW79+/RAZGQl1dXUoKioKdju/ffsW9vb29BCsikJDQ2FrawslJSXWUeoEVVVV+Pn5YdiwYVRkIbVqzZo18Pb2xsqVK2FmZibyQFtVVZVRMu7w9PTErl27MHToUJiamlLLtWqi+Q2S0aBBA4wdO5Z1jDph6NChCA4ORsuWLVlH4ZyMjAyEh4eLHHd1dUVgYGDtB+IQe3t71hG+OyqySCkzMzNkZGRAQ0MDvXr1gru7O3r37k1D76to/vz58PLyqrDKPG/ePCqyfMWmTZvEfu/noVROTk7fKw5n0XmUvNzcXDg4OODWrVtCvfI/f+mraCAiEUaDI6uPrmkijS5evChScAaA4uJiXL58mUEibpsyZQq6dOlCuwMk6M2bN3jz5g3rGHUOPfCu3Oc2gP369RM6V3w+Hzwej+4ZxRAWFobw8HCaeVFD1Fmjeo4dOyb2e2mhXdVcunQJ79+/Zx2DkzQ1NZGSkgJDQ0Oh4ykpKbST/BuWLFlS5f8N1xY/UZFFSk2dOhW9e/eGqakp6yicRlXm6tm4caNY7+PxeIIHiUQUnUfJ8/T0hK6uLmJiYqCrq4vr16/j1atX8Pb2xoYNG1jH4wQaHFl9dE2z89NPP1E7iP+RlpYm+Hd6ejqePn0q+LmsrAxnzpxB69atWUTjNOqkXH3/W4jm8/nIz8/H3r17MXjwYEap6i76Xa3chQsXWEfgvEaNGsHAwIB1DE6jzhrVJ+6qdyqaktrk7u6OyZMnIzc3F927dwfw6Zpeu3YtZs2axThd3cO1xU80k4XjVFVVkZKSwplfuNqmpaWFgIAAjBgxQuh4eHg4Zs+ejby8PEbJCCHV0bRpU5w/fx7m5uZQU1PD9evXYWRkhPPnz8Pb2xvJycmsI0o9GhxJWHv79q3Y76V2Ll8nIyMjWJ1d0e28goICNm/eDFdX19qOxmk056L6dHV1hX6WkZGBpqYm+vXrhwULFtBuySooLS3FxYsXkZOTAycnJ6ioqODJkydQVVWFsrIy63icUVxcjLS0tArnidDK92/z9/dHbm4utmzZQjunqonmNxBpUFpaigMHDmDgwIFo3rw5TE1Ncfr0aWhpabGOxjl8Ph+BgYHw9/fHkydPAACtWrXCnDlzMHPmTPpbKWFcuy+nIgvHce0XrrYtW7YMGzduxPz58yusMvv4+DBOSAipCg0NDSQlJUFXVxf6+voIDg5G3759kZOTAzMzMxQVFbGOyAk0OJKw9GVx4FtoZeLXPXjwAHw+H3p6erh+/To0NTUFrzVq1AjNmjWDrKwsw4TcUFJSAgUFBaSkpMDU1BRxcXH48ccfIScnxzoaqacePHiAQYMGIS8vDx8+fEBWVhb09PTg6emJDx8+YNu2bawjcsKZM2fg4uKCly9firxGK9/F4+DggAsXLqBx48YwMTERmWsTGRnJKBl3yMvL49atWyKthbKysmBubo7i4mJGyUh9o6ioiIyMDGhra7OOUmf8999/AECLSL4jrj3zpnZhpE7z8fGBiooK/P39sWDBAgCfqsxLly6lVi5V8OjRIxw7dqzCQeMBAQGMUnEPnceaMzU1RWpqKnR1ddGlSxesW7cOjRo1QlBQEGc+eKUBDY6UDLqmq+fLFi7379/H/PnzMWHCBHTr1g0AkJCQgN27d2P16tWsInLC5y/J/7s6m1RNw4YN0bZtW8ED1549ezJOxF179uzBjz/+iPbt2wsdLy4uRnh4OFxcXBgl4xZPT09YWVkhNTUVTZo0ERx3cHCAu7s7w2Tc4uHhgREjRsDX1xfNmzdnHYeT1NXV4eDgwDoGp9H8Bsn42lxEHo8HeXl5GBgYoFevXrS4pBKdO3dGSkoKFVkkiIor5H/RThaO41pVjyWqMldPTEwMbG1toaenh8zMTJiamuL+/fvg8/no1KkTzp8/zzoiJ9B5lIyoqCi8e/cOjo6OyM7Oxs8//4ysrCw0adIEBw8eRL9+/VhHlEo0OFLy6JqWDGtra0yaNAljxowROn7gwAEEBQXh4sWLbIJxUHp6eoUFP7qmv23Hjh2IjIzE3r170bhxY9ZxOEtGRgZKSkrYtWsXhg8fLjj+7NkztGrVinYOiKlJkya4cuUKjIyMhL7r3b9/H8bGxrRrV0yqqqpITk6m4eKEKeqsIRm6urp48eIFioqKoKGhAQD4999/oaioCGVlZTx//hx6enq4cOECtcD6ivDwcCxYsABeXl6wtLQUGSRubm7OKJn0s7CwEHsXPrUAlCyuPfOmIgvHce0XjnBP586dMXjwYPj5+Ql+35o1awZnZ2cMGjQI06ZNYx2RE+g8fj+vX7+GhoYG9T+thIyMjFjvo/YZ4qNrWjIUFRWRmppaYRuNjh070sNEMeTm5sLBwQG3bt0Cj8cTzGf5/DeRrulvs7CwQHZ2NkpKSqCtrS3y4IG+MItHRkYGGzZswOLFizF37lwsXboUABVZqkpDQwPx8fEwNjYW+q4XFxeH4cOH49mzZ6wjcoKrqyt69OgBNzc31lFIPUbzGyQjNDQUQUFBCA4OFhROs7OzMWXKFEyePBk9evTA6NGj0aJFC0RERDBOK50q+j74+b6RvgNWzs/PT+z3Llmy5DsmqX+49sybiiwcR4PvRVGVWbJUVFSQkpICfX19aGhoIC4uDiYmJkhNTYWdnR3u37/POiIn0HkkpG6ha1oyjIyMYGdnh3Xr1gkdnzt3Lo4ePYo7d+4wSsYdw4YNg6ysLIKDg6Grq4vr16/j1atX8Pb2xoYNG/DTTz+xjij1vvXlmb4wi0dGRgZPnz4VFP569OiBvXv34u3bt1RkqYJRo0ZBTU0NQUFBUFFRQVpaGjQ1NWFnZ4e2bdsiJCSEdUROKCoqwogRI6CpqQkzMzOReSLUOlo8ERERCA8Pr3CnJH2XrhrqrFF9+vr6OHToEDp27Ch0PDk5GcOHD0dubi6uXLmC4cOHIz8/n01IKffgwYNKX6c2YpIVGhoKW1tbkYU75NMCsPj4eJibm0NdXb3S95qamuL06dOc2aFGM1k4jmpkouzt7VlHqFOUlJQEN9QtW7ZETk4OTExMAKDCQZKkYnQeq8/R0VHs99IATlJb6JqWjI0bN2L48OE4ffo0unTpAgC4fv067t69i0OHDjFOxw0JCQk4f/48mjZtChkZGcjIyKBnz55YvXo1Zs6cieTkZNYRpR4VUSTj8yKnrl274tq1a7C1tUX37t1pUHsV+fv7Y+DAgTA2NkZxcTGcnJxw9+5dNG3aFKGhoazjcUZoaCiio6MhLy+PixcvCi3C4/F4VGQRw6ZNm7Bo0SJMmDABR48excSJE5GTk4PExERMnz6ddTzOoeJK9eXn56O0tFTkeGlpKZ4+fQrg0w6hz4UsIoqKKLVrypQp6NKlCy2Ir4CsrCxsbGyQkZHxzSLL7du3ayeUhFCRheNOnz6N1q1bs44hVarzRZmqzF/XtWtXxMXFoX379hgyZAi8vb1x69YtREZGomvXrqzjcQadx+pTU1NjHaFOocGRkkHXtGQMGTIEWVlZ2Lp1KzIzMwF82pkxdepUzqxYYq2srEzw4KZp06Z48uQJjIyMoK2tTTuBquHXX3/FsmXL0LRpU9ZROOfLxV9t27bFlStX4OzsjAEDBjBMxT1t2rRBamoqwsLCkJaWhsLCQri5ucHZ2RkKCgqs43HGokWL4Ofnh/nz54vdNpUI+/PPPxEUFIQxY8Zg165dmDt3LvT09ODr64vXr1+zjie1qLOG5PXt2xdTpkxBcHAwLCwsAHzaxTJt2jTBTM5bt25BV1eXZUyptnv3bjRt2hRDhw4F8GnXeFBQEIyNjREaGkpFGAmjBfGVMzU1RW5ubp27ZqldmBSZNWuW2O8NCAj4jknqH2q79nW5ubkoLCyEubk53r17B29vb1y5cgWGhoYICAigD2Mx0XmsXfHx8bCysoKcnBzrKFKHBkdKBl3TRFr89NNP8Pb2hr29PZycnPDvv/9i8eLFCAoKws2bNzm3Aow1uiesPj8/P8yZMweKiopCx5csWYJLly7hwoULjJKR+qhx48ZITEykwfc1oKioiIyMDGhra6NZs2Y4e/YsOnTogLt376Jr16549eoV64hSieY3SN7Tp08xbtw4xMTECFr/lZaWwtraGnv37kXz5s1x4cIFlJSUwMbGhnFa6WRkZIStW7eiX79+SEhIgLW1NQIDA3HixAk0aNCAOkJIGNdmidS2M2fOYMGCBVi+fDksLS1FFryrqqoySlYzVGSRIn379hX6OSkpCaWlpTAyMgLwaQisrKwsLC0tcf78eRYR6yz6A0hI3UIPyb6OBkcS1tLS0mBqagoZGRmkpaVV+l5zc/NaSsVdUVFRePfuHRwdHZGdnY2ff/4ZWVlZaNKkCQ4ePChY4UnEQ/eENZeenl7h/AZbW1tGiaTfsWPHxH4vnUfxeHl5QVNTEwsXLmQdhbP09PRw6NAhWFhYwMrKCu7u7pgyZQqio6MxevRo2s0iQdRZQzyZmZnIysoC8Klo8PlZGfk2RUVFZGZmom3btpg3bx7y8/OxZ88e/PPPP+jTpw9evHjBOmKdQveTlftyh+mXO//4fD54PB5n5/hRuzAp8uXqroCAAKioqGD37t1CK40nTpxIA0xJrUpMTER5ebmgV/5n165dg6ysLKysrBgl4xY6j7WL1g983eLFi3Ho0CGhlZ0GBgbYsGGDYHDkunXrMHz4cIYppR9d09XXsWNHPH36FM2aNUPHjh3B4/EqvGa5fINdmwYOHCj4t4GBATIzM/H69WtoaGiI3a6EEEnIzc2Fo6Mj0tLShK7rz7+HdD1/nbgzJenvovjKysqwbt06REVFwdzcXGTwPXWG+LZ+/frh2LFjsLCwwMSJE+Hl5YWIiAjcuHGjSjMTybfR/AbxtGvXTlBYoXucqlFWVsarV6/Qtm1bREdHCzrpyMvL4/3794zTkfqmru5upiKLlPL390d0dLSgwAIAGhoaWLFiBWxsbODt7c0wHalPpk+fjrlz54o8SHz8+DHWrl2La9euMUrGLXQeibSgwZGSQdd09d27dw+ampqCfxPJa9y4MesInEV/+6rP09MTOjo6OHfuHHR1dXH9+nW8evUK3t7e2LBhA+t4Uq28vJx1hDrn1q1bgtkN/9s2kR7OiicoKEjwuzl9+nQ0adIEV65cga2tLaZMmcI4Xd1CC8S+bc+ePVi/fj3u3r0LAPjhhx8wZ84cjBs3jnEybhgwYAAmTZoECwsLZGVlYciQIQCAf/75Bzo6OmzDkXqnd+/erCN8F1RkkVJv376tcLveixcv6MsfqVXp6eno1KmTyHELCwukp6czSMRNdB6JtKDBkZJB13T1fZ5XU1JSAj8/P/j4+NDvWxVVZQUx9dj+tqSkJDRs2BBmZmYAgKNHjyIkJATGxsZYunQpGjVqxDghNyQkJOD8+fNo2rQpZGRkICMjg549e2L16tWYOXMmkpOTWUck9UhdXSVbmz5fx5+NHj0ao0ePFnnfr7/+imXLlqFp06a1GY/UIwEBAfDx8cGMGTPQo0cPAEBcXBymTp2Kly9fwsvLi3FC6ffHH39g8eLFePjwIQ4dOoQmTZoAAG7evIkxY8YwTscNZWVliI+Ph7m5OdTV1St9r7a2tsgOSiLs8uXL2L59O3Jzc/H333+jdevW2Lt3L3R1ddGzZ0/W8aqFiixSysHBARMnToS/vz86d+4M4FMLkjlz5tDWXFKr5OTk8OzZM5Gty/n5+WjQgP6EiIvOI5EWO3bswLhx42BpaSkyOHLHjh0APm0n9/f3ZxlT6tE1XXMNGzbEoUOH4OPjwzoK56ipqbGOUKdMmTIF8+fPh5mZGXJzczF69Gg4ODjg77//RlFREQIDA1lH5ISysjKoqKgAAJo2bYonT57AyMgI2trauHPnDuN03LFp06YKj/N4PMjLy8PAwAC9evWCrKxsLScjpGL79u3D7NmzqchCvpvNmzdj69atcHFxERyztbWFiYkJli5dSkUWMairq2PLli0ix/38/Bik4SZZWVnY2NggIyPjm0WW/91BSYQdOnQI48aNg7OzM5KSkvDhwwcAwJs3b7Bq1SqcOnWKccLqocH3UqqoqAizZ8/Gzp07UVJSAgBo0KAB3NzcsH79ehqIJoaqVJlNTU1x+vRpaGlp1U44DhkzZgzy8/Nx9OhRwUOdgoIC2Nvbo1mzZggPD2eckBvoPNYuGnz/bTQ4smbompaM8ePHo2PHjvTluBbEx8fDysoKcnJyrKNIHTU1NSQlJUFfXx9r167F+fPnERUVhfj4eIwePRoPHz5kHZETfvrpJ3h7e8Pe3h5OTk74999/sXjxYgQFBeHmzZv0wEFMurq6ePHiBYqKioRmcyoqKkJZWRnPnz+Hnp4eLly4QN9diFSgAc81R+ewcvLy8rh9+zYMDAyEjt+9exdmZmYoLi5mlEy6paWlif1ec3Pz75ik7rCyssLatWthbW3NOgqnWVhYwMvLCy4uLkJ//5KTkzF48GBBG3OuoSKLlHv37h1ycnIAAPr6+lRcqSJ5eXlkZGRQG5IaePz4MXr16oVXr14JWgulpKSgefPmOHv2LH25ExOdx9pFX1TE879DiYn46JqWjBUrVsDf3x/W1tawtLQUuc+ZOXMmo2R1DxWfv05VVRU3b96EoaEhBgwYgJ9//hmenp7Iy8uDkZERDYQVU1RUFN69ewdHR0dkZ2fj559/RlZWFpo0aYKDBw8KWlKSyoWGhiIoKAjBwcHQ19cHAGRnZ2PKlCmYPHkyevTogdGjR6NFixaIiIhgnJYQuu+WBDqHlTM1NYWTkxMWLlwodHzFihU4ePAgbt26xSiZdJORkQGPx/vqzJ/Pr/F4PJSVldVyOm46c+YMFixYgOXLl1f43UVVVZVRMm5RVFREeno6dHR0hP7+5ebmwtjYmLOFUyqykDqNqsyS8e7dO+zfvx+pqalQUFCAubk5xowZQz0mq4jOo2SUlpbi4sWLyMnJgZOTE1RUVPDkyROoqqpCWVmZdTxOoMGRkkHXdM1VtgiCx+MhNze3FtPUbfQA5+v69esHLS0t9O/fH25ubkhPT4eBgQFiY2Mxfvx43L9/n3VEznr9+jU0NDSomF8F+vr6OHToEDp27Ch0PDk5GcOHD0dubi6uXLmC4cOHIz8/n01IQr5Any8Vo84aknPo0CGMGjUK/fv3F8xkiY+PR0xMDMLDw+Hg4MA4oXR68OCB2O/9PDORVO7LOVVf3ttQsapq9PT0EBQUhP79+wt9huzZswdr1qzh7IxTahoupfr27Vvpl5Hz58/XYhruWrFiBWbPnk1V5hpSUlLC5MmTWcfgPDqPNffgwQMMGjQIeXl5+PDhAwYMGAAVFRWsXbsWHz58wLZt21hHlHo0OFJy6JquuXv37rGOQAgCAwPh7OyMI0eOYNGiRYJ2JBEREejevTvjdNzWuHFj1hE4Jz8/H6WlpSLHS0tLBe0zWrVqhf/++6+2oxFCqoDmN0jO8OHDce3aNWzcuBFHjhwBALRv3x7Xr18X7CgnosQtnNDae/FduHCBdYQ6wd3dHZ6enti5cyd4PB6ePHmChIQEzJ49m9PzOqnIIqX+d+VSSUkJUlJScPv2bYwfP55NKA4aMmQIgE9D0ajKXH05OTkIDAxERkYGAMDY2Bienp6CFgZEPHQea87T0xNWVlZITU1FkyZNBMcdHBzg7u7OMBl30OBIyaFrWrKofR1hxdzcvMJWI+vXr6fh4qTW9e3bF1OmTEFwcLDg4WFycjKmTZsmaLl269YtaodMCAeYmpoiNzeXrlcJsLS0xL59+1jH4KwJEybgjz/+EFl4fP/+fYwbNw6XL19mlIxbevfuzTpCnTB//nyUl5fD2toaRUVF6NWrF+Tk5DB79mx4eHiwjldtVGSRUhs3bqzw+NKlS1FYWFjLabiLqsw1FxUVBVtbW3Ts2FFoa66JiQmOHz+OAQMGME7IDXQeJePy5cu4cuUKGjVqJHRcR0cHjx8/ZpSKW/Lz8ytcmd29e3dqO1IFdE1Lzo4dO7Bx40ZB+zpDQ0P89ttvmDRpEuNkpL6Tl5dnHYHUQzt27MC4ceNgaWkpaD9ZWloKa2tr7NixAwCgrKwMf39/ljEJERg7dix1iPgK6qwhOWVlZThy5IhgcZOJiQlsbW1pMYSYUlNTYW5ujn379qFbt24AgN27d2PmzJk0M62KLl++jO3btyM3Nxd///03Wrdujb1790JXVxc9e/ZkHY8TeDweFi1ahDlz5iA7OxuFhYUwNjbmfPt3msnCMdnZ2ejcuTNev37NOgqpJywsLDBw4ECsWbNG6Pj8+fMRHR2NpKQkRsm4hc6jZGhoaCA+Ph7GxsZCvTvj4uIwfPhwPHv2jHVEqUeDIyWDrmnJ8PX1RUBAADw8PARf+BISErBlyxZ4eXlh2bJljBPWHTT4XlhV5oTQfTdhITMzE1lZWQAAIyMjGBkZMU5E6oO0tDSx32tubv4dk9QNNL9BMrKzszF06FA8evRI8Lfwzp070NLSwsmTJ2kXuRhKSkqwcOFCbNq0Cd7e3sjOzsbp06cREBBAHSGq4NChQxg3bhycnZ2xd+9epKenQ09PD1u2bMGpU6dw6tQp1hE55+HDhwBQJ2ZSUZGFY/bu3Yt58+bhyZMnrKNwBlWZa0ZeXh63bt2CoaGh0PGsrCyYm5ujuLiYUTJuofMoGaNGjYKamhqCgoKgoqKCtLQ0aGpqws7ODm3btkVISAjriFKPBkdKBl3TkqGpqYlNmzZhzJgxQsdDQ0Ph4eGBly9fMkpW99BgYmG7d+8W+73UqpewQm0USW2TkZEBj8cTFAEqQwWCb4uNja30dWo9JJ4hQ4aAz+dj//79gllfr169wtixYyEjI4OTJ08yTsgdS5YswfLly9GgQQPExsYKFjkR8VhYWMDLywsuLi5C99bJyckYPHiwYHYaqVxpaSn8/PywadMmQbcmZWVleHh4YMmSJYKdvFxD7cKklKOjo9DPfD4f+fn5uHHjBqeHANW2L6vMSUlJ+PDhAwDgzZs3WLVqFVWZxaCpqYmUlBSRB4kpKSlo1qwZo1TcQ+dRMvz9/TFw4EAYGxujuLgYTk5OuHv3Lpo2bYrQ0FDW8TiBBkdKBl3TklFSUgIrKyuR45aWlhUOfiYVKy0txcWLF5GTkwMnJyeoqKjgyZMnUFVVFWy7pyHZwqhwQqTZnj17sH79ekEbxR9++AFz5szBuHHjGCcjdd29e/cE/05OTsbs2bMxZ84cod2m/v7+WLduHauInEJFFMmIjY3F1atXBQUWAGjSpAnWrFkjWDRGKldSUoL58+fjjz/+wIIFCxAXFwdHR0fs2LFDMMuYfNudO3fQq1cvkeNqamooKCio/UAc5eHhgcjISKxbt07o82Xp0qV49eoVtm7dyjhh9VCRRUqpqakJ/SwjIwMjIyMsW7YMNjY2jFJxz4oVK7Bt2za4uLggLCxMcLxHjx5YsWIFw2Tc4e7ujsmTJyM3N1cwxyE+Ph5r167FrFmzGKfjDjqPktGmTRukpqYiLCwMaWlpKCwshJubG5ydnaGgoMA6HmfQ4Miao2taMsaNG4etW7ciICBA6HhQUBCcnZ0ZpeKWBw8eYNCgQcjLy8OHDx8wYMAAqKioYO3atfjw4QO2bdvGOqLU27VrFyZMmCByvLS0FD4+Pli9enXthyL1VkBAAHx8fDBjxgzBw8O4uDhMnToVL1++hJeXF+OEpC7T1tYW/HvEiBHYtGmT0ANYc3NzaGlpwcfHB/b29gwScg911qg5OTm5CheLFBYWiszqJBWzsrJCUVERLl68iK5du4LP52PdunVwdHSEq6sr/vzzT9YROaFFixbIzs6Gjo6O0PG4uDjaLV4FBw4cQFhYGAYPHiw49vnzZcyYMZwtsoBPSB2moKDAv3fvHp/P5/OVlZX5OTk5fD6fz8/JyeHLyckxTMYd5eXl/ICAAH7r1q35PB6Pz+Px+K1bt+YHBgbyy8vLWcfjDDqPRJqUlpbyIyIi+MuXL+cvX76cHxkZyS8tLWUdi1Pomq4+Ly8vwX8eHh58FRUVvomJCd/NzY3v5ubGNzU15auqqvJnzJjBOion2NnZ8ceOHcv/8OGD0L3OhQsX+AYGBozTcYOKigr/l19+4b9+/VpwLDMzk9+pUye+trY2u2CkXtLR0eHv3r1b5PiuXbv4Ojo6DBKR+kpeXp6fnp4ucjw9PZ0vLy/PIBH3RERE8BUUFPiTJk3iy8nJCT6jN2/ezB88eDDjdNwxbtw4vomJCf/q1av88vJyfnl5OT8hIYFvamrKHz9+POt4nODq6sovLCwUOZ6UlMQ3MTFhkIibVq1axTc2NuZfvXqVr6Kiwr98+TJ/3759fE1NTf6mTZtYx+MMTU3Nr36+NG3alEEiyaCZLFLu5s2byMjIAACYmJhQK5cq0tPTQ1BQEPr37y/UL3HPnj1Ys2YN0tPTWUfklM+rR1RUVBgn4TY6j1Vz7Ngxsd9ra2v7HZPUDTQ4UvLomq6avn37ivU+Ho+H8+fPf+c03NekSRNcuXIFRkZGQvc69+/fh7GxMYqKilhHlHo5OTkYO3YsHj58iJCQEGRlZWHu3Lmwt7fHn3/+KbLDnJDvSV5eHrdv34aBgYHQ8bt378LMzIxmfpFa06lTJ5iamiI4OFiwW+Djx4+YNGkSbt++jaSkJMYJpR/Nb5CMgoICjB8/HsePHxfMaigpKYGdnR1CQkKgrq7ONiDHffjwAXJycqxjcAKfz8eqVauwevVqwT22nJwcZs+ejeXLlzNOxx3Lli1DZmYmQkJCBL97Hz58gJubGwwNDbFkyRLGCauHiixS6vnz5xg9ejQuXrwo+MAoKChA3759ERYWBk1NTbYBOWL16tXYt28fdu7ciQEDBuDUqVN48OABvLy84OPjAw8PD9YRCSHfICMjI9b7eDweDeAUAw2OJKRu0dDQQHx8PIyNjYUe4MTFxWH48OF49uwZ64icUF5ejt9++w1//PEHZGVlsXv3bowZM4Z1LFIPmZqawsnJCQsXLhQ6vmLFChw8eBC3bt1ilIzUN9evX8ewYcPA5/Nhbm4OAEhLSwOPx8Px48fRuXNnxgmln6KiItLT06GjoyP0GZ2bmyuYMUnEl52dLViE3L59e5FiNBHP0KFDERwcjJYtW7KOwlkfP35EdnY2CgsLYWxsLJiBSMTj4OCAmJgYyMnJoUOHDgCA1NRUfPz4EdbW1kLvjYyMZBGxWmgmi5Ty8PDAf//9h3/++Qft27cHAKSnp2P8+PGYOXMmDXgW0/z581FeXg5ra2sUFRWhV69egiozFVi+zsLCAjweT6z30gqmr6PzKBnl5eWsI9QpNDiy+uialryQkBCMHj2aZirVgI2NDQIDAxEUFATgU8G5sLAQS5YsoUGmVXDy5EmEhYWhW7duyMrKwo4dO9C7d2+0atWKdTRSz/j5+WHUqFG4dOmS4HM5Pj4eMTExCA8PZ5yO1CedO3dGbm4u9u/fj8zMTADAqFGj4OTkBCUlJcbpuIHmN0hGRfMOL1y4AB6PB3l5eRgYGMDOzk7o+w35ukuXLuH9+/esY3Bao0aNoKKiAhUVFSqwVIO6ujqGDx8udExLS4tRGsmhnSxSSk1NDefOncOPP/4odPz69euwsbFBQUEBm2AcRVXmqvHz8xP7vVzdxlcb6DwSadS4cWOcOHFCMKz9s/j4eAwbNgyvX79mlEz60TUtec2bN8f79+8xYsQIuLm5ifxekm979OgRBg4cCD6fj7t378LKygp3795F06ZNcenSJTRr1ox1RKk3ZcoU7N69GytXrsSsWbPw7NkzuLq64tq1a9i6dStGjhzJOiKpZ27evImNGzcKrdj29vam1tGEcAx11pCMvn37IikpCWVlZYJ2x1lZWZCVlUW7du1w584d8Hg8xMXFwdjYmHFa6fflripSNaWlpfDz88OmTZtQWFgIAFBWVoaHhweWLFkiaGdH6icqskgpFRUVXL58GR07dhQ6npycjN69e+Pt27dsgnHYw4cPAdSN6qg0Cg0Nha2tLa1qqiE6j5XbtGlThce/XMXUq1cvyMrK1nIy7nBxcUFSUhJ27NghaPNw7do1uLu7w9LSErt27WIbsI6ha7pypaWlOH78OHbt2oXTp09DT08PEydOxPjx49GiRQvW8TijtLQUYWFhSEtLQ2FhITp16gRnZ2faISQmU1NT7N+/X9Cu4LM//vgD8+bNE3yJJoSQ+ubu3bu4cOECnj9/LrK73NfXl1Eq7qD5DZIRGBiIy5cvIyQkBKqqqgCAN2/eYNKkSejZsyfc3d3h5OSE9+/fIyoqinFa6WdqaorTp0/Ts7FqmDZtGiIjI7Fs2TJ069YNAJCQkIClS5fC3t4eW7duZZyQG96/fw8+nw9FRUUAwIMHD3D48GEYGxvDxsaGcbrqoyKLlLKzs0NBQQFCQ0MFbQoeP34MZ2dnaGho4PDhw4wTcgNVmWuPqqoqUlJSaDVEDdF5rJyuri5evHiBoqIiaGhoAAD+/fdfKCoqQllZGc+fP4eenh4uXLhAN41fQYMjaxdd0+J79uwZ9u3bh927dyMzMxODBg2Cm5sbhg0bJvZsJkKqo7KBr3fu3BGsmo2Pj4eVlRUNhyXfXVlZGY4cOSLYyWJiYgJbW1taREJq1V9//YVp06ahadOmaNGihVDLVB6PR61Rq4A6a9RM69atcfbsWZFdKv/88w9sbGzw+PFjJCUlwcbGBi9fvmSUktQHampqCAsLw+DBg4WOnzp1CmPGjMGbN28YJeMWGxsbODo6YurUqSgoKICRkREaNWqEly9fIiAgANOmTWMdsVpoJouU2rJlC2xtbaGjoyN4UPjw4UOYmppi3759jNNxh4eHByIjI7Fu3TqRKvOrV6+oyixBVK+VDDqPlVu1ahWCgoIQHBwMfX19AJ8GIE6ZMgWTJ09Gjx49MHr0aHh5eSEiIoJxWumkrq6Oo0eP0uDIWkLXtPiaN2+Onj17IisrC1lZWbh16xbGjx8PDQ0NhISEoE+fPqwjSo1jx46J/V5bW9vvmKRuqKxo8rnAAgCDBw+moin57rKzszF06FA8evRI8Pu3evVqaGlp4eTJk4L7H0K+txUrVmDlypWYN28e6yicR/MbaubNmzd4/vy5SJHlxYsXgi4v6urq+PjxI4t4nHH58mVs374dubm5+Pvvv9G6dWvs3bsXurq66NmzJ+t4nCAnJycyYwn4tBi0UaNGtR+Io5KSkrBx40YAQEREBFq0aIHk5GQcOnQIvr6+VGQhkqWlpYWkpCScO3dOMGSuffv26N+/P+Nk3HLgwAGRKrO5uTm0tLQwZswYKrIQwjGLFy/GoUOHhB4wGBgYYMOGDRg+fDhyc3Oxbt06kSFq5P/R4EgibZ49e4a9e/ciJCQEubm5sLe3x4kTJ9C/f3+8e/cOy5Ytw/jx4/HgwQPWUaWGvb29WO/j8XgoKyv7vmHqESqaktowc+ZM6OnpISEhQfBZ/OrVK4wdOxYzZ87EyZMnGSck9cW///6LESNGsI7BadRZQzLs7Ozg6uoKf39/wdzixMREzJ49W3BPdP36dfzwww8MU0q3Q4cOYdy4cXB2dkZSUhI+fPgA4FMBa9WqVTh16hTjhNwwY8YMLF++HCEhIYJFOh8+fMDKlSsxY8YMxum4o6ioCCoqKgCA6OhoODo6QkZGBl27duX0dz4qskgxHo+HAQMGYMCAAayjcBZVmQmpW/Lz81FaWipyvLS0FE+fPgUAtGrVCv/9919tR+OM5OTkSgdH/vnnn/D29qbBkaRWDBs2DFFRUfjhhx/g7u4OFxcXoQKfkpISvL29sX79eoYppc//9sUnhNQdsbGxuHr1qtDfwiZNmmDNmjXo0aMHw2SkvhkxYgSio6MxdepU1lE4izprSMb27dvh5eWF0aNHC74LNmjQAOPHjxeshm/Xrh2Cg4NZxpRqK1aswLZt2+Di4oKwsDDB8R49emDFihUMk3FLcnIyYmJi0KZNG8Esv9TUVHz8+BHW1tZwdHQUvDcyMpJVTKlnYGCAI0eOwMHBAVFRUfDy8gIAPH/+XDB3iYuoyCJFvjbQuSIzZ878jknqDqoyE1K39O3bF1OmTEFwcDAsLCwAfLrRmTZtGvr16wcAuHXrFnR1dVnGlGqfd6l8a3Ckl5cXDY4k312zZs0QGxsrePBQEU1NTdy7d68WUxFCCDtycnIVLhYpLCykRWKkVhkYGMDHxwdXr16FmZmZyK4LeibxbdRZQzKUlZXx119/YePGjcjNzQUA6OnpCbVe69ixI6N03HDnzh306tVL5LiamhoKCgpqPxBHqauri3TNoFmwVefr6yt45mBtbS34LhgdHS14zsNFNPheioj7UJDH4wk+WEjlHBwcEBMTAzk5uQqrzF+iKnPNqKioIDU1lfqU1xCdx8o9ffoU48aNQ0xMjOCLXmlpKaytrbF37140b94cFy5cQElJCWxsbBinlU40OLJ20TVNvrevLdL5sgVgr169aGC2BND1TGqDi4sLkpKSsGPHDnTu3BkAcO3aNbi7u8PS0hK7du1iG5DUG5U9n6BnEuL5vJikffv2QsczMjLQq1cvvHjxglEyUt/o6ekhKCgI/fv3F7qf2bNnD9asWYP09HTWEUk98/TpU+Tn56NDhw6QkZEB8Kntn6qqKtq1a8c4XfXQThYpQqs0JY+qzDVTVlaG+Ph4mJubQ11dvdL3amtrU0/Zr6DzKDktWrTA2bNnkZmZiaysLACfhhJ/OZi4b9++rOJxAg2OrDm6piUrJiYGMTExeP78uUgbrJ07dzJKxR0bN27EixcvUFRUBA0NDQCf+ugrKipCWVkZz58/h56eHi5cuED3QDXE4/FYRyD1wKZNmzB+/Hh069ZN8PlRUlICOzs7BAYGsg1H6hV6PlFz1FmDSAt3d3d4enpi586d4PF4ePLkCRISEjB79mz4+PiwjscZ79+/B5/Ph6KiIgDgwYMHOHz4MIyNjWmRZxW1aNECLVq0EDr2eXEJV9FOFkJIpeTl5ZGRkUHtl2qIzqPkff74oodeVePs7IyEhIQKB0d2794de/fuRVhYGDZs2IAbN24wTiu96JqWDD8/PyxbtgxWVlZo2bKlyPV8+PBhRsm4IzQ0FEFBQQgODoa+vj4AIDs7G1OmTMHkyZPRo0cPjB49Gi1atEBERATjtNxGO1lIbcrOzkZGRgYAoH379jAwMGCciBBSVdRZg0gLPp+PVatWYfXq1SgqKgLwqT3l7NmzsXz5csbpuMPGxgaOjo6YOnUqCgoKYGRkhEaNGuHly5cICAjAtGnTWEeUWo6Ojti1axdUVVWFZtdUhKt/D2kni5QaPnw4OnfujHnz5gkdX7duHRITE/H3338zSsYtVGWuOVNTU+Tm5tKDxBqi8yg5e/bswfr163H37l0AwA8//IA5c+Zg3LhxjJNxAw2OlAy6piVj27Zt2LVrF12/NbB48WIcOnRIUGABPvXR37BhA4YPH47c3FysW7dOZGcvqbqK5mQQImmzZs0SOXbhwgWhFoCf56sR8r09evQIx44dQ15ensgu54CAAEapuIM6axBpwePxsGjRIsyZMwfZ2dkoLCyEsbGx0Fwb8m1JSUmC78wRERFo0aIFkpOTcejQIfj6+lKRpRJqamqCBXVqamqM03wftJNFSmlqauL8+fMwMzMTOn7r1i30798fz549Y5SMW6jKXHNnzpzBggULsHz5clhaWkJJSUno9c+Ds0nl6DxKRkBAAHx8fDBjxgz06NEDABAXF4c//vgDK1asgJeXF+OE3FFYWPjVwZHk2+ialowmTZrg+vXrQgUCUjWKioq4dOkSrKyshI4nJiaid+/eKCoqwv3792FqaorCwkJGKaXXqVOnEBkZicaNG8PV1VWoB/S///6L4cOH4/z58wwTkvqmb9++SEpKQllZmaAdalZWFmRlZdGuXTvcuXMHPB4PcXFxIq0/CZGkmJgY2NraQk9PD5mZmTA1NcX9+/fB5/PRqVMn+ttICKl3FBUVkZmZibZt22LkyJEwMTHBkiVL8PDhQxgZGQl2CZH6iYosUkpBQQEpKSlCcwYAIDMzExYWFnj//j2jZNzStGlTxMbGwsTEBMHBwdi8ebNQlfnzFnzydZ8HUAHCbZn4fD54PB7KyspYxOIcOo+SoaurCz8/P7i4uAgd3717N5YuXUq9o0mtoWtaMubNmwdlZWXqBV0DQ4cOxdOnTxEcHAwLCwsAQHJyMtzd3dGiRQucOHECx48fx8KFC3Hr1i3GaaXLgQMH4OLigkGDBuHNmze4ceMGgoOD4ezsDAB49uwZWrVqRdczqVWBgYG4fPkyQkJCBAX7N2/eYNKkSejZsyfc3d3h5OSE9+/fIyoqinFaUpd17twZgwcPhp+fn6BdYrNmzeDs7IxBgwbRgkUxUGcNIi0cHBwqbLP95S5JJycnkWeQRJi5uTkmTZoEBwcHmJqa4syZM+jWrRtu3rwpuCcn9Re1C5NSZmZmOHjwIHx9fYWOh4WF0YqlKigqKoKKigoAIDo6Go6OjpCRkUHXrl3x4MEDxum44cKFC6wj1Al0HiUjPz8f3bt3FznevXt35OfnM0hE6iu6pqvvy1Y45eXlCAoKwrlz52Bubi4Y8vwZtSL5th07dmDcuHGwtLQUnL/S0lJYW1tjx44dAABlZWX4+/uzjCmV1q9fj4CAAMycORMAEB4eDldXVxQXF8PNzY1xOlJfrV+/HmfPnhXaEammpoalS5fCxsYGnp6e8PX1pQe05LvLyMhAaGgogE+tZd+/fw9lZWUsW7YMdnZ2VGQRg52dnVBnjc6dO1NnDcKEmpoajhw5AnV1dVhaWgL41PqqoKAANjY2OHjwINauXYuYmBhBxwgiytfXF05OTvDy8oK1tTW6desG4NPzxs+Lnci3PXv2DLNnz0ZMTAyeP3+O/93/wdUFTlRkkVI+Pj5wdHRETk4O+vXrB+DTdt3Q0FCax1IFBgYGOHLkCBwcHBAVFSVoJfT8+XNq5SKm3r17s45QJ9B5lAwDAwOEh4dj4cKFQscPHjwIQ0NDRqlIfUTXdPUlJycL/dyxY0cAwO3bt4WOV7Tajohq0aIFzp49i8zMTGRlZQEAjIyMhFYi9u3bl1U8qXb37l0MGzZM8PPIkSOhqakJW1tblJSUwMHBgWE6Ul+9efMGz58/F1lY9+LFC7x9+xbApzkP/zsfgxBJU1JSEvyetWzZEjk5OTAxMQEAvHz5kmU0zqD5DURatGjRAk5OTtiyZYtgR355eTk8PT2hoqKCsLAwTJ06FfPmzUNcXBzjtNLrl19+Qc+ePZGfn48OHToIjltbW9N9YxVMmDABeXl58PHxQcuWLevM9z4qskipYcOG4ciRI1i1ahUiIiKgoKAAc3NznDt3jh7sVAFVmSXj8uXL2L59O3Jzc/H333+jdevW2Lt3L3R1ddGzZ0/W8TiDzmPN+fn5YdSoUbh06ZJghU18fDxiYmIQHh7OOB2pb+iarp7q7AJ69OgRWrVqJdSmjQhr166doLBSV76ofG+qqqp49uwZdHV1Bcf69u2LEydO4Oeff8ajR48YpiP1lZ2dHVxdXeHv748ff/wRwKcZS7Nnz4a9vT0A4Pr16/jhhx8YpiT1QdeuXREXF4f27dtjyJAh8Pb2xq1btxAZGYmuXbuyjscJ1FmDSIsdO3YgPj5e6F5aRkYGHh4e6N69O1atWoUZM2bgp59+YpiSG1q0aIEWLVoIHevcuTOjNNwUFxeHy5cvCxbb1RX0TVWKDR06FPHx8Xj37h1evnyJ8+fPixRYQkND8e7dO0YJpd8vv/yCvLw83LhxA2fOnBEct7a2FqwoIZU7dOgQBg4cCAUFBSQlJeHDhw8APq2yW7VqFeN03EHnUTKGDx+Oa9euoWnTpjhy5AiOHDmCpk2b4vr167RyhNQquqZrl7GxMe7fv886htTas2cPzMzMoKCgIFiYs3fvXtaxpF7nzp1x+vRpkeO9e/fG8ePHERgYWPuhSL23fft2WFtbY/To0dDW1oa2tjZGjx4Na2trbNu2DcCnompwcDDjpKSuCwgIQJcuXQB8WuhkbW2NgwcPQkdHR9COklTuc2eNhw8fIioqStDmjzprkNpWWlqKzMxMkeOZmZmC1kzy8vK0UKcCjo6Ogp2kjo6Olf5HxKOlpSXSIqwuoMH3HKeqqoqUlBTo6emxjkLqKAsLC3h5ecHFxUUw8FBPTw/JyckYPHgwDfYSE51HQuoWuqZr15fnmAgLCAiAj48PZsyYIdjhFxcXhz/++AMrVqwQtEolomJjY3HlyhUsWLCgwtcvXLiAPXv2ICQkpJaTEQIUFhYiNzcXAKCnpwdlZWXGiQghVRUREQEnJyeUlZXB2toa0dHRAIDVq1fj0qVLFRb6CfkeZs6cidDQUCxcuFBol+SqVavg5OSE33//HcHBwdi1axe1C/sfEydOxKZNm6CiooKJEydW+l66ZxRPdHQ0/P39sX37dujo6LCOIzFUZOE4euggytHREbt27YKqquo3K8mRkZG1lIq7FBUVkZ6eDh0dHaHft9zcXBgbG6O4uJh1RE6g8yg5ZWVlOHLkCDIyMgAAJiYmsLW1haysLONkpD6ha7p20f3O1+nq6sLPzw8uLi5Cx3fv3o2lS5fi3r17jJIRQgipKwoLC1FeXi50jHZiiOfp06eC+Q2fWzVdv34dqqqqaNeuHeN0pL4oKyvDmjVrsGXLFjx79gwA0Lx5c3h4eGDevHmQlZVFXl4eZGRk0KZNG8ZpSV2koaEhtFPq3bt3KC0thaKiIho2bCj03tevX9d2PImgmSykzlFTUxNcuGpqaozTcF+LFi2QnZ0tUl2Oi4ujh11VQOdRMrKzszF06FA8evRIMHtg9erV0NLSwsmTJ6Gvr884Iakv6Jom0iI/Px/du3cXOd69e3fk5+czSMQ9p06dgqysLAYOHCh0PCoqCuXl5Rg8eDCjZIQQws69e/cwY8YMXLx4UWjxCJ/PB4/HE7QYIpWj+Q2EtdLSUhw4cACTJk3CokWLBK2v/rdQ2rZtWxbxSD1RH9rwUpGF1Dlfbs+jrXo15+7uDk9PT+zcuRM8Hg9PnjxBQkICZs+eDR8fH9bxOIPOo2TMnDkTenp6SEhIQOPGjQEAr169wtixYzFz5kycPHmScUJSX9A1TaSFgYEBwsPDsXDhQqHjBw8ehKGhIaNU3DJ//nysWbNG5Difz8f8+fOpyEIIqZfGjh0LPp+PnTt3onnz5jSrQUzUWYNImwYNGmDq1KmCThC0C636nj17htmzZyMmJgbPnz8XmStCxeevGz9+vODfLi4u6NOnD3r37l2nFspSkYUQUqn58+ejvLwc1tbWKCoqQq9evSAnJ4fZs2fDw8ODdTzOoPMoGbGxsbh69aqgwAIATZo0wZo1awSzCAipDXRN1y56sPN1fn5+GDVqFC5duiT4OxgfH4+YmBiEh4czTscNd+/ehbGxscjxdu3aITs7m0EiQghhLzU1FTdv3hTsHifioc4aRBp17twZycnJ0NbWZh2F0yZMmIC8vDz4+PigZcuW9B2lmuTk5LBmzRq4u7ujVatW6N27t6DowuVFYjSTheOoR3nlqMosOR8/fkR2djYKCwthbGxMwzeric5jzTRu3BgnTpwQaY0THx+PYcOGcbZ3J+EuuqZrB93vVO7mzZvYuHGjYIVi+/bt4e3tDQsLC8bJuKFFixY4cOAA+vXrJ3T83LlzcHJywvPnzxklI4QQdvr27YtFixahf//+rKMQQmooPDwcCxYsgJeXFywtLaGkpCT0urm5OaNk3KKiooLLly+jY8eOrKPUCY8fP8alS5cQGxuL2NhYZGVloWXLlnj06BHraNVCO1mkUFlZGeLj42Fubg51dfVK36utrS0yIIj8P6oyS06jRo2goqICFRUVeohYA3Qea+bnn3/G5MmTsWPHDkEv42vXrmHq1KmwtbVlnI7UR3RNV19JSQkUFBSQkpICU1PTSt+bnp6OVq1a1VIy7rG0tMS+fftYx+AsOzs7/Pbbbzh8+LCgZUF2dja8vb3ps4UQUm8FBwdj6tSpePz4MUxNTUWeO9BDWUK4Y/To0QA+td/+jMfj0YylKtLS0hJZvE2qT0NDA02aNIGGhgbU1dXRoEEDaGpqso5VbbSTRUrJy8sjIyMDurq6rKNwGlWZa660tBR+fn7YtGkTCgsLAQDKysrw8PDAkiVLqMgnJjqPklFQUIDx48fj+PHjgnNWUlICOzs7hISEfLMwTYik0DUtGXp6ejh8+DA6dOjAOgqnlZWV4ciRI4KdLCYmJrC1tYWsrCzjZNzw5s0bDBo0CDdu3ECbNm0AAI8ePcJPP/2EyMhI+mwhhNRLV69ehZOTE+7fvy84Rg9lq4Y6axBp8eDBg0pfpzZi4omOjoa/vz+2b98OHR0d1nE4a+HChbh48SKSk5PRvn17QbuwXr16QUNDg3W8aqOdLFLK1NQUubm5VGSpIaoy15yHhwciIyOxbt06dOvWDQCQkJCApUuX4tWrV9i6dSvjhNxA51Ey1NXVcfToUWRnZwu1xTEwMGCcjNQ3dE1LxqJFi7Bw4ULs3btXaNYSEV92djaGDh2KR48eCfrmr169GlpaWjh58mSdGib5vaipqeHKlSs4e/YsUlNToaCgAHNzc/Tq1Yt1NEIIYcbV1RUWFhYIDQ2lwffVRJ01iLSgIkr1aWhoCF277969g76+PhQVFUUW1lH7cvGsWbMGmpqaWLJkCRwdHfHDDz+wjiQRtJNFSp05cwYLFizA8uXLK+yXqKqqyigZt1CVuebU1NQQFhaGwYMHCx0/deoUxowZgzdv3jBKxi10HiVj1qxZFR7n8XiQl5eHgYEB7Ozs6GEt+e7ompYMCwsLZGdno6SkBNra2iL3O0lJSYyScceQIUPA5/Oxf/9+wd++V69eYezYsZCRkcHJkycZJ+SW4uJiyMnJ0YMwQki9p6SkhNTUVFrMVAPUWYNIm/T0dOTl5eHjx49Cx6k96tft3r1b7PeOHz/+OyapO1JTUxEbG4uLFy/i8uXLaNSokWA3S58+fThbdKGdLFJqyJAhAD79ofvySx5tzf02qjJLlpycXIUFKl1dXTRq1Kj2A3EUnUfJSE5ORlJSEsrKygQrtrOysiArK4t27drhzz//hLe3N+Li4mBsbMw4LanL6JqWDHt7e9YROC82NhZXr14VKi43adIEa9asQY8ePRgm447y8nKsXLkS27Ztw7Nnz5CVlQU9PT34+PhAR0cHbm5urCMSQkit69evHxVZaog6axBpkZubCwcHB9y6dUvQ9g+A4NkZPWP8ui8LJy4uLujTpw969+5Nu8X/r707D6u6zv///zggoCirgQvyCREVSCFSa9QQUSOXcQnTTB11TEpHUymbmnJyycyxVHKa72Suo2WUSlOppaYcXGpcAqkMxSUlSUPFjXCDw+8Pf/EZPlghka9z4H67Lq9L3+dY994z70vkeV6v168QGRmpyMjI0jOCMjMzNW/ePI0dO1Y2m81h///IkMVOpaammk5wWElJSaYTqpVx48bphRde0NKlS+Xm5iZJunLlil588UWNGzfOcJ3j4D5WjR9XqSxdurR0Rd/58+c1atQo3XvvvUpISNDgwYOVmJioDRs2GK5FdcYzXTWmTJliOsHhubm56eLFi+WuFxQUMPCroBkzZuhf//qXZs+erYSEhNLrrVq1UlJSEkMWADVS7969lZiYqC+//FKtW7cu94FFPvn+y5KSkvTMM8+wswaMmzBhgpo2barNmzeradOm2rVrl86cOaMnn3xSr7zyiuk8h+Hm5qZZs2YpISFBjRs3Ll19ERMTo+bNm5vOcxglJSXKyMiQ1WqV1WrV9u3bdeHCBUVERCgmJsZ0XqWxXRiqNabMv94DDzygzZs3y83NrfRg4szMTF29elVdu3Yt896UlBQTiQ6B+1g1AgICtGnTpnKrVPbt26e4uDjl5uYqPT1dcXFxOn36tKFK1AQ801Xn3LlzWr16tQ4fPqynnnpKvr6+Sk9PV4MGDRQQEGA6z+4NGzZM6enpWrx4se6++25J0s6dO5WQkKA2bdpo2bJlZgMdQEhIiBYsWKCuXbvKw8NDmZmZCg4O1v79+9W+fXudPXvWdCIA3HJOTk4/+Rq7a/y0G+2sUVRUxM4aMOq2227Tli1bFBERIS8vL+3atUstW7bUli1b9OSTTyojI8N0okPJzc3V1q1blZaWprS0NGVnZ6tRo0Y6fvy46TSH4OPjo4KCAkVGRpYOqqKjo+Xt7W067VdhJYsd27ZtmxYsWKAjR45o1apVCggI0IoVK9S0aVPde++9pvMcAlPmX8/b21v9+/cvcy0wMNBQjePiPlaN8+fPKy8vr9yQ5dSpU7pw4YKk6/f6/+4xC1Q1numq8cUXX6hbt27y8vLS0aNHlZCQIF9fX6WkpCgnJ0fLly83nWj35s+fr+HDh6t9+/al37y5du2a+vbty+reCsrNzb3hdjg2m03Xrl0zUAQA5tlsNtMJDok/e2GPiouL5eHhIen6wOW7775Ty5Ytdfvtt+vAgQOG6xyPj4+P6tevLx8fH3l7e6tWrVry8/MzneUw3nzzTUVHR1e788YZstipNWvW6A9/+IOGDBmi9PR0XblyRdL1bzDOnDlT69evN1zoGBYuXCip7JR5zpw5euyxx5gyV9DSpUtNJ1QL3Meq0bdvX40cOVJz5sxRu3btJEm7d+/WpEmTSs922LVrl8MelAbHwTNdNZ544gmNGDFCs2fPLv2Ln3T9bLrBgwcbLHMc3t7eev/993Xo0CFlZWVJksLCwthD/yaEh4dr27Ztuv3228tcX716taKiogxVAQAcEec3wB61atVKmZmZatq0qe655x7Nnj1brq6ueuONNxQcHGw6z2E8++yzslqtysjIUFhYmGJiYvTMM8+oU6dO8vHxMZ3nMHr16mU64TfBkMVOzZgxQ6+//rqGDRum5OTk0usdO3bUjBkzDJY5JqbMlXfp0iWVlJTI3d1dknTs2DG99957Cg8PV1xcnOE6x8F9rBoLFixQYmKiBg0apKKiIklSrVq1NHz4cM2bN0+SFBoaqkWLFpnMRA3AM101du/erQULFpS7HhAQoJMnTxoocjxPPPFEuWupqamyWCyqXbu2QkJCSs+zwo09//zzGj58uHJzc2Wz2ZSSkqIDBw5o+fLlWrt2rek8ADBm9+7dSk1NVV5eXrmVLXPnzjVU5TjYWQP2YvLkyfrhhx8kSdOnT9fvf/97RUdHq379+nrnnXcM1zmOWbNmyc/PT1OmTFF8fDwf7kQZnMlip9zd3fX1118rKCiozN7QR44cUXh4uC5fvmw60SHcaMrcuXNnpsw3IS4uTvHx8Ro9erTOnTunli1bytXVVadPn9bcuXM1ZswY04kOgftYtQoKCnTkyBFJUnBwsOrVq2e4CDUNz3TV8Pf314YNGxQVFVXm651NmzZp5MiR+vbbb00n2r3Y2Filp6eruLhYLVu2lCRlZ2fL2dlZoaGhOnDggCwWi7Zv315uq0X8r23btmn69OnKzMxUQUGB7rrrLj3//PMMTQHUWDNnztTkyZPVsmVLNWjQoMw5IxaLRVu2bDFY51g4vwH2KD8/v9wZQvh5mZmZSktLk9Vq1bZt2+Tq6lr6fcbOnTszdKnhfvokMxjVsGFDHTp0qNz17du3s5TvJsyaNUuHDx/WlClTlJycrHnz5qlv374MWG5Cenq6oqOjJV3fNqNhw4Y6duyYli9frvnz5xuucxzcx6pVr149RUREKCIiggELjOCZrhp9+vTR9OnTS8+9sFgsysnJ0dNPP13uzBvcWN++fdWtWzd99913+vzzz/X555/r+PHjuu+++/Twww8rNzdXnTp1UmJioulUuxYdHa1NmzYpLy9PhYWF2r59OwMWADXaq6++qiVLligrK0tWq1WpqamlPxiw3Bx21oA98vX1ZcBykyIjIzV+/HilpKTo1KlTWr9+vVxdXTV27FiFhYWZzoNhbBdmpxISEjRhwgQtWbJEFotF3333nT777DNNmjRJf/3rX03nOYyMjIzSKfOcOXOYMldCYWFh6T75GzduVHx8vJycnPS73/1Ox44dM1znOLiPQPXCM1015syZowcffFD+/v66dOmSYmJidPLkSbVv314vvvii6TyH8PLLL2vTpk1lDo708vLS1KlTFRcXpwkTJrAi4xeMGjVKQ4cOVefOnU2nAIDdcHJyUseOHU1nODTOb4BJ8fHxFX5vSkrKb1hSfZSUlCgjI0NWq1VWq1Xbt2/XhQsXFBERoZiYGNN5MIwhi5165plnZLPZ1LVrVxUWFqpTp05yc3PTpEmT9Pjjj5vOcxiRkZGlk2bp+tK+efPmaezYsbLZbCouLjZcaP9CQkL073//Ww888IA2bNhQ+knYvLy8Mt/Qwc/jPgLVC8901fDy8tKmTZu0fft2ffHFF6XbNHXr1s10msM4f/688vLyym0FdurUKV24cEGS5O3tratXr5rIcwinTp1S9+7d5efnp0GDBmnIkCG68847TWcBgFGJiYn6xz/+oaSkJNMpDovzG2CSl5eX6YRqx9fXVwUFBYqMjFRMTIwSEhIUHR0tb29v02mwA5zJYueuXr2qQ4cOqaCgQOHh4WyLc5N+acr840HZ+GmrV6/W4MGDVVxcrK5du2rjxo2SpJdeeklbt27VRx99ZLjQMXAfgeqFZxr2YsiQIfrss880Z84ctWvXTtL1g4onTZqkDh06aMWKFUpOTtYrr7yiPXv2GK61X2fPntWqVau0cuVKbdu2TaGhoRoyZIgGDx6soKAg03kAcMvZbDb16tVL2dnZCg8Pl4uLS5nX+eT7L+P8BjiaHTt2qG3btnJzczOdYpfWrVun6OhoPlSHG2LI4gB+PPQ1MDDQcInj8fHxKTNl7ty5M1PmSjh58qROnDihyMhIOTldP8pp165d8vT0VGhoqOE6x8F9BKoXnumqsXv3bqWmpiovL082m63Ma3PnzjVU5TgKCgqUmJio5cuXq6ioSJJUq1YtDR8+XPPmzVPdunW1d+9eSWJ1RgUdP35cb7/9tpYsWaKDBw+W3lcAqEnGjRunRYsWKTY2ttzB95K0dOlSQ2WO68edNd566y121oBd8vT01N69ezkLGqgEhix2qqioSNOmTdP8+fNVUFAg6fpBz48//rimTJlS7lMkuDGmzAAA2K+ZM2dq8uTJatmyZblv4FgsFg7WvQkFBQU6cuSIJCk4OJjVz5V07do1rVu3Tm+++abWrVsnX19f5ebmms4CgFvOw8NDycnJ6tWrl+kUh8XOGnA0Hh4eyszMZMgCVAJnstipxx9/XCkpKZo9e7bat28vSfrss880depUnTlzRv/85z8NFzoGviCsnPj4eC1btkyenp6/eFgay8R/GvcRqF54pqveq6++qiVLlmjEiBGmUxxevXr1FBERYTrDYaWmpmrlypVas2aNbDab4uPjtXbtWnXp0sV0GgAY4evrq2bNmpnOcGic3wAANQdDFju1cuVKJScnq0ePHqXXIiIiFBgYqIcffpghC35TXl5epZ8m5rC0yuM+AtULz3TVc3JyUseOHU1noIYLCAhQfn6+unfvrjfeeEO9e/dmL3IANd7UqVM1ZcoULV26VO7u7qZzHNKbb77JzhoAUEOwXZid8vf3V1pamsLCwspcz8rKUqdOnXTq1ClDZQAAAFVj9uzZ+u6775SUlGQ6BTXYwoULNWDAAD5ZDAD/JSoqSocPH1ZJSYmCgoLKbVmenp5uqAzAb4XtwoDKYyWLnRo3bpxeeOEFLV26tPSTdFeuXNGLL76ocePGGa4DAAD49SZNmqRevXqpWbNmCg8PL/cNHLZdw62QkJBgOgEA7E6/fv1MJwC4xf77fEQAN4chi53KyMjQ5s2b1aRJE0VGRkqSMjMzdfXqVXXt2rXMXvB8AwK/pe+//16TJk3S5s2blZeXp/+7+K24uNhQmWPhPgLVC8901Rg/frxSU1MVGxur+vXr8xc73HKZmZn68MMP5evrq4EDB+q2224rfe3ChQuaOHGilixZYrAQAMyYMmWK6QQAtxibHQGVx3ZhduqPf/xjhd+7dOnS37AENV2PHj2Uk5OjcePGqVGjRuW+Ada3b19DZY6F+whULzzTVcPDw0PJycnq1auX6RTUQBs3blTv3r3VvHlzXbx4UT/88INWrVql2NhYSdeHqY0bN2ZoCqBG+/zzz5WVlSVJuuOOOxQVFWW4CAAA+8OQBcDP8vDw0LZt23TnnXeaTnFo3EegeuGZrhq33367NmzYoNDQUNMpqIE6dOig2NhYvfjiiyopKdHLL7+sF154QatWrVL37t0ZsgCo0fLy8jRo0CBZrdbSM6vOnTun2NhYJScny8/Pz2wggApZv369UlJS5Ovrq5EjR5b5uvvs2bPq37+/tmzZYrAQqB6cTAfgxi5duqTCwsLSXx87dkxJSUnauHGjwSrURIGBgSwZrQLcR6B64ZmuGlOnTtWUKVPKfM0D3Cr79u3TyJEjJV3fg/zPf/6zFixYoAcffFBr1641XAcAZj3++OO6ePGi9u3bp/z8fOXn5+urr77ShQsXNH78eNN5ACpg5cqV6tOnj06ePKnPPvtMUVFReuutt0pfv3r1qtLS0gwWAtUHK1nsVFxcnOLj4zV69GidO3dOLVu2lKurq06fPq25c+dqzJgxphNRQ2zcuFFz5szRggULFBQUZDrHYXEfgeqFZ7pqREVF6fDhwyopKVFQUFC5g+/T09MNlaEm8Pf310cffaQ2bdqUuZ6cnKxHHnlEc+bM0dixY1nJAqBG8vLy0ieffKJ27dqVub5r1y7FxcXp3LlzZsIAVFhUVJT++Mc/lg5G3333XY0cOVKvvvqqHnnkEVbtAlWIg+/tVHp6uubNmydJWr16tRo2bKiMjAytWbNGzz//PEMW/KZ8fHzKnC/www8/qFmzZnJ3dy/3DbD8/PxbnecwuI9A9cIzXfX69etnOgE12J133qnU1NRyQ5ZBgwappKREw4cPN1QGAObZbLZyX99IkouLi2w2m4EiADfr4MGD6t27d+mvBw4cKD8/P/Xp00fXrl3TAw88YLAOqF4YstipwsJCeXh4SLr+adn4+Hg5OTnpd7/7nY4dO2a4DtVdUlKS6YRqgfsIVC8801WrqKhIFotFI0eOVJMmTUznoAYaM2aMtm7desPXHn74YZWUlGjhwoW3uAoA7EOXLl00YcIEvf3222rcuLEkKTc3V4mJieratavhOgAV4enpqe+//15NmzYtvRYbG6u1a9fq97//vY4fP26wDqhe2C7MTkVERGjUqFF64IEH1KpVK3388cdq3769Pv/8c/Xq1UsnT540nYgaYtiwYercubNiYmLUrFkz0zkOi/sIVC8801XDw8NDX375JVuuAQBgZ7799lv16dNH+/btU2BgYOm1Vq1a6YMPPuADEoAD6NevnyIjIzVt2rRyr1mtVv3+97/XpUuX2C4MqAIcfG+nnn/+eU2aNElBQUG655571L59e0nXV7VERUUZrkNN4ubmplmzZqlFixYKDAzU0KFDtWjRIh08eNB0mkPhPgLVC8901ejSpQuHbcK4UaNGyWq1ms4AALsSGBio9PR0rVu3ThMnTtTEiRO1fv16paenM2ABHERiYqJq1659w9c6d+6sDz/8UMOGDbvFVUD1xEoWO3by5EmdOHFCkZGRcnK6Pg/btWuXPD09FRoaargONU1ubq62bt2qtLQ0paWlKTs7W40aNWJ56U3iPgLVC8/0r/P6669r2rRpGjJkiNq0aaO6deuWeb1Pnz6GylCT9O3bVxs2bJCfn58GDRqkoUOHKjIy0nQWAAAAAAfBmSx2rGHDhmrYsGGZa3fffbehGtR0Pj4+ql+/vnx8fOTt7a1atWrJz8/PdJbD4T4C1QvP9K/zpz/9SZI0d+7ccq9ZLBa2LsAt8f777+vs2bNatWqVVq5cqblz5yo0NFRDhgzR4MGD2c4OQI00fvx4hYSEaPz48WWuv/baazp06BBn1QEOZP369XJ2dtb9999f5vqGDRtks9nUo0cPQ2VA9cFKFjsSHx+vZcuWydPTU/Hx8T/73pSUlFtUhZru2WefldVqVUZGhsLCwhQTE6POnTurU6dO8vHxMZ3nMLiPQPXCMw1UX8ePH9fbb7+tJUuW6ODBgyoqKjKdBAC3XEBAgD744AO1adOmzPX09HT16dOHVbuAA4mIiNCsWbPUs2fPMtc//vhjPf3008rMzDRUBlQfrGSxI15eXrJYLKU/B+zBrFmz5OfnpylTpig+Pl4tWrQwneSQuI9A9cIzDVRP165d0549e7Rz504dPXpUDRo0MJ0EAEacOXPmht+X8PT01OnTpw0UAaisgwcPKjw8vNz10NBQHTp0yEARUP0wZLEjS5cuveHPAZMyMjKUlpYmq9WqOXPmyNXVtfQT2507d+YbixXEfQSqF57pqpOWlqZXXnlFWVlZkqTw8HA99dRTio6ONlyGmiQ1NVUrV67UmjVrZLPZFB8fr7Vr16pLly6m0wDAiJCQEH388ccaN25cmesfffSRgoODDVUBqAwvLy8dOXKk3Baohw4dKncmIoDKYbswADclMzNT8+bN01tvvSWbzcZ++ZXEfQSqF57pynnzzTf1xz/+UfHx8erYsaMkaceOHXrvvfe0bNkyDR482HAhaoKAgADl5+ere/fuGjJkiHr37i03NzfTWQBg1JIlSzRu3Dg99dRTpQPnzZs3a86cOUpKSlJCQoLhQgAV9dhjj+mzzz7Te++9p2bNmkm6PmDp37+/2rVrp0WLFhkuBBwfQxY79f3332vSpEnavHmz8vLy9H//Z+KbN7hVSkpKlJGRIavVKqvVqu3bt+vChQuKiIhQTEyM5s2bZzrRIXAfgeqFZ7pqhIWF6dFHH1ViYmKZ63PnztXChQtLV7cAv6WFCxdqwIAB8vb2Np0CAHbln//8p1588UV99913kqSgoCBNnTpVw4YNM1wG4GacP39e3bt31549e9SkSRNJ18+gi46OVkpKCl8DAVWAIYud6tGjh3JycjRu3Dg1atSo9KyWH/Xt29dQGWoaHx8fFRQUKDIysnQrnOjoaP4QvkncR6B64ZmuGm5ubtq3b59CQkLKXD906JBatWqly5cvGyoDAAA/OnXqlOrUqaN69eqVe23Hjh1q27YtKwABO1dSUqJNmzYpMzNTderUUUREhDp16mQ6C6g2GLLYKQ8PD23btk133nmn6RTUcOvWrVN0dLQ8PT1Npzg07iNQvfBMV42QkBA99dRTeuyxx8pcf/311zVnzhwdPHjQUBlqmj179ujdd99VTk6Orl69Wua1lJQUQ1UAYP88PT21d+9ezmkBHMTly5fl5uZW7sPcAH4dJ9MBuLHAwMByW4QBJvTq1YtvIlYB7iNQvfBMV40nn3xS48eP15gxY7RixQqtWLFCo0eP1sSJEzVp0iTTeaghkpOT1aFDB2VlZem9997TtWvXtG/fPm3ZskVeXl6m8wDArvF9C8D+2Ww2vfDCCwoICFC9evX0zTffSJL++te/avHixYbrgOqBIYudSkpK0jPPPKOjR4+aTgEAAPhNjBkzRsnJyfryyy81ceJETZw4UV999ZXeeeedcqtbgN/KzJkzNW/ePH344YdydXXVq6++qv3792vgwIH6n//5H9N5AAAAv8qMGTO0bNkyzZ49W66urqXXW7VqxaH3QBVhuzA74uPjU2a53g8//KCioiK5u7vLxcWlzHvz8/NvdR4AAMCvNn/+fD366KOqXbu2cnJyFBgYyHYFMKpu3brat2+fgoKCVL9+fVmtVrVu3VpZWVnq0qWLTpw4YToRAOyWh4eHMjMz2S4MsGMhISFasGCBunbtWuaZ3b9/v9q3b6+zZ8+aTgQcXi3TAfhfSUlJphMAAAB+U0888YQGDRqk2rVrq2nTpjpx4oT8/f1NZ6EG8/Hx0cWLFyVJAQEB+uqrr9S6dWudO3dOhYWFhusAAAB+ndzcXIWEhJS7brPZdO3aNQNFQPXDkMWODB8+vPTnw4YNU+fOnRUTE6NmzZoZrAIAAKg6jRs31po1a9SzZ0+VlJTo+PHjunz58g3fy1ZNuBU6deqkTZs2qXXr1howYIAmTJigLVu2aNOmTeratavpPACwa6xGBexfeHi4tm3bpttvv73M9dWrVysqKspQFVC9MGSxU25ubpo1a5YSEhLUuHFjxcTElA5dmjdvbjoPAACgUiZPnqzHH39c48aNk8ViUbt27cq9p6SkRBaLRcXFxQYKUdO89tprpYO+5557Ti4uLvr000/Vv39/TZ482XAdANg3dqAH7N/zzz+v4cOHKzc3VzabTSkpKTpw4ICWL1+utWvXms4DqgXOZLFzubm52rp1q9LS0pSWlqbs7Gw1atRIx48fN50GAABQKRcvXtSxY8cUERGhTz75RPXr17/h+yIjI29xGWqiYcOGKTY2Vp06dWIFOQD8l6KiIlmtVh0+fFiDBw+Wh4eHvvvuO3l6eqpevXqm8wDchG3btmn69OnKzMxUQUGB7rrrLj3//POKi4sznQZUC6xksXM+Pj6qX7++fHx85O3trVq1asnPz890FgAAQKV5eHioVatWWrp0qTp27Cg3NzfTSajBXF1d9dJLL+mRRx5RQEAAK8gBQNKxY8fUvXt35eTk6MqVK7rvvvvk4eGhv/3tb7py5Ypef/1104kAbkJ0dLQ2bdpkOgOotljJYqeeCPYprAAAIRlJREFUffZZWa1WZWRkKCwsrPQve506dZKPj4/pPAAAgCpz9epV5eXlyWazlbnOmSy4lVhBDgD/q1+/fvLw8NDixYtVv359ZWZmKjg4WFarVQkJCTp48KDpRAAVNGrUKA0dOlSdO3c2nQJUW6xksVOzZs2Sn5+fpkyZovj4eLVo0cJ0EgAAQJU6ePCgRo4cqU8//bTMdc5kgQmsIAeA/7Vt2zZ9+umncnV1LXM9KChIubm5hqoAVMapU6fUvXt3+fn5adCgQRoyZIjuvPNO01lAtcKQxU5lZGQoLS1NVqtVc+bMkaura+lqls6dOzN0AQAADm/EiBGqVauW1q5dq0aNGslisZhOQg10oxXkzzzzDCvIAdRoNpvthh92OH78uDw8PAwUAais999/X2fPntWqVau0cuVKzZ07V6GhoRoyZIgGDx6soKAg04mAw2O7MAeRmZmpefPm6a233vrJL3YAAAAcSd26dfX5558rNDTUdApqMCcnJ/n5+SkxMZEV5ADw/3vooYfk5eWlN954Qx4eHvriiy/k5+envn376n/+53+0dOlS04kAKun48eN6++23tWTJEh08eFBFRUWmkwCHx0oWO1VSUqKMjAxZrVZZrVZt375dFy5cUEREhGJiYkznAQAA/Grh4eE6ffq06QzUcKwgB4Dy5syZo/vvv1/h4eG6fPmyBg8erIMHD+q2227T22+/bToPQCVdu3ZNe/bs0c6dO3X06FE1aNDAdBJQLbCSxU75+PiooKBAkZGRpX/Ji46Olre3t+k0AACAKrFlyxZNnjxZM2fOVOvWreXi4lLmdU9PT0NlqMlYQQ4A1xUVFSk5OVlffPGFCgoKdNddd2nIkCGqU6eO6TQANyk1NVUrV67UmjVrZLPZFB8fryFDhqhLly5s2QtUAYYsdmrdunWKjo7mmwsAAKDacnJykqRyf7Hj4HvcSr+0gnzevHmmEwEAACotICBA+fn56t69u4YMGaLevXvLzc3NdBZQrTBkAQAAgBFpaWk/+zpbpOJWYAU5AFz3wQcfVPi9ffr0+Q1LAFSlhQsXasCAAXxtA/yGGLIAAAAAqLFYQQ4A1/24wvSXsNoUAICyGLIAAADAmHPnzmnx4sXKysqSJN1xxx0aOXKkvLy8DJcBAAAAji0zM1MffvihfH19NXDgQN12222lr124cEETJ07UkiVLDBYC1QNDFgAAABixZ88e3X///apTp47uvvtuSdLu3bt16dIlbdy4UXfddZfhQgAAAMAxbdy4Ub1791bz5s118eJF/fDDD1q1apViY2MlSd9//70aN27MyjSgCjBkAQAAgBHR0dEKCQnRwoULVatWLUlSUVGRRo0apSNHjmjr1q2GCwEAqJnmz59/w+sWi0W1a9dWSEiIOnXqJGdn51tcBqCiOnTooNjYWL344osqKSnRyy+/rBdeeEGrVq1S9+7dGbIAVYghCwAAAIyoU6eOMjIyFBoaWub6119/rbZt26qwsNBQGQAANVvTpk116tQpFRYWysfHR5J09uxZubu7q169esrLy1NwcLBSU1MVGBhouBbAjXh5eSk9PV3NmjUrvbZy5Uo9+uijSk5OVrt27RiyAFWkYqeaAQAAAFXM09NTOTk55a5/++238vDwMFAEAAAkaebMmWrXrp0OHjyoM2fO6MyZM8rOztY999yjV199VTk5OWrYsKESExNNpwL4CW5ubjp37lyZa4MHD9aiRYv00EMP6b333jMTBlRDrGQBAACAEePHj9d7772nV155RR06dJAk7dixQ0899ZT69++vpKQks4EAANRQzZo105o1a3TnnXeWuZ6RkaH+/fvryJEj+vTTT9W/f3+dOHHCTCSAnxUXF6e4uDhNmjSp3Gtvv/22hg8fruLiYlayAFWglukAAAAA1EyvvPKKLBaLhg0bpqKiIkmSi4uLxowZo1mzZhmuAwCg5jpx4kTpn83/raioSCdPnpQkNW7cWBcvXrzVaQAqaMyYMT95xuHDDz+skpISLVy48BZXAdUTK1kAAABgVGFhoQ4fPizp+idn3d3dDRcBAFCz9erVSydPntSiRYsUFRUl6foqloSEBDVs2FBr167Vhx9+qGeffVZffvml4VoAAMziTBYAAAAYcf78eeXn58vd3V2tW7dW69at5e7urvz8fF24cMF0HgAANdbixYvl6+urNm3ayM3NTW5ubmrbtq18fX21ePFiSVK9evU0Z84cw6UAfsmoUaNktVpNZwDVGitZAAAAYESPHj3Uu3dv/elPfypz/fXXX9cHH3yg9evXGyoDAACStH//fmVnZ0uSWrZsqZYtWxouAnCz+vbtqw0bNsjPz0+DBg3S0KFDFRkZaToLqFYYsgAAAMAIX19f7dixQ2FhYWWu79+/Xx07dtSZM2cMlQEAgB/9+G0ji8ViuARAZZ09e1arVq3SypUrtW3bNoWGhmrIkCEaPHiwgoKCTOcBDo/twgAAAGDElStXbnio7rVr13Tp0iUDRQAA4EfLly9X69atVadOHdWpU0cRERFasWKF6SwAleDj46NHH31UVqtVx44d04gRI7RixQqFhISYTgOqBYYsAAAAMOLuu+/WG2+8Ue7666+/rjZt2hgoAgAAkjR37lyNGTNGPXv21Lvvvqt3331X3bt31+jRozVv3jzTeQAq6dq1a9qzZ4927typo0ePqkGDBqaTgGqB7cIAAABgxI4dO9StWze1a9dOXbt2lSRt3rxZu3fv1saNGxUdHW24EACAmqlp06aaNm2ahg0bVub6v/71L02dOlXffPONoTIAlZGamqqVK1dqzZo1stlsio+P15AhQ9SlSxe2AgSqAEMWAAAAGLN37169/PLL2rt3b+lWJH/5y1/UvHlz02kAANRYtWvX1ldffVVuK6GDBw+qdevWunz5sqEyADcrICBA+fn56t69u4YMGaLevXvLzc3NdBZQrTBkAQAAAAAAQKlWrVpp8ODBevbZZ8tcnzFjht555x19+eWXhsoA3KyFCxdqwIAB8vb2Np0CVFsMWQAAAGCEs7OzTpw4IX9//zLXz5w5I39/fxUXFxsqAwCgZluzZo0eeughdevWTR07dpR0fZvPzZs3691339UDDzxguBAAAPtRy3QAAAAAaqaf+qzPlStX5OrqeotrAADAj/r376+dO3dq3rx5+ve//y1JCgsL065duxQVFWU2DsBN27Nnj959913l5OTo6tWrZV5LSUkxVAVUHwxZAAAAcEvNnz9fkmSxWLRo0SLVq1ev9LXi4mJt3bpVoaGhpvIAAICkNm3a6M033zSdAeBXSk5O1rBhw3T//fdr48aNiouLU3Z2tr7//ntWpQFVhO3CAAAAcEs1bdpUknTs2DE1adJEzs7Opa+5uroqKChI06dP1z333GMqEQCAGq+4uFj//ve/lZWVJUm644471KdPnzJ/bgOwfxEREXrsscc0duxYeXh4KDMzU02bNtVjjz2mRo0aadq0aaYTAYfHkAUAAABGxMbGKiUlRT4+PqZTAADAfzl06JB69eql48ePq2XLlpKkAwcOKDAwUOvWrVOzZs0MFwKoqLp162rfvn0KCgpS/fr1ZbVa1bp1a2VlZalLly46ceKE6UTA4TmZDgAAAEDNlJqaWmbAUlxcrL179+rs2bMGqwAAwPjx4xUcHKxvv/1W6enpSk9PV05Ojpo2barx48ebzgNwE3x8fHTx4kVJUkBAgL766itJ0rlz51RYWGgyDag2GLIAAADAiIkTJ2rx4sWSrg9YOnXqpLvuukuBgYGyWq1m4wAAqMHS0tI0e/Zs+fr6ll6rX7++Zs2apbS0NINlAG5Wp06dtGnTJknSgAEDNGHCBCUkJOjhhx9W165dDdcB1QMH3wMAAMCIVatWaejQoZKkDz/8UEePHtX+/fu1YsUKPffcc9qxY4fhQgAAaiY3N7fST77/t4KCArm6uhooAlBZr732mi5fvixJeu655+Ti4qJPP/1U/fv31+TJkw3XAdUDZ7IAAADAiNq1a+vQoUNq0qSJHn30Ubm7uyspKUnffPONIiMjdeHCBdOJAADUSMOGDVN6eroWL16su+++W5K0c+dOJSQkqE2bNlq2bJnZQAAVNmzYMMXGxqpTp06cpwT8RtguDAAAAEY0aNBAX3/9tYqLi/Xxxx/rvvvukyQVFhbK2dnZcB0AADXX/Pnz1axZM7Vv3161a9dW7dq11aFDB4WEhCgpKcl0HoCb4OrqqpdeeknNmzdXYGCghg4dqkWLFungwYOm04Bqg5UsAAAAMGLq1KlKSkpSo0aNVFhYqOzsbLm5uWnJkiVauHChPvvsM9OJAADUaIcOHVJWVpYkKSwsTCEhIYaLAFRWbm6utm7dqrS0NKWlpSk7O1uNGjXS8ePHTacBDo8zWQAAAGDE1KlT1apVK3377bcaMGCA3NzcJEnOzs565plnDNcBAFBzPfHEE+WupaamymKxqHbt2goJCVHfvn3l6+troA5AZfj4+Kh+/fry8fGRt7e3atWqJT8/P9NZQLXAShYAAAAAAACUio2NVXp6uoqLi9WyZUtJUnZ2tpydnRUaGqoDBw7IYrFo+/btCg8PN1wL4Oc8++yzslqtysjIUFhYmGJiYtS5c2d16tRJPj4+pvOAaoEhCwAAAIz54YcflJaWppycHF29erXMa+PHjzdUBQBAzZaUlKRt27Zp6dKl8vT0lCSdP39eo0aN0r333quEhAQNHjxYly5d0oYNGwzXAvg5Tk5O8vPzU2JiouLj49WiRQvTSUC1w5AFAAAARmRkZKhnz54qLCzUDz/8IF9fX50+fVru7u7y9/fXkSNHTCcCAFAjBQQEaNOmTeVWqezbt09xcXHKzc1Venq64uLidPr0aUOVACoiMzNTaWlpslqt2rZtm1xdXUtXs3Tu3JmhC1AFnEwHAAAAoGZKTExU7969dfbsWdWpU0f/+c9/dOzYMbVp00avvPKK6TwAAGqs8+fPKy8vr9z1U6dO6cKFC5Ikb2/vcqtQAdifyMhIjR8/XikpKTp16pTWr18vV1dXjR07VmFhYabzgGqBg+8BAABgxN69e7VgwQI5OTnJ2dlZV65cUXBwsGbPnq3hw4crPj7edCIAADVS3759NXLkSM2ZM0ft2rWTJO3evVuTJk1Sv379JEm7du3iE/CAAygpKVFGRoasVqusVqu2b9+uCxcuKCIiQjExMabzgGqBIQsAAACMcHFxkZPT9YXV/v7+ysnJUVhYmLy8vPTtt98argMAoOZasGCBEhMTNWjQIBUVFUmSatWqpeHDh2vevHmSpNDQUC1atMhkJoAK8PX1VUFBgSIjIxUTE6OEhARFR0fL29vbdBpQbXAmCwAAAIyIi4vTiBEjNHjwYCUkJOiLL77Q+PHjtWLFCp09e1Y7d+40nQgAQI1WUFBQekZacHCw6tWrZ7gIwM1at26doqOj5enpaToFqLYYsgAAAMCIPXv26OLFi4qNjVVeXp6GDRumTz/9VM2bN9eSJUsUGRlpOhEAAAAAgJ/FkAUAAAC3zAcffKAePXrIxcXFdAoAAAAAAL8aQxYAAADcMs7Ozjp58qT8/Pzk7OysEydOyN/f33QWAAAAAACV4mQ6AAAAADWHn5+f/vOf/0iSSkpKZLFYDBcBAAAAAFB5tUwHAAAAoOYYPXq0+vbtK4vFIovFooYNG/7ke4uLi29hGQAAAAAAN4/twgAAAHBL7d+/X4cOHVKfPn20dOlSeXt73/B9ffv2vbVhAAAAAADcJIYsAAAAMGLatGl66qmn5O7u/rPv27Fjh9q2bSs3N7dbVAYAAAAAQMUwZAEAAIBd8/T01N69exUcHGw6BQAAAACAMjj4HgAAAHaNzwQBAAAAAOwVQxYAAAAAAAAAAIBKYMgCAAAAAAAAAABQCQxZAAAAAAAAAAAAKoEhCwAAAOyaxWIxnQAAAAAAwA0xZAEAAIBd4+B7AAAAAIC9spTwt1YAAAAAAAAAAICbVst0AAAAAGqOqKioCm//lZ6e/hvXAAAAAADw6zBkAQAAwC3Tr18/0wkAAAAAAFQZtgsDAAAAAAAAAACoBFayAAAAwKg9e/YoKytLkhQeHq42bdoYLgIAAAAAoGIYsgAAAMCI48eP6+GHH9aOHTvk7e0tSTp37pw6dOig5ORkNWnSxGwgAAAAAAC/wMl0AAAAAGqmUaNG6dq1a8rKylJ+fr7y8/OVlZUlm82mUaNGmc4DAAAAAOAXcSYLAAAAjKhTp44+/fRTRUVFlbn++eefKzo6WoWFhYbKAAAAAACoGFayAAAAwIjAwEBdu3at3PXi4mI1btzYQBEAAAAAADeHIQsAAACMePnll/X4449rz549pdf27NmjCRMm6JVXXjFYBgAAAABAxbBdGAAAAIzw8fFRYWGhioqKVKtWLUkq/XndunXLvDc/P99EIgAAAAAAP6uW6QAAAADUTElJSaYTAAAAAAD4VVjJAgAAALs2a9YsjR49Wt7e3qZTAAAAAAAogyELAAAA7Jqnp6f27t2r4OBg0ykAAAAAAJTBwfcAAACwa3wmCAAAAABgrxiyAAAAAAAAAAAAVAJDFgAAAAAAAAAAgEpgyAIAAAAAAAAAAFAJDFkAAAAAAAAAAAAqgSELAAAA7Fp0dLTq1KljOgMAAAAAgHIsJSUlJaYjAAAAUPM4OzvrxIkT8vf3L3P9zJkz8vf3V3FxsaEyAAAAAAAqhpUsAAAAMOKnPutz5coVubq63uIaAAAAAABuXi3TAQAAAKhZ5s+fL0myWCxatGiR6tWrV/pacXGxtm7dqtDQUFN5AAAAAABUGNuFAQAA4JZq2rSpJOnYsWNq0qSJnJ2dS19zdXVVUFCQpk+frnvuucdUIgAAAAAAFcKQBQAAAEbExsYqJSVFPj4+plMAAAAAAKgUzmQBAACAEbGxsXJzcyt3/dKlS5o+fbqBIgAAAAAAbg4rWQAAAGCEs7OzTpw4IX9//zLXz5w5I39/fxUXFxsqAwAAAACgYljJAgAAACNKSkpksVjKXc/MzJSvr6+BIgAAAAAAbk4t0wEAAACoWXx8fGSxWGSxWNSiRYsyg5bi4mIVFBRo9OjRBgsBAAAAAKgYtgsDAADALfWvf/1LJSUlGjlypJKSkuTl5VX6mqurq4KCgtS+fXuDhQAAAAAAVAxDFgAAABiRlpamjh07qlYtFlcDAAAAABwTZ7IAAADACA8PD2VlZZX++v3331e/fv307LPP6urVqwbLAAAAAACoGIYsAAAAMOKxxx5Tdna2JOnIkSN66KGH5O7urlWrVunPf/6z4ToAAAAAAH4ZQxYAAAAYkZ2drTvvvFOStGrVKsXExGjlypVatmyZ1qxZYzYOAAAAAIAKYMgCAAAAI0pKSmSz2SRJn3zyiXr27ClJCgwM1OnTp02mAQAAAABQIQxZAAAAYETbtm01Y8YMrVixQmlpaerVq5ck6ZtvvlGDBg0M1wEAAAAA8MsYsgAAAMCIpKQkpaena9y4cXruuecUEhIiSVq9erU6dOhguA4AAAAAgF9mKSkpKTEdAQAAAPzo8uXLcnZ2louLiyTp7bffVp8+fVS3bl3DZQAAAAAAlMWQBQAAAHbN09NTe/fuVXBwsOkUAAAAAADKYLswAAAA2DU+EwQAAAAAsFcMWQAAAAAAAAAAACqBIQsAAAAAAAAAAEAlMGQBAAAAAAAAAACoBIYsAAAAAAAAAAAAlcCQBQAAAHbt9ttvl4uLi+kMAAAAAADKsZSUlJSYjgAAAEDN9fnnnysrK0uSFB4errvuustwEQAAAAAAFVPLdAAAAABqpry8PA0aNEhWq1Xe3t6SpHPnzik2NlbJycny8/MzGwgAAAAAwC9guzAAAAAY8fjjj+vixYvat2+f8vPzlZ+fr6+++koXLlzQ+PHjTecBAAAAAPCL2C4MAAAARnh5eemTTz5Ru3btylzftWuX4uLidO7cOTNhAAAAAABUECtZAAAAYITNZrvhgfYuLi6y2WwGigAAAAAAuDkMWQAAAGBEly5dNGHCBH333Xel13Jzc5WYmKiuXbsaLAMAAAAAoGLYLgwAAABGfPvtt+rTp4/27dunwMDA0mutWrXSBx98oCZNmhguBAAAAADg5zFkAQAAgDElJSX65JNPtH//fklSWFiYunXrZrgKAAAAAICKYcgCAAAAAAAAAABQCbVMBwAAAKDm2r17t1JTU5WXl1fusPu5c+caqgIAAAAAoGIYsgAAAMCImTNnavLkyWrZsqUaNGggi8VS+tp//xwAAAAAAHvFdmEAAAAwokGDBvrb3/6mESNGmE4BAAAAAKBSnEwHAAAAoGZycnJSx44dTWcAAAAAAFBpDFkAAABgRGJiov7xj3+YzgAAAAAAoNLYLgwAAABG2Gw29erVS9nZ2QoPD5eLi0uZ11NSUgyVAQAAAABQMRx8DwAAACPGjx+v1NRUxcbGqn79+hx2DwAAAABwOKxkAQAAgBEeHh5KTk5Wr169TKcAAAAAAFApnMkCAAAAI3x9fdWsWTPTGQAAAAAAVBpDFgAAABgxdepUTZkyRYWFhaZTAAAAAACoFLYLAwAAgBFRUVE6fPiwSkpKFBQUVO7g+/T0dENlAAAAAABUDAffAwAAwIh+/fqZTgAAAAAA4FdhJQsAAAAAAAAAAEAlcCYLAAAAjDl37pwWLVqkv/zlL8rPz5d0fZuw3Nxcw2UAAAAAAPwyVrIAAADAiC+++ELdunWTl5eXjh49qgMHDig4OFiTJ09WTk6Oli9fbjoRAAAAAICfxUoWAAAAGPHEE09oxIgROnjwoGrXrl16vWfPntq6davBMgAAAAAAKoYhCwAAAIzYvXu3HnvssXLXAwICdPLkSQNFAAAAAADcHIYsAAAAMMLNzU0XLlwodz07O1t+fn4GigAAAAAAuDkMWQAAAGBEnz59NH36dF27dk2SZLFYlJOTo6efflr9+/c3XAcAAAAAwC/j4HsAAAAYcf78eT344IPas2ePLl68qMaNG+vkyZP63e9+p48++kh169Y1nQgAAAAAwM9iyAIAAACjduzYoczMTBUUFOiuu+5St27dTCcBAAAAAFAhDFkAAABgzObNm7V582bl5eXJZrOVeW3JkiWGqgAAAAAAqJhapgMAAABQM02bNk3Tp09X27Zt1ahRI1ksFtNJAAAAAADcFFayAAAAwIhGjRpp9uzZ+sMf/mA6BQAAAACASnEyHQAAAICa6erVq+rQoYPpDAAAAAAAKo0hCwAAAIwYNWqUVq5caToDAAAAAIBK40wWAAAAGHH58mW98cYb+uSTTxQRESEXF5cyr8+dO9dQGQAAAAAAFcOZLAAAADAiNjb2J1+zWCzasmXLLawBAAAAAODmMWQBAAAAAAAAAACoBM5kAQAAAAAAAAAAqASGLAAAAAAAAAAAAJXAkAUAAAAAAAAAAKASGLIAAAAAAAAAAABUAkMWAAAAAAAAAACASmDIAgAAAKDGs1qtslgsOnfunOkUAAAAAA6EIQsAAAAAAAAAAEAlMGQBAAAA4FBWr16t1q1bq06dOqpfv766deumtLQ0ubi46OTJk2XeO3HiREVHR0uSjh07pt69e8vHx0d169bVHXfcofXr1+vo0aOKjY2VJPn4+MhisWjEiBGSJJvNppdeeklNmzZVnTp1FBkZqdWrV5f+839cAbNhwwZFRUWpTp066tKli/Ly8vTRRx8pLCxMnp6eGjx4sAoLC2/NDQIAAABwy9QyHQAAAAAAFXXixAk9/PDDmj17th544AFdvHhR27ZtU5s2bRQcHKwVK1boqaeekiRdu3ZNb731lmbPni1JGjt2rK5evaqtW7eqbt26+vrrr1WvXj0FBgZqzZo16t+/vw4cOCBPT0/VqVNHkvTSSy/pzTff1Ouvv67mzZtr69atGjp0qPz8/BQTE1PaNXXqVL322mtyd3fXwIEDNXDgQLm5uWnlypUqKCjQAw88oL///e96+umnb/1NAwAAAPCbYcgCAAAAwGGcOHFCRUVFio+P1+233y5Jat26tSTpkUce0dKlS0uHLB9++KEuX76sgQMHSpJycnLUv3//0vcHBweX/nN9fX0lSf7+/vL29pYkXblyRTNnztQnn3yi9u3bl/6e7du3a8GCBWWGLDNmzFDHjh1LO/7yl7/o8OHDpf+OBx98UKmpqQxZAAAAgGqG7cIAAAAAOIzIyEh17dpVrVu31oABA7Rw4UKdPXtWkjRixAgdOnRI//nPfyRJy5Yt08CBA1W3bl1J0vjx40uHIVOmTNEXX3zxs/+uQ4cOqbCwUPfdd5/q1atX+mP58uU6fPhwmfdGRESU/rxBgwZyd3cvM8Rp0KCB8vLyquQeAAAAALAfDFkAAAAAOAxnZ2dt2rRJH330kcLDw/X3v/9dLVu21DfffCN/f3/17t1bS5cu1ffff6+PPvpII0eOLP29o0aN0pEjR/SHP/xBX375pdq2bau///3vP/nvKigokCStW7dOe/fuLf3x9ddflzmXRZJcXFxKf26xWMr8+sdrNputKm4BAAAAADvCkAUAAACAQ7FYLOrYsaOmTZumjIwMubq66r333pN0fZDyzjvv6I033lCzZs1Kt/D6UWBgoEaPHq2UlBQ9+eSTWrhwoSTJ1dVVklRcXFz63vDwcLm5uSknJ0chISFlfgQGBt6i/1oAAAAA9owzWQAAAAA4jJ07d2rz5s2Ki4uTv7+/du7cqVOnTiksLEySdP/998vT01MzZszQ9OnTy/zeiRMnqkePHmrRooXOnj2r1NTU0t93++23y2KxaO3aterZs6fq1KkjDw8PTZo0SYmJibLZbLr33nt1/vx57dixQ56enho+fPgt/+8HAAAAYF9YyQIAAADAYXh6emrr1q3q2bOnWrRoocmTJ2vOnDnq0aOHJMnJyUkjRoxQcXGxhg0bVub3FhcXa+zYsQoLC1P37t3VokUL/b//9/8kSQEBAZo2bZqeeeYZNWjQQOPGjZMkvfDCC/rrX/+ql156qfT3rVu3Tk2bNr21/+EAAAAA7JKlpKSkxHQEAAAAAFSVRx55RKdOndIHH3xgOgUAAABANcd2YQAAAACqhfPnz+vLL7/UypUrGbAAAAAAuCUYsgAAAACoFvr27atdu3Zp9OjRuu+++0znAAAAAKgB2C4MAAAAAAAAAACgEjj4HgAAAAAAAAAAoBIYsgAAAAAAAAAAAFQCQxYAAAAAAAAAAIBKYMgCAAAAAAAAAABQCQxZAAAAAAAAAAAAKoEhCwAAAAAAAAAAQCUwZAEAAAAAAAAAAKgEhiwAAAAAAAAAAACV8P8BHbCmD5eDpCYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from utils import box_plot_per_dimension\n", "\n", "plot = box_plot_per_dimension(df_per_sample, \"WER\", \"system\", \"Average WER per system\", \"system\", \"WER\")\n", "plot.show()\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAR7CAYAAAADlcLCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXiddZ3//1dCl9RKw1JJW2hCC3RYRQa0bAMU6hREAQVHRnYZqiNVGHQQpqyVUGFGwAWEuJQBioAKKM4XhGGVrbKIjqKI2kmw2IBLT6G0aWnO7w9+ZIxtabmT9k6ax+O6epVzn/uc+30+ObSQZ+5z11Sr1WoAAAAAAAB4U2rLHgAAAAAAAKA/ElkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAKAkV1xxRWpqajJx4sSyR+lTtt9+++y8884rbL/llltSU1OTfffdd4X7vvGNb6SmpiZ33nlnkuTqq69OTU3NKn89+uijXY/96/tGjBiRfffdN//1X/+19l5kP3fhhRfm1ltvLXsMAAAo3aCyBwAAgIFq9uzZ2XLLLfOjH/0ov/71r7P11luXPVKfsPfee+frX/96KpVK6uvru7Y/9NBDGTRoUB577LEsW7YsgwcP7nbfBhtskD322KPbc82YMSPjxo1b4Rh/vdbvfve7c+yxx6Zaraa1tTVf+cpX8r73vS+33357pkyZ0suvsP+78MILc8QRR+Swww4rexQAACiVyAIAACWYO3duHn744dx888356Ec/mtmzZ+fcc89dpzN0dnZm6dKlqaurW6fHXZ299947X/3qV/Pwww/noIMO6tr+0EMP5R/+4R9y/fXX54knnsjuu+/edd+DDz6Yt7/97dlwww27PddBBx2U3XbbbbXHnDBhQo4++uiu24cffni23377fOELX+gzkWXRokUZPnx42WMAAAB/wceFAQBACWbPnp2NN944Bx98cI444ojMnj27675ly5Zlk002yQknnLDC4xYuXJi6urp8+tOf7trW0dGRc889N1tvvXWGDh2asWPH5vTTT09HR0e3x9bU1GTatGmZPXt2dthhhwwdOjR33HFHkuQ//uM/sueee2bTTTfNsGHDsuuuu+bb3/72CsdfvHhxPvnJT2bkyJHZcMMNc8ghh2TevHmpqanJeeed123fefPm5SMf+UgaGhoydOjQ7LDDDvnGN76x2rXZe++9k7wWVV63ZMmSPPnkk/nABz6Q8ePHd7vvxRdfzK9+9auux/WG7bbbLiNHjsxvfvOb1e573333paamJjfeeGP+7d/+LaNGjcrw4cNzyCGH5Lnnnlth/zlz5uTAAw9MfX193vKWt2Tfffft9nqS5LzzzktNTU2efvrpfPjDH87GG2/8hq9v2bJlOf/887PNNtukrq4um266afbee+/cddddSZJZs2alpqYmP/7xj1d47IUXXpgNNtgg8+bNS5I8++yzOfzwwzNq1KjU1dVliy22yJFHHplKpZLktffRokWL8p//+Z9dH7F2/PHHdz3fmnzdX1+zm266Keeff34233zzbLjhhjniiCNSqVTS0dGRU089NZtttlne+ta35oQTTljh/QwAAH2BM1kAAKAEs2fPzgc+8IEMGTIk//iP/5ivfOUreeyxx/LOd74zgwcPzvvf//7cfPPNueqqqzJkyJCux916663p6OjIkUcemeS1s1EOOeSQPPjgg5k6dWq22267/M///E8uvfTS/OpXv1rhuhn33HNPbrrppkybNi0jR47MlltumST5whe+kEMOOSRHHXVUli5dmhtuuCEf/OAH8/3vfz8HH3xw1+OPP/743HTTTTnmmGOy++675/777+92/+va29uz++67d4Wdt73tbbn99ttz4oknZuHChTn11FNXuTbjx4/PmDFj8uCDD3Zte+yxx7J06dLsueee2XPPPfPQQw/lU5/6VJLk4YcfTpKVRohKpZI//OEP3bbV1NRk0003XeXxX3/cn//852y11VZvuN9fam5uTk1NTT7zmc/khRdeyGWXXZbJkyfnqaeeyrBhw5K8tv4HHXRQdt1115x77rmpra3NrFmzsv/+++eHP/xh3vWud3V7zg9+8IPZZpttcuGFF6Zara7y2Oedd15mzpyZf/qnf8q73vWuLFy4MI8//niefPLJvPvd784RRxyRk08+ObNnz84uu+zS7bGzZ8/Ofvvtl8033zxLly7NlClT0tHRkU984hMZNWpU5s2bl+9///tZsGBB6uvrc+2113YdZ+rUqUnStU5v9us+c+bMDBs2LGeccUZ+/etf50tf+lIGDx6c2tra/PnPf855552XRx99NFdffXXGjRuXc845Z42/HgAAsE5UAQCAderxxx+vJqnedddd1Wq1Wu3s7KxuscUW1VNOOaVrnx/84AfVJNXbbrut22Pf8573VMePH991+9prr63W1tZWf/jDH3bb78orr6wmqT700ENd25JUa2trqz//+c9XmOmVV17pdnvp0qXVHXfcsbr//vt3bXviiSeqSaqnnnpqt32PP/74apLqueee27XtxBNPrI4ePbr6hz/8odu+Rx55ZLW+vn6F4/21D37wg9Vhw4ZVly5dWq1Wq9WZM2dWx40bV61Wq9Urrriiutlmm3Xt++lPf7qapDpv3ryubbNmzaomWemvoUOHdjtWkuqJJ55YffHFF6svvPBC9fHHH68eeOCB1STVf//3f3/DOavVavXee++tJqluvvnm1YULF3Ztv+mmm6pJql/4wheq1eprX+dtttmmOmXKlGpnZ2fXfq+88kp13Lhx1Xe/+91d284999xqkuo//uM/rvb41Wq1uvPOO1cPPvjgN9znH//xH6tjxoypLl++vGvbk08+WU1SnTVrVrVarVZ//OMfV5NUv/Wtb73hcw0fPrx63HHHrbB9Tb/ur6/Zjjvu2PU1fn3Gmpqa6kEHHdTt8XvssUe1qanpDWcCAIAy+LgwAABYx2bPnp2GhoZMmjQpyWtnVnzoQx/KDTfckOXLlydJ9t9//4wcOTI33nhj1+P+/Oc/56677sqHPvShrm3f+ta3st1222XbbbfNH/7wh65f+++/f5Lk3nvv7XbsfffdN9tvv/0KM71+psXrx6lUKvm7v/u7PPnkk13bX/9osY9//OPdHvuJT3yi2+1qtZrvfOc7ed/73pdqtdptrilTpqRSqXR73pXZe++9s3jx4jzxxBNJXvvosD333DNJstdee+WFF17Is88+23XfuHHjMmbMmBWe5/LLL89dd93V7dftt9++wn5f//rX87a3vS2bbbZZdtttt9x99905/fTTc9ppp73hnH/p2GOP7XZNmCOOOCKjR4/O//t//y9J8tRTT+XZZ5/Nhz/84fzxj3/sWpNFixblgAMOyAMPPJDOzs5uz/mxj31sjY690UYb5ec//3nXmqxqvueff77be2L27NkZNmxYDj/88CRJfX19kuQHP/hBXnnllTV74f+/Il/3Y489NoMHD+66PXHixFSr1XzkIx/ptt/EiRPz3HPP5dVXX31TMwEAwNrm48IAAGAdWr58eW644YZMmjQpc+fO7do+ceLEfP7zn8/dd9+dv//7v8+gQYNy+OGH5/rrr09HR0eGDh2am2++OcuWLesWWZ599tn84he/yNve9raVHu+FF17odnvcuHEr3e/73/9+Lrjggjz11FPdrn1RU1PT9c+tra2pra1d4Tm23nrrbrdffPHFLFiwIC0tLWlpaVmjuf7aX16XZeLEiXn44YdzwQUXJEl23HHHjBgxIg899FDGjh2bJ554otua/KV3vetda3Th+0MPPTTTpk3L0qVL89hjj+XCCy/MK6+8ktraNf+5tG222abb7Zqammy99db53//93yTpCiDHHXfcKp+jUqlk44037rq9qq/XX5sxY0YOPfTQTJgwITvuuGMOPPDAHHPMMXn729/etc+73/3ujB49OrNnz84BBxyQzs7OfPOb38yhhx7aFYfGjRuX0047LZdccklmz56dv/u7v8shhxySo48+uivArEqRr3tjY2O3268fY+zYsSts7+zsTKVSWe1HvQEAwLoksgAAwDp0zz335Pe//31uuOGG3HDDDSvcP3v27Pz93/99kuTII4/MVVddldtvvz2HHXZYbrrppmy77bbZeeedu/bv7OzMTjvtlEsuuWSlx/vrb1b/5Rkrr/vhD3+YQw45JPvss0+uuOKKjB49OoMHD86sWbNy/fXXv+nX+PrZGEcfffQqg8JffvN/ZXbeeedsuOGGefDBB/Oe97wnf/rTn7rOZKmtrc3EiRPz4IMPZquttsrSpUt7fNH7LbbYIpMnT06SvOc978nIkSMzbdq0TJo0KR/4wAd69Nyve31d/v3f/z3veMc7VrrPW9/61m63V/b1Wpl99tknv/nNb/Ld7343d955Z772ta/l0ksvzZVXXpl/+qd/SpJssMEG+fCHP5yvfvWrueKKK/LQQw/l+eefz9FHH93tuT7/+c/n+OOP73quT37yk5k5c2YeffTRbLHFFqt9fW/m677BBhusdL9Vba++wXVpAACgDCILAACsQ7Nnz85mm22Wyy+/fIX7br755txyyy258sorM2zYsOyzzz4ZPXp0brzxxuy999655557Mn369G6P2WqrrfKTn/wkBxxwQLezTt6M73znO6mrq8sPfvCDDB06tGv7rFmzuu3X1NSUzs7OzJ07t9tZG7/+9a+77fe2t70tG264YZYvX94VLt6sDTbYILvvvnseeuihPPjggxkxYkR22mmnrvv33HPP3HjjjV1n0fQ0svy1j370o7n00ktz1lln5f3vf/8are1ff1RXtVrNr3/9666w8PrF4UeMGFF4Xd7IJptskhNOOCEnnHBCXn755eyzzz4577zzuiJL8trHc33+85/Pbbfdlttvvz1ve9vbMmXKlBWea6eddspOO+2Us846Kw8//HD22muvXHnllV1nE61sPXrj6w4AAP2Na7IAAMA6snjx4tx8881573vfmyOOOGKFX9OmTctLL72U733ve0leO2PjiCOOyG233ZZrr702r7766gofi/UP//APmTdvXr761a+u9HiLFi1a7VwbbLBBampquq4HkyT/+7//m1tvvbXbfq9/M/6KK67otv1LX/rSCs93+OGH5zvf+U5+9rOfrXC8F198cbUzJa+FkxdffDGzZs3KxIkTu31015577plnnnkm3/3ud7Pppptmu+22W6PnXFODBg3Kpz71qfziF7/Id7/73TV6zDXXXJOXXnqp6/a3v/3t/P73v89BBx2UJNl1112z1VZb5T/+4z/y8ssvr/D4NV2XlfnjH//Y7fZb3/rWbL311t0++i157UySt7/97fna176W73znOznyyCMzaND//ezdwoULV7juyU477ZTa2tpuzzV8+PAsWLCg23699XUHAID+xJksAACwjnzve9/LSy+9lEMOOWSl9+++++5529veltmzZ3fFlA996EP50pe+lHPPPTc77bTTCjHhmGOOyU033ZSPfexjuffee7PXXntl+fLl+eUvf5mbbropP/jBD1Z7TZKDDz44l1xySQ488MB8+MMfzgsvvJDLL788W2+9dX7605927bfrrrvm8MMPz2WXXZY//vGP2X333XP//ffnV7/6VZLuZzd87nOfy7333puJEyfmpJNOyvbbb58//elPefLJJ/Pf//3f+dOf/rTa9Xr97JRHHnkk55133gprVVNTk0cffTTve9/7Vnmmye23355f/vKXK2zfc889M378+Dc8/vHHH59zzjknF110UQ477LDVzrvJJptk7733zgknnJD29vZcdtll2XrrrXPSSScleS2afe1rX8tBBx2UHXbYISeccEI233zzzJs3L/fee29GjBiR2267bbXHWZntt98+++23X3bddddssskmefzxx/Ptb38706ZNW2HfY489Np/+9KeTZIWPCrvnnnsybdq0fPCDH8yECRPy6quv5tprr+0KKK/bdddd89///d+55JJLMmbMmIwbNy4TJ07sla87AAD0JyILAACsI7Nnz05dXV3e/e53r/T+2traHHzwwZk9e3b++Mc/ZtNNN82ee+6ZsWPH5rnnnlvpxd1ra2tz66235tJLL80111yTW265JW95y1syfvz4nHLKKZkwYcJq59p///3z9a9/PZ/73Ody6qmnZty4cbnooovyv//7v90iS/La2RqjRo3KN7/5zdxyyy2ZPHlybrzxxvzN3/xN6urquvZraGjIj370o8yYMSM333xzrrjiimy66abZYYcdctFFF63Reu2+++4ZNGhQXn311a7rsbxuxIgR2XHHHfPTn/70DT8q7Jxzzlnp9lmzZq02sgwbNizTpk3Leeedl/vuuy/77bffG+7/b//2b/npT3+amTNn5qWXXsoBBxyQK664Im95y1u69tlvv/3yyCOP5LOf/Wy+/OUv5+WXX86oUaMyceLEfPSjH33D538jn/zkJ/O9730vd955Zzo6OtLU1JQLLrgg//qv/7rCvkcddVQ+85nPZKuttsq73vWubvftvPPOmTJlSm677bbMmzcvb3nLW7Lzzjvn9ttvz+6779613yWXXJKpU6fmrLPOyuLFi3Pcccdl4sSJvfJ1BwCA/qSm6sqBAABADzz11FPZZZddct111+Woo44qe5x17r777sukSZPyrW99K0cccUTZ46zWH/7wh4wePTrnnHNOzj777LLHAQCAfs01WQAAgDW2ePHiFbZddtllqa2tzT777FPCRLxZV199dZYvX55jjjmm7FEAAKDf83FhAADAGrv44ovzxBNPZNKkSRk0aFBuv/323H777Zk6dWrGjh1b9ni8gXvuuSdPP/10mpubc9hhh2XLLbcseyQAAOj3RBYAAGCN7bnnnrnrrrvy2c9+Ni+//HIaGxtz3nnnZfr06WWPxmrMmDEjDz/8cPbaa6986UtfKnscAABYL7gmCwAAAAAAQAGuyQIAAAAAAFCAjwtL0tnZmeeffz4bbrhhampqyh4HAAAAAAAoUbVazUsvvZQxY8aktnbV56uILEmef/55F+kEAAAAAAC6ee6557LFFlus8n6RJcmGG26Y5LXFGjFiRMnTAAAAAAAAZVq4cGHGjh3b1Q9WRWRJuj4ibMSIESILAAAAAACQJKu9xIgL3wMAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABRQamR54IEH8r73vS9jxoxJTU1Nbr311m73V6vVnHPOORk9enSGDRuWyZMn59lnn+22z5/+9KccddRRGTFiRDbaaKOceOKJefnll9fhqwAAAAAAAAaiUiPLokWLsvPOO+fyyy9f6f0XX3xxvvjFL+bKK6/MnDlzMnz48EyZMiVLlizp2ueoo47Kz3/+89x11135/ve/nwceeCBTp05dVy8BAAAAAAAYoGqq1Wq17CGSpKamJrfccksOO+ywJK+dxTJmzJh86lOfyqc//ekkSaVSSUNDQ66++uoceeSR+cUvfpHtt98+jz32WHbbbbckyR133JH3vOc9+d3vfpcxY8as0bEXLlyY+vr6VCqVjBgxYq28PgAAAAAAoH9Y027QZ6/JMnfu3MyfPz+TJ0/u2lZfX5+JEyfmkUceSZI88sgj2WijjboCS5JMnjw5tbW1mTNnziqfu6OjIwsXLuz2CwAAAAAA4M3os5Fl/vz5SZKGhoZu2xsaGrrumz9/fjbbbLNu9w8aNCibbLJJ1z4rM3PmzNTX13f9Gjt2bC9PDwAAAAAArO/6bGRZm84888xUKpWuX88991zZIwEAAAAAAP1Mn40so0aNSpK0t7d3297e3t5136hRo/LCCy90u//VV1/Nn/70p659Vmbo0KEZMWJEt18AAAAAAABvRp+NLOPGjcuoUaNy9913d21buHBh5syZkz322CNJsscee2TBggV54oknuva555570tnZmYkTJ67zmQEAAAAAgIFjUJkHf/nll/PrX/+66/bcuXPz1FNPZZNNNkljY2NOPfXUXHDBBdlmm20ybty4nH322RkzZkwOO+ywJMl2222XAw88MCeddFKuvPLKLFu2LNOmTcuRRx6ZMWPGlPSqAAAAAACAgaDUyPL4449n0qRJXbdPO+20JMlxxx2Xq6++OqeffnoWLVqUqVOnZsGCBdl7771zxx13pK6urusxs2fPzrRp03LAAQektrY2hx9+eL74xS+u89cCAAAAAAAMLDXVarVa9hBlW7hwYerr61OpVFyfBQAAAAAABrg17QZ99posAAAAAAAAfZnIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUIDIAgAAAAAAUMCgsgcAAAAAAAD6jyVLlqStra3sMdLY2Ji6urpSZxBZAAAAAACANdbW1papU6eWPUZaWloyYcKEUmcQWQAAAAAAgDXW2NiYlpaWwo9vbW1Nc3Nzpk+fnqamph7NUTaRBQAAAAAAWGN1dXW9cgZJU1NT6Wei9JQL3wMAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQgsgAAAAAAABQwqOwBAAAAAABgXViyZEna2trKHiNJ0tjYmLq6urLHoIdEFgAAAAAABoS2trZMnTq17DGSJC0tLZkwYULZY9BDIgsAAAAAAANCY2NjWlpaCj++tbU1zc3NmT59epqamno8C/2fyAIAAAAAwIBQV1fXK2ePNDU1OQuFJC58DwAAAAAAUIjIAgAAAAAAUECfjizLly/P2WefnXHjxmXYsGHZaqut8tnPfjbVarVrn2q1mnPOOSejR4/OsGHDMnny5Dz77LMlTg0AAAAAAAwEfTqyXHTRRfnKV76SL3/5y/nFL36Riy66KBdffHG+9KUvde1z8cUX54tf/GKuvPLKzJkzJ8OHD8+UKVOyZMmSEicHAAAAAADWd336wvcPP/xwDj300Bx88MFJki233DLf/OY386Mf/SjJa2exXHbZZTnrrLNy6KGHJkmuueaaNDQ05NZbb82RRx5Z2uwAAAAAAMD6rU9Hlj333DMtLS351a9+lQkTJuQnP/lJHnzwwVxyySVJkrlz52b+/PmZPHly12Pq6+szceLEPPLII6uMLB0dHeno6Oi6vXDhwrX7QgAAAAAAemDJkiVpa2sre4wkSWNjY+rq6soeA/qEPh1ZzjjjjCxcuDDbbrttNthggyxfvjzNzc056qijkiTz589PkjQ0NHR7XENDQ9d9KzNz5sycf/75a29wAAAAAIBe1NbWlqlTp5Y9RpKkpaUlEyZMKHsM6BP6dGS56aabMnv27Fx//fXZYYcd8tRTT+XUU0/NmDFjctxxxxV+3jPPPDOnnXZa1+2FCxdm7NixvTEyAAAAAECva2xsTEtLS4+eo7W1Nc3NzZk+fXqampp6NAvwmj4dWf71X/81Z5xxRtfHfu20005pbW3NzJkzc9xxx2XUqFFJkvb29owePbrrce3t7XnHO96xyucdOnRohg4dulZnBwAAAADoLXV1db129khTU5MzUaCX1JY9wBt55ZVXUlvbfcQNNtggnZ2dSZJx48Zl1KhRufvuu7vuX7hwYebMmZM99thjnc4KAAAAAAAMLH36TJb3ve99aW5uTmNjY3bYYYf8+Mc/ziWXXJKPfOQjSZKampqceuqpueCCC7LNNttk3LhxOfvsszNmzJgcdthh5Q4PAAAAAACs1/p0ZPnSl76Us88+Ox//+MfzwgsvZMyYMfnoRz+ac845p2uf008/PYsWLcrUqVOzYMGC7L333rnjjjtSV1dX4uQAAAAAAMD6rk9Hlg033DCXXXZZLrvsslXuU1NTkxkzZmTGjBnrbjAAAAAAAGDA69PXZAEAAAAAAOirRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIACRBYAAAAAAIAC+nxkmTdvXo4++uhsuummGTZsWHbaaac8/vjjXfdXq9Wcc845GT16dIYNG5bJkyfn2WefLXFiAAAAAABgIOjTkeXPf/5z9tprrwwePDi33357nn766Xz+85/Pxhtv3LXPxRdfnC9+8Yu58sorM2fOnAwfPjxTpkzJkiVLSpwcAAAAAABY3w0qe4A3ctFFF2Xs2LGZNWtW17Zx48Z1/XO1Ws1ll12Ws846K4ceemiS5JprrklDQ0NuvfXWHHnkkSt93o6OjnR0dHTdXrhw4Vp6BQAAAP3LkiVL0tbWVvYYSZLGxsbU1dWVPcabZg0BAAaOPh1Zvve972XKlCn54Ac/mPvvvz+bb755Pv7xj+ekk05KksydOzfz58/P5MmTux5TX1+fiRMn5pFHHlllZJk5c2bOP//8dfIaAAAA+pO2trZMnTq17DGSJC0tLZkwYULZY7xp1hAAYODo05Hlt7/9bb7yla/ktNNOy7/927/lscceyyc/+ckMGTIkxx13XObPn58kaWho6Pa4hoaGrvtW5swzz8xpp53WdXvhwoUZO3bs2nkRAAAA/UhjY2NaWloKP761tTXNzc2ZPn16mpqaejxLf9TTNUx6bx376xoCAPQXfTqydHZ2ZrfddsuFF16YJNlll13ys5/9LFdeeWWOO+64ws87dOjQDB06tLfGBAAAWG/U1dX1ypkPTU1NA/YMit5aw2RgryMAQH/Qpy98P3r06Gy//fbdtm233XZdn207atSoJEl7e3u3fdrb27vuAwAAAAAAWBv6dGTZa6+98swzz3Tb9qtf/arrVOlx48Zl1KhRufvuu7vuX7hwYebMmZM99thjnc4KAAAAAAAMLH3648L+5V/+JXvuuWcuvPDC/MM//EN+9KMfpaWlpeuzbWtqanLqqafmggsuyDbbbJNx48bl7LPPzpgxY3LYYYeVOzwAAAAAALBe69OR5Z3vfGduueWWnHnmmZkxY0bGjRuXyy67LEcddVTXPqeffnoWLVqUqVOnZsGCBdl7771zxx13pK6ursTJAQAAAACA9V2fjixJ8t73vjfvfe97V3l/TU1NZsyYkRkzZqzDqQAAAAAAgIGuT1+TBQAAAAAAoK8SWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoYVPYAAAAAAMD6bcmSJWlrayt7jDQ2Nqaurq7sMYD1iMgCAAAAAKxVbW1tmTp1atljpKWlJRMmTCh7DGA9IrIAAAAAAGtVY2NjWlpaCj++tbU1zc3NmT59epqamno0B0BvElkAAAAAgLWqrq6uV84gaWpqciYK0Ke48D0AAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABIgsAAAAAAEABg8oeAAAAAAAAWHfa29tTqVRKO35ra2u338tQX1+fhoaGHj+PyAIAAAAAAANEe3t7jj7m2Cxb2lH2KGlubi7t2IOHDM11117T49AisgAAAAAAwABRqVSybGlHFo/fN5119WWPU4raJZXkt/enUqmILAAAAAAAwJvTWVefzuEjyx6j33PhewAAAAAAgAJEFgAAAAAAgAJEFgAAAAAAgAJEFgAAAAAAgAJEFgAAAAAAgAJEFgAAAAAAgAJEFgAAAAAAgAJEFgAAAAAAgAJEFgAAAAAAgAIGlT0AAAAAAGvHkiVL0tbWVvYYaWxsTF1dXdljFNJX1jDp3+sIsL4SWQAAAADWU21tbZk6dWrZY6SlpSUTJkwoe4xC+soaJv17HQHWVyILAAAAwHqqsbExLS0thR/f2tqa5ubmTJ8+PU1NTT2ao7/q6Rom1hFgfSayAAAAAKyn6urqeuXMh6ampgF7BkVvrWEysNcRYH3lwvcAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAFiCwAAAAAAAAF9FpkWbJkSf7jP/6jt54OAAAAAACgT3tTkeXFF1/M97///dx5551Zvnx5kmTZsmX5whe+kC233DKf+9zn1sqQAAAAAAAAfc2gNd3xwQcfzHvf+94sXLgwNTU12W233TJr1qwcdthhGTRoUM4777wcd9xxa3NWAAAAAACAPmONz2Q566yz8p73vCc//elPc9ppp+Wxxx7L+9///lx44YV5+umn87GPfSzDhg1bm7MCAAAAAAD0GWscWf7nf/4nZ511VnbcccfMmDEjNTU1ufjii3PEEUeszfkAAAAAAAD6pDWOLH/+858zcuTIJMmwYcPylre8JTvuuONaGwwAAAAAAKAvW+NrsiTJ008/nfnz5ydJqtVqnnnmmSxatKjbPm9/+9t7bzoAAAAAAIA+6k1FlgMOOCDVarXr9nvf+94kSU1NTarVampqarJ8+fLenRAAAAAAAKAPWuPIMnfu3LU5BwAAAAAAQL+yxpGlqalpbc4BAAAAAADQr6zxhe8vvvjiLF68uOv2Qw89lI6Ojq7bL730Uj7+8Y/37nQAAAAAAAB91BpHljPPPDMvvfRS1+2DDjoo8+bN67r9yiuv5Kqrrurd6QAAAAAAAPqoNY4sf3nB+5XdBgAAAAAAGEjWOLIAAAAAAADwf0QWAAAAAACAAga9mZ2/9rWv5a1vfWuS5NVXX83VV1+dkSNHJkm367UAAAAAAACs79Y4sjQ2NuarX/1q1+1Ro0bl2muvXWEfAAAAAACAgWCNI8u9996bcePGrc1ZAAAAAAAA+o01vibLVlttlXHjxuUjH/lIrrvuusybN29tzgUAAAAAANCnrfGZLPfcc0/uu+++3HffffnmN7+ZpUuXZvz48dl///0zadKkTJo0KQ0NDWtzVgAAAAAAgD5jjSPLfvvtl/322y9JsmTJkjz88MNd0eU///M/s2zZsmy77bb5+c9/vrZmBQAAAAAA6DPWOLL8pbq6uuy///7Ze++9M2nSpNx+++256qqr8stf/rK35wMAAAAAAOiT3lRkWbp0aR599NHce++9ue+++zJnzpyMHTs2++yzT7785S9n3333XVtzAgAAAAAA9ClrHFn233//zJkzJ+PGjcu+++6bj370o7n++uszevTotTkfAAAAAABAn7TGkeWHP/xhRo8enf333z/77bdf9t1332y66aZrczYAAAAAAIA+q3ZNd1ywYEFaWlrylre8JRdddFHGjBmTnXbaKdOmTcu3v/3tvPjii2tzTgAAAAAAgD5ljc9kGT58eA488MAceOCBSZKXXnopDz74YO69995cfPHFOeqoo7LNNtvkZz/72VobFgAAAAAAoK9Y4zNZ/trw4cOzySabZJNNNsnGG2+cQYMG5Re/+EVvzgYAAAAAANBnrfGZLJ2dnXn88cdz33335d57781DDz2URYsWZfPNN8+kSZNy+eWXZ9KkSWtzVgAAAAAAgD5jjSPLRhttlEWLFmXUqFGZNGlSLr300uy3337Zaqut1uZ8AAAAAAAAfdIaR5Z///d/z6RJkzJhwoS1OQ8AAAAAAEC/sMaR5aMf/ejanAMAAAAAAKBfKXzhewAAAAAAgIFMZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChAZAEAAAAAAChgUNkDAADQvy1ZsiRtbW1lj5EkaWxsTF1dXdljFNJX1rE/ryGwfukrfy4m/mwEAFZNZAEAoEfa2toyderUssdIkrS0tGTChAllj1FIX1nH/ryGwPqlr/y5mPizEQBYNZEFAIAeaWxsTEtLS+HHt7a2prm5OdOnT09TU1OPZ+mv+so69uc1BNYvfeXPxddnAQBYGZEFAIAeqaur65Wf7m1qahrQPyVsHQG68+ciANAfuPA9AAAAAABAASILAAAAAABAASILAAAAAABAASILAAAAAABAASILAAAAAABAAYPKHgAAAKA3LFmyJG1tbWWPkSRpbGxMXV1d2WMAAABrmcgCAACsF9ra2jJ16tSyx0iStLS0ZMKECWWPAQAArGUiCwAAsF5obGxMS0tLj56jtbU1zc3NmT59epqamno0CwAAsP4TWQAAgPVCXV1dr5090tTU5EwUAABgtVz4HgAAAAAAoACRBQAAAAAAoACRBQAAAAAAoADXZAEAAAAAgAGmdvGCskcoTW++dpEFAAAAAAAGmGFzHyh7hPVCv4osn/vc53LmmWfmlFNOyWWXXZYkWbJkST71qU/lhhtuSEdHR6ZMmZIrrrgiDQ0N5Q4LAAAAAAB91OJx+6Rz2EZlj1GK2sULei0y9ZvI8thjj+Wqq67K29/+9m7b/+Vf/iX/9V//lW9961upr6/PtGnT8oEPfCAPPfRQSZMCAAAAAEDf1jlso3QOH1n2GP1ev7jw/csvv5yjjjoqX/3qV7Pxxht3ba9UKvn617+eSy65JPvvv3923XXXzJo1Kw8//HAeffTREicGAAAAAADWd/3iTJaTTz45Bx98cCZPnpwLLriga/sTTzyRZcuWZfLkyV3btt122zQ2NuaRRx7J7rvvvtLn6+joSEdHR9fthQsXrr3hAQAAAADoNe3t7alUKqUcu7W1tdvvZamvr3fJjD6iz0eWG264IU8++WQee+yxFe6bP39+hgwZko022qjb9oaGhsyfP3+Vzzlz5sycf/75vT0qAAAAAABrUXt7e44+5tgsW9qx+p3Xoubm5lKPP3jI0Fx37TVCSx/QpyPLc889l1NOOSV33XVX6urqeu15zzzzzJx22mldtxcuXJixY8f22vMDAAAAAND7KpVKli3tyOLx+6azrr7scUpRu6SS/Pb+VCoVkaUP6NOR5YknnsgLL7yQv/3bv+3atnz58jzwwAP58pe/nB/84AdZunRpFixY0O1slvb29owaNWqVzzt06NAMHTp0bY4OAAAAAMBa0llX76Lt9Al9OrIccMAB+Z//+Z9u20444YRsu+22+cxnPpOxY8dm8ODBufvuu3P44YcnSZ555pm0tbVljz32KGNkAAAAAABggOjTkWXDDTfMjjvu2G3b8OHDs+mmm3ZtP/HEE3Paaadlk002yYgRI/KJT3wie+yxxyoveg8AAAAAANAb+nRkWROXXnppamtrc/jhh6ejoyNTpkzJFVdcUfZYAAAAAADAeq7fRZb77ruv2+26urpcfvnlufzyy8sZCAAAAAAAGJBqyx4AAAAAAACgPxJZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChhU9gAAAAAAAANBe3t7KpVKacdvbW3t9nsZ6uvr09DQUNrxobeJLAAAAAAAa1l7e3uOPubYLFvaUfYoaW5uLu3Yg4cMzXXXXiO0sN4QWQCAAW3JkiVpa2sre4w0Njamrq6u7DEAAIC1pFKpZNnSjiwev2866+rLHqcUtUsqyW/vT6VSEVlYb4gsAKxzfeWb2olvbJO0tbVl6tSpZY+RlpaWTJgwoewxAACAtayzrj6dw0eWPQbQS0QWANa5vvJN7cQ3tnkttLW0tBR+fGtra5qbmzN9+vQ0NTX1aA4AAACgfxFZAFjnevpN7cQ3tuk9dXV1vRLampqaBDsAAAAYYEQWANa53vqmdjKwv7HtY9cAAAAAyiWyAEA/5WPXAAAAAMolsgBAP9VXriXy+iwAAAAAA43IAgD9lGuJAAAAAJSrtuwBAAAAAAAA+iORBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoACRBQAAAAAAoIBBZQ8ArDtLlixJW1tb2WMkSRobG1NXV1f2GAAAAAAAhYksMIC0tbVl6tSpZY+RJGlpacmECRPKHgMAAAAAoDCRBQaQxsbGtLS09Og5Wltb09zcnOnTp6epqalHswAAAAAA9GciCwwgdXV1vXb2SFNTkzNRAAAAAIABzYXvAQAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChhU9gAAAAAAAPBm1C5eUPYIpemt1167pNIrz9Mf9eZrF1kAAAAAAOhXhs19oOwR+q36+voMHjI0+e39ZY9SqsFDhqa+vr7HzyOyAAAAAADQrywet086h21U9hilqF28oEeRqaGhIddde00qlfLOZGltbU1zc3OmT5+epqamUmaor69PQ0NDj59HZAEAAAAAoF/pHLZROoePLHuMfquhoaFXAkNPNTU1ZcKECWWP0SMufA8AAAAAAFCAM1kAAADWM+3t7aV9/ENra2u338vSWx//AAAAb0RkAQAAWI+0t7fn6GOOzbKlHaXO0dzcXOrxBw8ZmuuuvUZoAQBgrRJZAAAA1iOVSiXLlnZk8fh901lXX/Y4pahdUkl+e38qlUrhyFLm2UBJ3zgjyNlAAACrJ7IAAACshzrr6l0MtqC+cjZQUu4ZQc4GAgBYPZEFAAAA/oKzgXrnbCAAgIFAZAEAAICVcDYQAACrU1v2AAAAAAAAAP2RyAIAAAAAAFCAyAIAAAAAAFCAa7IAAAAAAG+ovb09lUqltOO3trZ2+70s9fX1aWhoKHUGoG8RWQAAAACAVWpvb8/RxxybZUs7yh4lzc3NpR5/8JChue7aa4QWoIvIAgAAAACsUqVSybKlHVk8ft901tWXPU5papdUkt/en0qlIrIAXUQWAAAAAGC1Ouvq0zl8ZNljAPQpLnwPAAAAAABQgMgCAAAAAABQgI8LA3iTlixZkra2trLHSGNjY+rq6soeAwAAWIva29tTqVRKO35ra2u338tSX1/vGhgA9EkiC8Cb1NbWlqlTp5Y9RlpaWjJhwoSyxwAAANaS9vb2HH3MsVm2tKPsUdLc3Fzq8QcPGZrrrr1GaAGgzxFZAN6kxsbGtLS0FH58a2trmpubM3369DQ1NfVoDgAAYP1VqVSybGlHFo/fN5119WWPU5raJZXkt/enUqkUjizOCHI2EMDaIrIAvEl1dXW9cgZJU1OTM1EAAIDV6qyrT+fwkWWP0W85I+g1zgYCWDtEFgAAAADWW84I6p2zgQBYOZEFAAAAgPWeM4IAWBtqyx4AAAAAAACgPxJZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAACujTkWXmzJl55zvfmQ033DCbbbZZDjvssDzzzDPd9lmyZElOPvnkbLrppnnrW9+aww8/PO3t7SVNDAAAAAAADBR9OrLcf//9Ofnkk/Poo4/mrrvuyrJly/L3f//3WbRoUdc+//Iv/5Lbbrst3/rWt3L//ffn+eefzwc+8IESpwYAAAAAAAaCQWUP8EbuuOOObrevvvrqbLbZZnniiSeyzz77pFKp5Otf/3quv/767L///kmSWbNmZbvttsujjz6a3XffvYyxAQAAAACAAaBPR5a/VqlUkiSbbLJJkuSJJ57IsmXLMnny5K59tt122zQ2NuaRRx5ZZWTp6OhIR0dH1+2FCxeuxalf+0iztra2tXqMNdXY2Ji6urqyxyikr6xjf15DAAAAAAB6T7+JLJ2dnTn11FOz1157Zccdd0ySzJ8/P0OGDMlGG23Ubd+GhobMnz9/lc81c+bMnH/++Wtz3G7a2toyderUdXa8N9LS0pIJEyaUPUYhfWUd+/MaAgAAAADQe/pNZDn55JPzs5/9LA8++GCPn+vMM8/Maaed1nV74cKFGTt2bI+fd1UaGxvT0tJS+PGtra1pbm7O9OnT09TU1ONZ+qu+so79eQ0BAAAAAOg9/SKyTJs2Ld///vfzwAMPZIsttujaPmrUqCxdujQLFizodjZLe3t7Ro0atcrnGzp0aIYOHbo2R+6mrq6uV858aGpqGtBnUFhHAAAAAAD6ktqyB3gj1Wo106ZNyy233JJ77rkn48aN63b/rrvumsGDB+fuu+/u2vbMM8+kra0te+yxx7oeFwAAAAAAGED69JksJ598cq6//vp897vfzYYbbth1nZX6+voMGzYs9fX1OfHEE3Paaadlk002yYgRI/KJT3wie+yxxyoveg8AAAAAANAb+nRk+cpXvpIk2W+//bptnzVrVo4//vgkyaWXXpra2tocfvjh6ejoyJQpU3LFFVes40kBAAAAAICBpk9Hlmq1utp96urqcvnll+fyyy9fBxMBAAAAAAC8pk9fkwUAAAAAAKCvElkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKEFkAAAAAAAAKGFT2AAAAAMD6qb29PZVKpZRjt7a2dvu9LPX19WloaCh1BgBg7RFZAAAAgF7X3t6eo485NsuWdpQ6R3Nzc6nHHzxkaK679hqhBQDWUyILAAB+0jg9/0njMtcwWX/WEVh/VCqVLFvakcXj901nXX3Z45Sidkkl+e39qVQq/mwEgPWUyAIAMMD5SePX9OQnjfvKGib9ex2B9VNnXX06h48sewwAgLVCZAEAGOD8pHHPf9LYGr7GT2wDAAADjcgCAEASP2ncG6whAADAwFJb9gAAAAAAAAD9kTNZAACAPqO9vT2VSqW047e2tnb7vQz19fU+bg0A1mO1ixeUPUJpBvJrZ/0lsgAAAH1Ce3t7jj7m2Cxb2lH2KGlubi7t2IOHDM11114jtADAemrY3AfKHgHoRSILAADQJ1QqlSxb2pHF4/dNZ1192eOUonZJJfnt/alUKiILAKynFo/bJ53DNip7jFLULl4gMrHeEVkAAIA+pbOuPp3DR5Y9BgDAWtE5bCP/rQPrERe+BwAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKGBQ2QMA0D+1t7enUqmUdvzW1tZuv5ehvr4+DQ0NpR2f13gvvsb7EQAAANY9kQWAN629vT1HH3Nsli3tKHuUNDc3l3bswUOG5rprr/GN7RJ5L/4f70cAAABY90QWAN60SqWSZUs7snj8vumsqy97nFLULqkkv70/lUrFN7VL5L34Gu9HAAAAKIfIAkBhnXX16Rw+suwxwHsRAAAAKIUL3wMAAAAAABQgsgAAAAAAABTg48IAoETt7e2pVCqlHLu1tbXb72Wpr693HREAAADelNol5fy/dF8wkF97XySyAEBJ2tvbc/Qxx2bZ0o5S52hubi71+IOHDM11114jtAAAALBa9fX1GTxkaPLb+8sepVSDhwxNfX192WMQkQUASlOpVLJsaUcWj983nXUD8z+MapdUkt/en0qlIrIAAACwWg0NDbnu2mtK/VSI5ubmTJ8+PU1NTaXMkPhUiL5EZAGAknXW1adz+MiyxwAAAIB+oaGhofTA0NTUlAkTJpQ6A32DC98DAAAAAAAU4EwWAAAAAGC1ahcvKHuEUg301w+snMgCAAAAAKzWsLkPlD0CQJ8jsgAAAAAAq7V43D7pHLZR2WOUpnbxAqEJWIHIAgAAAACsVuewjdI5fGTZYwD0KS58DwAAAAAAUIAzWaCfaW9vT6VSKe34ra2t3X4vQ319fRoaGko7PgAAAABAIrJAv9Le3p6jjzk2y5Z2lD1KmpubSzv24CFDc9211wgtAAAAAECpRBboRyqVSpYt7cji8fums66+7HFKUbukkvz2/lQqFZEFAAAAACiVyAL9UGddvQvNAQAAAACUzIXvAQAAAAAAChBZAAAAAAAAChBZAAAAAAAAChBZAAAAAAAACnDhewAAAIA+rHbxgrJHKFVvvf6BvI4D+bUDrG0iCwAAAEAfNmzuA2WPsF6wjgCsDSILAAAAQB+2eNw+6Ry2UdljlKZ28YJeCSQDeR17aw0BWJHIAgAAANCHdQ7bKJ3DR5Y9Rr9nHQFYG1z4HgAAAAAAoACRBQAAAAAAoACRBQAAAAAAoADXZAEGpPb29lQqlVKO3dra2u33stTX16ehoaHUGQAAAACgPxNZgAGnvb09Rx9zbJYt7Sh1jubm5lKPP3jI0Fx37TVCCwAAAAAUJLIAA06lUsmypR1ZPH7fdNbVlz1OKWqXVJLf3p9KpSKyAAAAAEBBIgswYHXW1adz+MiyxwAAAAAA+ikXvgcAAAAAACjAmSxryEWyXSQbAAD6k9rFC8oeoTS99dqtYd97rv5mIL92ABgoRJY14CLZr3GRbAAA6D+GzX2g7BH6PWvYO6wjALA+E1nWgItku0g2AAD0N4vH7ZPOYRuVPUYpahcv6JVv7FvD3okj1lFkAoD1mcjyJrhIds+U+ZFriY9dAwBgYOkctpH/f+kha9g7rCMAsD4TWVgn+spHriU+dg0AAAAAgN4hsrBO+Mi11/jYNQAAAACA9YfIwjrlI9cAAAAAAFhf1JY9AAAAAAAAQH8ksgAAAAAAABTg48IAAIA+pXbxgrJHKM1Afu0AANAfiSwAAECfMmzuA2WPAAAAsEZEFgAA6CUD/SyE3nr9i8ftk85hG/XKc/U3tYsXiEwAANCPiCwAANBLfHO8d3QO2yidw0eWPQYAAMBqiSwAANBLBvIZGImzMAAAgIFHZAEAgF7iDAwAAICBRWQBACDJwL6eyEB+7QAAABQnsgAAkMT1RAAAAODNElkAAEgysK8n4loiAAAAFCGyAACQxPVEAAAA4M2qLXsAAAAAAACA/khkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKEBkAQAAAAAAKGBQ2QMAAPRU7eIFZY9QqoH++gEAAKAsIgsAhQ3kb+z25mu3jj03bO4DvfI8AAAAAG+GyAJAYb6x3TusY88tHrdPOodtVPYYpaldvMD7CAAAAEogsgBQ2ED+xnZvflPbOvZ8HTuHbZTO4SN7YSIAAACANSeyAFCYb2z3DusIAAAA0D/Vlj0AAAAAAABAfySyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFCCyAAAAAAAAFLDeRJbLL788W265Zerq6jJx4sT86Ec/KnskAAAAAABgPbZeRJYbb7wxp512Ws4999w8+eST2XnnnTNlypS88MILZY8GAAAAAACspwaVPUBvuOSSS3LSSSflhBNOSJJceeWV+a//+q984xvfyBlnnLHC/h0dHeno6Oi6vXDhwjU6zgaV36V28YI3P2B1eWqWvvLmH7cWVIe8JanZ4E0/rmbpy71y/MJrmPSZdSy6hkkfWMc+soZJ+e/FpP+vY194L9YuqRR7YOerqe3ova9lT3QOfWtS++b/Oiz82nvzuaxj7zxPH1nHomuY9IF17CNrmHgv9gbvxd5R9nuxR89lHXv+PNawd57LOvbO8/SRdfT3S+/wXuw578XeUfZ7sSeWLFmStra2wo9vbW3t9ntPNDY2pq6ursfPU4a+so59YQ37fWRZunRpnnjiiZx55pld22prazN58uQ88sgjK33MzJkzc/7556/xMerr61Nbu0Hq5j3Z43n7s9raDVJfX1/osdbw/1jHnuvJGibW8XU9fS8OHjI0+e39vTxV/zJ4yNAevxetY8/W0Rr+H+vYc9awd1jHnvP3S+/wXuw578Xe4b3YO6xjz1nD3mEde66nf7/0VFtbW6ZOndrj52lubu7xc7S0tGTChAk9fp4y9JV17AtrWFOtVqulTtBDzz//fDbffPM8/PDD2WOPPbq2n3766bn//vszZ86cFR6zsjNZxo4dm0qlkhEjRqz0OL/85S/z3HPPFZpx2bJl+cMf/lDosb1t5MiRGTx4cKHHjh07Nttuu23hY/dkDZO+s449WcOk3HXsK2uYlPteTNaPdSz7vdje3p5KpdhPoHR0dGT+/PmFj92bRo0alaFDhxZ6bH19fRoaGnp0fOvY83XsyRomfWcde7KGSbnr2FfWMPFe7A3ei73D3y+9o7/+O20N/4919PfL6/z90ju8F3vOe7F3lP33S0/09AyM3tQXzsIoqq+s49pcw4ULF6a+vv4Nu0EyQCPLX1vTxQIAAAAAANZ/a9oN+v2F70eOHJkNNtgg7e3t3ba3t7dn1KhRJU0FAAAAAACs7/p9ZBkyZEh23XXX3H333V3bOjs7c/fdd3c7swUAAAAAAKA39fsL3yfJaaedluOOOy677bZb3vWud+Wyyy7LokWLcsIJJ5Q9GgAAAAAAsJ5aLyLLhz70obz44os555xzMn/+/LzjHe/IHXfcUeoFlAAAAAAAgPVbv7/wfW9w4XsAAAAAAOB1A+bC9wAAAAAAAGUQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoQWQAAAAAAAAoYVPYAfUG1Wk2SLFy4sORJAAAAAACAsr3eC17vB6sisiR56aWXkiRjx44teRIAAAAAAKCveOmll1JfX7/K+2uqq8swA0BnZ2eef/75bLjhhqmpqSl7nBUsXLgwY8eOzXPPPZcRI0aUPU6/ZR17h3XsOWvYO6xjz1nD3mEde84a9g7r2DusY89Zw95hHXvOGvYO69g7rGPPWcPeYR17zhr2jv6wjtVqNS+99FLGjBmT2tpVX3nFmSxJamtrs8UWW5Q9xmqNGDGiz77h+hPr2DusY89Zw95hHXvOGvYO69hz1rB3WMfeYR17zhr2DuvYc9awd1jH3mEde84a9g7r2HPWsHf09XV8ozNYXufC9wAAAAAAAAWILAAAAAAAAAWILP3A0KFDc+6552bo0KFlj9KvWcfeYR17zhr2DuvYc9awd1jHnrOGvcM69g7r2HPWsHdYx56zhr3DOvYO69hz1rB3WMees4a9Y31aRxe+BwAAAAAAKMCZLAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILAAAAAAAAAWILKz3Xn311fz3f/93rrrqqrz00ktJkueffz4vv/xyyZMBAPTMjBkz8sorr6ywffHixZkxY0YJEzFQeS/2jmuuuSYdHR0rbF+6dGmuueaaEiYCKNf48ePzxz/+cYXtCxYsyPjx40uYiIFu6dKleeaZZ/Lqq6+WPUq/dO6556a1tbXsMXpdTbVarZY9BGvuN7/5TU466aTcc889ZY/SL7S2tubAAw9MW1tbOjo68qtf/Srjx4/PKaecko6Ojlx55ZVlj9hvtbe356qrrso555xT9ij9wu9+97tstNFGeetb39pt+7Jly/LII49kn332KWmy/mXjjTdOTU3NCttrampSV1eXrbfeOscff3xOOOGEEqbrPx577LHce++9eeGFF9LZ2dntvksuuaSkqfqXXXbZZY3ei5MmTSphuv7jscceS2dnZyZOnNht+5w5c7LBBhtkt912K2my/mODDTbI73//+2y22Wbdtv/xj3/MZpttluXLl5c0Wf/y7LPPrvLPRf+ts2a8F3uHdaSvWL58ea6++urcfffdK/2z0fckVu6LX/ziGu/7yU9+ci1Osv6ora3N/PnzV/hzsb29PY2NjSsN06zo7rvvXuW/z9/4xjdKmqp/eeWVV/KJT3wi//mf/5kkXd9j/MQnPpHNN988Z5xxRskT9g/veMc78rOf/Sz77rtvTjzxxBx++OEZOnRo2WP12KCyB+DNefnll3P//feXPUa/ccopp2S33XbLT37yk2y66aZd29///vfnpJNOKnGy/m/+/Pk5//zzfeNhNX7/+9/n0EMPzRNPPJGampp8+MMfzhVXXNEVW/70pz9l0qRJ/od5DZ1zzjlpbm7OQQcdlHe9611Jkh/96Ee54447cvLJJ2fu3Ln553/+57z66qv+HV+FCy+8MGeddVb+5m/+Jg0NDd1CwcqiASt34IEH5itf+Up22mmnrvfiY489lp/+9Kc5/vjj8/TTT2fy5Mm5+eabc+ihh5Y8bd918skn5/TTT18hssybNy8XXXRR5syZU9Jk/Ue1Wl3pv7s/+clPsskmm5QwUf/z1a9+Nf/8z/+ckSNHZtSoUSv8uei/ddaM92LvWNU6/u53v0t9fX0JE/Ufq/oBiJV58skn1/I0/d8pp5ySq6++OgcffHB23HFH/524hi699NI12q+mpkZkWY3vfe97Xf/8gx/8oNufgcuXL8/dd9+dLbfcsoTJ+p/zzz8/M2bMyG677ZbRo0f797mgM888Mz/5yU9y33335cADD+zaPnny5Jx33nkiyxp66qmn8uMf/zizZs3KKaeckpNPPjlHHnlkPvKRj+Sd73xn2eMVJrL0Mav7qYd58+ato0nWDz/84Q/z8MMPZ8iQId22b7nlltZyNX7605++4f3PPPPMOpqkfzvjjDNSW1ubOXPmZMGCBTnjjDMyadKk3Hnnndl4442TvPY/06yZBx98MBdccEE+9rGPddt+1VVX5c4778x3vvOdvP3tb88Xv/hFkWUVvvCFL+Qb3/hGjj/++LJH6df+8Ic/5FOf+lTOPvvsbtsvuOCCtLa25s4778y5556bz372syLLG3j66afzt3/7tyts32WXXfL000+XMFH/8fqZfTU1NZkwYUK3/1levnx5Xn755RX+rGTlLrjggjQ3N+czn/lM2aP0S96LveP1QFBTU5MDDjgggwb93/+qL1++PHPnzu32DR1WdNhhh5U9wnrlhhtuyE033ZT3vOc9ZY/Sr8ydO7fsEdYbr/87XVNTk+OOO67bfYMHD86WW26Zz3/+8yVM1v9ceeWVufrqq3PMMceUPUq/duutt+bGG2/M7rvv3u2/d3bYYYf85je/KXGy/meXXXbJLrvsks9//vO57bbbMmvWrOy1117Zdtttc+KJJ+b444/vdz9cIrL8f+zdeViN+fsH8PcptG/InvaJNlJj3yPbSGUvMiLLkCbZKbJmKQ3miyaylybZlyJEydpqKqmQJbuYJFrO7w+X83PmJKc6+pyn7td1zfXTc873ut7X83vO9tyfz31Lmd9//x3NmzcXKQp88enTpxpOxG1lZWXl7hB49OgRVFRUGCTijvbt24PH45VbAPhynFY/fN+5c+dw+PBhQcubuLg4jBw5En379kV0dDQA2j1QGZGRkVi7dq3IcWtra3h6egIABg8eTCtIKiAjI4Nu3bqxjsF5YWFhuHXrlsjxMWPGwNLSEn/99RfGjh1L7de+Q05ODs+ePRPpp52Xlyd0g5GICggIAJ/Ph4uLC3x8fIR+hDRo0AA6Ojro0qULw4Tc8ebNG4wcOZJ1DM6ia1EyvtxMTEpKwoABA4RazH45j8OHD2eUjhuWLl3KOkKt0qBBAxgYGLCOQeqwLy2tdHV1cePGDTRu3JhxIu769OkTunbtyjoG57148UKkbR0AvH//nu7rVBGfz0dxcTE+ffoEPp8PDQ0NbNmyBV5eXvjrr78wevRo1hHFRr9epYy2tjbWrl2LUaNGlft4UlISLC0tazgVd9nY2CAgIACBgYEAPt/MLigowNKlS2lFznc0bNgQ69atg7W1dbmP//PPPxg6dGgNp+Ket2/fCnasAJ9vKEZERGDkyJHo06cP9u3bxzAd9zRs2BDHjx+Hh4eH0PHjx48LWpG8f/+eiqgV8PDwwJ9//omAgADWUThNXl4eV65cEbn5cOXKFcjLywP4/MPwy79J+WxsbLBw4UIcPXpUcGM2Pz8fixYtQv/+/Rmnk24TJkxASUkJeDwe+vbtCy0tLdaROGvkyJGIioqi3RZV9GV1sa6uLrp160YF0ipaunQpSktLoaOjAxsbGzRv3px1JFLHeXp64o8//sCWLVvo5mElzJ49W+zn0mIc8dDuoOqbPHkyDhw4ILILn1SOlZUVTp48CTc3NwD/v2A2KCiIFpRU0q1btxAcHIyQkBDIycnB2dkZf/75p+D39ebNmzFr1iwqspCqs7S0xK1bt75ZZPnWzgJSPj8/PwwYMADGxsYoKiqCo6Mj7t69i8aNGyMkJIR1PKlmaWmJJ0+eQFtbu9zH8/Pz6VoUg56eHlJSUmBoaCg4Vq9ePfz9998YOXIkfvnlF4bpuMfLywvTp0/HhQsXhOZgnDp1Ctu2bQMAnD17Fr169WIZU6rNmTMHQ4YMgb6+PoyNjVG/fn2hxyMiIhgl4xY3NzdMmzYNt27dEvSNvXHjBoKCgrBo0SIAn3detW/fnmFK6bdhwwb07NkT2trasLCwAPB5QUnTpk2xd+9exumkX7169TB9+nSkp6ezjsI5X7foNTAwgJeXF65evQozMzOR90XqmS8eFRUVpKenw8zMDABw9OhRBAcHw9jYGMuWLfvmTn3y/2RlZTF16lR6TVfRl9Z14nj9+vUPTsNNDg4OQn+fP38ep0+fhomJCX1nFFNiYqJYz6PCVcW+10r/a/Q5Xb6vC35lZWUIDAzEuXPnYG5uLvJ6poKfeFavXo1BgwYhLS0NJSUl+OOPP5CWloYrV67Q/OxKMDMzQ0ZGBmxsbLBjxw4MHToUsrKyQs8ZO3Ys3N3dGSWsGh6f7pJKlbS0NBQWFgpaC/1XcXFxhTe+iaiSkhKEhoYiJSUFBQUF6NChA5ycnKCgoMA6mlQ7fPgw3r9/j3HjxpX7+Js3b3Ds2DGR3qhE2Pz585GUlITIyEiRx0pKSjB8+HCcOHGCBt9XQlxcHLZs2SKYC2RkZAQ3Nzfa/iymmTNnIigoCH369BEZfA8AwcHBjJJxz/79+8u9Fh0dHQEAHz58AI/Ho90s3/H+/Xvs378fycnJUFBQgLm5OcaOHSvy44+Ur3fv3vj9999pFkEl6erqivU8Ho+HnJycH5ymdvj555+xYMECDB8+HDk5OTA2NoaDgwNu3LiBIUOG0A5KMVlZWWHt2rXf3E1Ovm337t1iP5d+w5Rv4sSJYj+XvjOSH4k+p6uvT58+Yj2Px+Ph/PnzPzhN7ZGdnQ1fX18kJycL7jHOnz9fsMiEfN+KFSvg4uKCli1bso4iUVRkIYSQH6ikpASFhYVQVVX95uOPHz+mwimpMSoqKggNDcWQIUNYRyGESEBYWBgWLlwIDw8PWFpaQklJSehxc3NzRslIXaOmpoaEhATo6+tj7dq1OH/+PCIjIxEXF4cxY8bg4cOHrCNywpkzZ7Bw4UKsWLGi3Nf0t75TEkIIIYQQdqjIwgG+vr6YNm0a1NXVWUfhnGPHjpV7/MvKYgMDA7FXSNRVsbGx6N69O+sYnEfnUXLKysqQlZWF58+fC4YhftGzZ09GqbhDW1sbkZGRaNOmDesotcKnT5/KvRZbt27NKBH33LlzB5s3bxa0x2nbti1mzpxJ16iYZGRkRI59aS/L4/Fop2QVlJaWIjU1Fdra2kJz1UjFVFVVcevWLRgaGqJ///745Zdf4O7ujtzcXBgZGeHDhw+sI3LC16/pr3eb0mu66oqKivDp0yehY1Ss+r579+6hpKREqO0xANy9exf169eHjo4Om2Acc/PmTYSFhSE3N1fkOqSWa4SVd+/e4fz582jTpg19566EhIQE1K9fn1qjVlNpaSl27dqF6Ojocn9Lc3VnFRVZOEBVVRVJSUnQ09NjHYVzZGRkyp1j8/XNh+7du+PIkSP0I/obGjRogJYtW2Ls2LEYN24cjI2NWUfiJDqPknH16lU4OjriwYMH5b6u6cbD9wUHB+PMmTMIDg6GoqIi6zicdffuXbi4uODKlStCx+kmWOUcOnQIY8aMgZWVlWBY5NWrV3Hjxg2EhoZi+PDhjBNKvwcPHlT4OO2U/L7ff/8dZmZmmDRpEkpLS9GzZ0/Ex8dDUVERJ06cQO/evVlH5IS+fftCS0sL/fr1w6RJk5CWlgYDAwPExMRgwoQJuH//PuuInPC9nu40d04879+/x/z58xEWFoZXr16JPE6f09/Xq1cvuLi4iLRW27dvH4KCgnDx4kU2wTgkNDQUzs7OGDBgAKKiomBjY4PMzEw8e/YM9vb21HJNTC4uLhU+vnPnzhpKwl2jRo1Cz549MXPmTHz48AHt2rXD/fv3wefz6Tt3JVBrVMmYOXMmdu3ahSFDhqB58+YiLcw3btzIKFn1UJGFA1RUVJCcnExFliqIjo7G4sWLsWrVKsGQ7OvXr8PLywtLliyBmpoapk6dik6dOmHHjh2M00qnly9fIjQ0FCEhIYiPj4e5uTmcnJwwduxYtGrVinU8zqDzKBnt27fHTz/9BB8fn3I/jNXU1Bgl4w4LCwtkZ2eDz+dDR0dHZO5FQkICo2Tc0q1bN9SrVw8LFiwo91ps164do2Tcoq+vDycnJyxfvlzo+NKlS7Fv3z5kZ2czSkbqklatWuHIkSOwsrLCkSNHMGPGDFy4cAF79+7F+fPnERcXxzoiJ6SkpMDJyQm5ubmYPXs2li5dCgBwc3PDq1evcODAAcYJSV3y5XW8YsUKjB8/Hn/++SceP36M7du3w9fXF05OTqwjSj1VVVUkJCTAwMBA6HhWVhasrKyQn5/PJhiHmJubY+rUqZgxY4bgvo6uri6mTp2K5s2bw8fHh3VETrC3txf6u7i4GLdv30Z+fj769u1LO4LE0KxZM0RGRqJdu3Y4cOAAli5diuTkZOzevRuBgYFITExkHZETqDWqZDRu3Bh79uzB4MGDWUeRKCqySCE+n4+HDx+iSZMmkJeXpyJLNZiamiIwMFBkIHZcXBymTJmCf/75B+fOnYOLiwtyc3MZpeSOe/fu4cCBAwgJCUFGRgZ69uzJ2W18LNF5rDolJSUkJyeL/Ngj4vvej7kvN8VIxZSUlHDr1i3aXl9NioqKSElJEXlN3717F+3atUNhYSGjZNySnZ2NgIAAQcs1Y2NjuLu7Q19fn3EybpCXl0dWVhZatWqFKVOmQFFREQEBAbh37x7atWuHd+/esY7IaUVFRZCVlRUp6pNvy8/Px44dOwSvaRMTE7i4uNBikkpo3bo19uzZg969ewsVC/bu3YuQkBCcOnWKdUSpp6amhosXL8LCwkLo+K1bt9C7d2/8+++/jJJxh5KSEv755x/o6OigUaNGuHjxIszMzJCeno6+ffsiLy+PdUTOKisrw/Tp06Gvr4958+axjiP1FBQUkJmZCS0tLTg7O6NFixbw9fVFbm4ujI2NUVBQwDoiJ1BrVMlo0aIFLl68iJ9++ol1FImqxzoAEcXn82FgYIB//vkHhoaGSEtLQ4sWLVjH4qTs7Oxy++2qqqoiJycHAGBoaIiXL1/WdDRO0tXVxYIFC9CuXTt4eXl9t50BKR+dx6rr1KkTsrKyqMhSDVREkQxjY2P67JCA3r174/LlyyKv6djYWPTo0YNRKm6JjIyEra0t2rdvj27dugH4vJjExMQEx48fR//+/RknlH5NmzZFWloamjdvjjNnzmDr1q0AgMLCQsjKyjJOxy35+fkIDw9HdnY25s6di4YNGyItLQ1NmzZFy5YtWcfjhJs3b2LAgAFQUFAQ7MT39/fHqlWrEBUVhQ4dOjBOyA2vX78WLFJUVVXF69evAQDdu3fH9OnTWUbjjJ49e2LNmjUICQkRvBeWlpZizZo1NGtSTBoaGoJiVMuWLXH79m2YmZkhPz+fFpJUk4yMDGbPno3evXtTkUUMWlpaiI+PR8OGDXHmzBmEhoYCAN68eQN5eXnG6bjDysoKK1euRL9+/RATEyP4znjv3j00bdqUcTru8PT0xB9//IEtW7aIdITgMiqySCEZGRkYGhri1atXMDQ0hJaWFutInGVpaYm5c+diz5490NTUBAC8ePEC8+bNw88//wzg82pZOsffFxcXh/379yM8PBxFRUUYNmwY1qxZwzoW59B5rB43Nzd4enri6dOnMDMzE1kVa25uzigZqWvWrl2LefPmYfXq1eVeizRQVzy2traYP38+bt26hc6dOwP4PJPl77//ho+PD44dOyb0XCJqwYIF8PDwgK+vr8jx+fPnU5FFDBMnTsSoUaMErf/69esHALh27RrtVquElJQUWFtbQ11dHffv34erqysaNmyIiIgI5ObmYs+ePawjcoKHhwdsbW3x119/oV69zz/XS0pKMHnyZPz++++4dOkS44TcoKenh3v37qF169Zo06YNwsLC0LFjRxw/fhzq6uqs43GCr68vevXqBSMjI8HCh8uXLwsGZpPv69mzJ86ePQszMzOMHDkS7u7uOH/+PM6ePQtra2vW8TgvOzsbJSUlrGNwwu+//w4nJycoKytDW1tbMG/u0qVLgiHu5PsCAgLg5OSEI0eOYPHixYKFYuHh4SIddMi3xcbG4sKFCzh9+jRMTExEfktztQUgtQuTUsePH8e6deuwdetWmJqaso7DWRkZGbCzs8O9e/cEhZSHDx9CT08PR48exU8//YQjR47g33//xfjx4xmnlU4LFy5EaGgonjx5gv79+8PJyQnDhg2jgdmVROdRMmRkZESO8Xg8GjZeCTIyMhWuFqFzKJ4v1+J/zyVdi5VT3mu6PHROv01eXh6pqakwNDQUOp6ZmQlzc3MUFRUxSsYt4eHhePjwIUaOHCmYlbZ7926oq6tj2LBhjNNxQ79+/dChQwesW7dOqN3xlStX4OjoSIPvxaSgoIDExESRAl9aWhqsrKxo9buYNm7cCFlZWcyaNQvnzp3D0KFDwefzUVxcDH9/f7i7u7OOyAlPnjzBli1bkJycDAUFBZibm2PmzJlo2LAh62ic8Pr1axQVFaFFixYoKyvDunXrcOXKFRgaGmLJkiXQ0NBgHZETZs+eLfQ3n89HXl4eTp48iQkTJmDLli2MknHLzZs38fDhQ/Tv3x/KysoAgJMnT0JdXV2wG5pUDbVGrZyJEydW+HhwcHANJZEsKrJIKQ0NDRQWFqKkpAQNGjSAgoKC0ONftjuT7ysrK0NUVBQyMzMBAEZGRujfv7/YN3bqum7dusHJyQmjRo1C48aNWcfhLDqPkvHgwYMKH9fW1q6hJNx19OhRob+Li4uRmJiI3bt3w8fHB5MmTWKUjFu+1+avV69eNZSE1HVaWlrw9/fHyJEjhY6HhYVhzpw5NHOO1Jivh8F+XWR58OABjIyMqOAnpqZNm2Lv3r2wsbEROh4ZGQlnZ2c8e/aMUTJue/DgAW7dugUDAwPa+SyG4uJiDBw4ENu2bRMp4hNS0/r06SP0t4yMDDQ1NdG3b1+4uLgIdv0RQghL9E4kpQICAlhH4Lzi4mIoKCggKSkJAwcOxMCBA1lH4qS4uDjBv0NCQmBrawslJSWGibiJzqNkUBGl+spbkT1ixAiYmJjg4MGDVGQRExVRapaZmRlOnTpF7T3L4erqiilTpiAnJ0fQpiAuLg5r164VWflJ/t+mTZswZcoUyMvLY9OmTRU+d9asWTWUitvk5OTw7t07keOZmZmCtr3k+0aPHo1JkyZhw4YNQq/puXPnYuzYsYzTcdOjR4+gpaVF3yMroX79+khJSWEdo9Z4/vw5nj9/jrKyMqHjVPATz4ULF1hH4KTZs2djxYoVUFJS+u53Qn9//xpKxW2lpaXYuHEjwsLCkJubi0+fPgk9Tgvi6zbayUJqNT09PRw+fBjt2rVjHaVWUFVVRVJSkmCIJKkaOo/Vk52djYCAAKSnpwP4PIDc3d0d+vr6jJNxW05ODszNzVFQUMA6Cmfk5+djx44dgmvRxMQELi4uUFNTY5ys9vl6VTwRxufzERAQAD8/Pzx58gQA0KJFC8ydOxezZs2qVcMkJUlXVxc3b95Eo0aNoKur+83n8Xg85OTk1GAy7po8eTJevXqFsLAwNGzYECkpKZCVlYWdnR169uxJi8jE9OnTJ8ydOxfbtm0TzBqoX78+pk+fDl9fX8jJyTFOyD303btqPDw8ICcnJzLzi4jv1q1bmDBhAtLT0/HfW2/UCpX8aH369MHhw4ehrq4ushvoazwej+Ysicnb2xtBQUHw9PTEkiVLsHjxYty/fx9HjhyBt7c3LcypQIcOHRAdHQ0NDQ1YWFhU+BslISGhBpNJDhVZpFh2djaCg4ORnZ2NP/74A02aNMHp06fRunVrmJiYsI7HCTt27EBERAT27t1LfWMlgG5ySQadx6qLjIyEra0t2rdvL+gbGxcXh+TkZBw/fpwGPFfRhw8fsHDhQpw+fRp37txhHYcTbt68iQEDBkBBQQEdO3YEANy4cQMfPnxAVFQUOnTowDhh7ULvm+L5999/AXw+X4TUtLdv32LEiBG4efMm/v33X7Ro0QJPnz5Fly5dcOrUKdrBW0mFhYXIzs4GAOjr69Mcv2qgz5CqcXNzw549e2BoaAhLS0uR1zCtfP++du3aQV9fH/Pnz0fTpk1FbirS7irxhYeHf3P3AFdvyBLu0dfXx6ZNmzBkyBCoqKggKSlJcOzq1as4cOAA64hSy8fHB3PnzoWioiKWLVtWYZFl6dKlNZhMcqjIIqViYmIwaNAgdOvWDZcuXUJ6ejr09PTg6+uLmzdvIjw8nHVETrCwsEBWVhaKi4uhra0t8sWQPowrh36gSAadx6qzsLDAgAEDRFbULViwAFFRUfSaFoOGhobQFxo+n49///0XioqK2LdvH2xtbRmm444ePXrAwMAAf/31l6APdElJCSZPnoycnBxcunSJccLahd43CeGOL4sfCgoK0KFDB/Tr1491JFLH0WdI1dDK9+pTUVFBYmIiDAwMWEfhtE2bNmHx4sX49ddfERgYiIkTJyI7Oxs3btzAjBkzsGrVKtYRSR2hpKSE9PR0tG7dGs2bN8fJkyfRoUMH5OTkwMLCAm/fvmUdkTBEM1mk1IIFC7By5UrMnj1baDVi3759sWXLFobJuMXOzo51hFrl9OnTaNmyJesYnEfnserS09MRFhYmctzFxYXakIhp48aNQkWWL4MjO3XqBA0NDYbJuOXmzZtCBRYAqFevHubNmwcrKyuGyUhd8+zZM8yZMwfR0dF4/vy5SDsSakVSvsrMq6HV2uLZs2cPRo8ejW7dugl2mwKf21+FhobC2dmZYTrueP/+PXx9fQWv6f/OcKD2dZW3aNEi6mpQBTQHo/qsra2RnJxMRZZq+t///ofAwECMHTsWu3btwrx586Cnpwdvb2+agVEBBwcHsZ8bERHxA5PUHq1atUJeXh5at24NfX19QQeDGzduUDvPStDT08ONGzfQqFEjoeP5+fmCohUXUZFFSqWmppa7zaxJkyZ4+fIlg0TcxNUtZtKmpKQEFy9eRHZ2Ntq1awc5OTk8efIEqqqqUFZWZh2PM+g8Vp+mpiaSkpJgaGgodDwpKQlNmjRhlIpbfv31V9YRagVVVVXk5uaiTZs2QscfPnxIrZpIjfr111+Rm5sLLy8vNG/enGawiCkxMVGs59H5FN/EiRMxcOBAkc/jf//9FxMnTqQii5gmT56MmJgYjB8/nl7TErJgwQLWEUgdFRQUhAkTJuD27dswNTVF/fr1hR6nHeTiyc3NRdeuXQEACgoKgvao48ePR+fOnWkh8jfQnEjJs7e3R3R0NDp16gQ3NzeMGzcOO3bsQG5uLjw8PFjH44z79++XuxDs48ePePToEYNEkkFFFimlrq6OvLw8kUGciYmJtAKe1KgHDx5g4MCByM3NxcePH9G/f3+oqKhg7dq1+PjxI7Zt28Y6IifQeZQMV1dXTJkyBTk5OYIv2nFxcVi7dm2lViXXNSkpKTA1NYWMjAxSUlIqfK65uXkNpeK20aNHY9KkSdiwYYPQtTh37lyMHTuWcTpSl8TGxuLy5cto37496yicQiu0JY/P55dbEHj06BHd6KmE06dP4+TJk0K7gUjV7NixAxs3bsTdu3cBAIaGhvj9998xefJkxsm44+bNm9+cg0Er378vPj4ecXFxOH36tMhjNPhefM2aNcPr16+hra2N1q1b4+rVq2jXrh3u3bsnsoOX/L/g4GDWEWqdr9uWjx49Gq1bt0Z8fDwMDQ0xdOhQhsm44dixY4J/R0ZGCn0/LC0tRXR0tMh9cC6hIouUGjNmDObPn4+///4bPB4PZWVliIuLw5w5c2gVWCWUlpZi48aN3/xiSFtLv8/d3R1WVlZITk4W2spnb28PV1dXhsm4hc6jZHh5eUFFRQV+fn5YuHAhAKBFixZYtmwZZs2axTid9Grfvj2ePn2KJk2aoH379uDxeOX+IKEfe+LbsGEDeDwenJ2dUVJSAgCoX78+pk+fLjIziIinqKgI8vLy5T62fft2NG3atIYTcYOWlhbdYJCgL6vnWrVqxTgJd1hYWIDH44HH48Ha2lqojWJpaSnu3buHgQMHMkzILRoaGtTaSgK8vb3h7+8PNzc3dOnSBcDnG94eHh7Izc3F8uXLGSeUfl/a/A0YMABRUVGwsbFBZmYmnj17Bnt7e9bxOOHLSncvLy/6HlMNffv2xbFjx2BhYYGJEyfCw8MD4eHhuHnzZqVaYhHgxYsXuHPnDgDAyMgImpqajBNxW5cuXQSfMeT7vox04PF4mDBhgtBj9evXh46ODvz8/BgkkwwafC+lPn36hBkzZmDXrl0oLS1FvXr1UFpaCkdHR+zatQuysrKsI3KCt7c3goKC4OnpiSVLlmDx4sW4f/8+jhw5Am9vb7opK4ZGjRrhypUrMDIyEhoaef/+fRgbG6OwsJB1RE6g8yh5X7aJU2um73vw4AFat24NHo+HBw8eVPhcbW3tGkpVOxQWFiI7OxsAoK+vD0VFRcaJuKWsrAyrVq3Ctm3b8OzZM2RmZkJPTw9eXl7Q0dHBpEmTWEeUelFRUfDz88P27duho6PDOg4nlZWVYeXKlfDz80NBQQGAz58tnp6eWLx4MWRkZBgnlG4+Pj6C/+vp6SnUArVBgwbQ0dHB8OHD0aBBA1YROWXfvn04evQodu/eTZ8p1aCpqYlNmzaJ7C4NCQmBm5sbteAWg7m5OaZOnYoZM2YIfr/o6upi6tSpaN68ueC1T75NRUUFSUlJ0NfXZx2F08rKylBWViYo4oeGhuLKlSswNDTE1KlT6fNFDO/fv4ebmxv27NkjmPUlKysLZ2dnbN68mT5vKuHOnTvYvHkz0tPTAQBt27aFm5sbjIyMGCfjDl1dXdy4cQONGzdmHUWiaCeLlGrQoAH++usveHl54fbt2ygoKICFhYXIHAJSsf379+Ovv/7CkCFDsGzZMowdOxb6+vowNzfH1atXqcgihrKysnJXtj969IhublcCnUfJo/Mmvq8LJ1REkSxFRUWYmZmxjsFZK1euxO7du7Fu3TqhXX2mpqYICAigIss3aGhoCLVlev/+vaDI999+77Rr9/sWL16MHTt2wNfXV9CiKTY2FsuWLUNRURFWrVrFOKF0+zIDUUdHB6NHj/7mjjTybV92A32RlZWFpk2bQkdHR+Q1nZCQUNPxOKm4uBhWVlYixy0tLQU7UEnFsrOzMWTIEACf70+8f/8ePB4PHh4e6Nu3LxVZxODg4IALFy5QkaUKHBwcsGvXLqiqqmLfvn0YPXq0oMgyZswYjBkzhnFCbpk9ezZiYmJw/Phxoe86s2bNgqenJ7Zu3co4ITccOnQIY8aMgZWVlWAHy9WrV2FqaorQ0FAMHz6ccUJuuHfvnljPMzMzw6lTp6ClpfWDE0kG7WThgC//L6Khh5WnpKSE9PR0tG7dGs2bN8fJkyfRoUMH5OTkwMLCAm/fvmUdUeqNHj0aampqCAwMhIqKClJSUqCpqYlhw4ahdevW1OdTTHQeq+6/Nx4qQjceyvd179PvoQGc31aZdgTUp1w8BgYG2L59O6ytrYV2+WVkZKBLly548+YN64hSaffu3WI/979b8YmoFi1aYNu2bSLvf0ePHsVvv/2Gx48fM0pG6orK3Kz+UtQiFXNzc0P9+vXh7+8vdHzOnDn48OED/vzzT0bJuKNVq1Y4ffo0zMzMYG5ujoULF2Ls2LGIj4/HwIED6be0GFatWoWAgAAMGTIEZmZmIkVTWvT5bQ0aNMCDBw/QvHlzyMrKIi8vD02aNGEdi7MaN26M8PBw9O7dW+j4hQsXMGrUKLx48YJNMI7R19eHk5OTSMvJpUuXYt++fYIOB0Qyvv59yAW0k0WK0aC+6mvVqhXy8vLQunVr6OvrIyoqCh06dMCNGzcgJyfHOh4n+Pn5YcCAATA2NkZRUREcHR1x9+5dNG7cGCEhIazjcQadx6r70reTVN1/z+F/Z7J8XcSimSzfRoObJe/x48cwMDAQOV5WVobi4mIGibiBCieS9fr1a7Rp00bkeJs2bWgnUCXQLMSqo8KJZMyePVvwbx6Ph6CgIERFRaFz584AgGvXriE3N5dmnIqpZ8+eOHv2LMzMzDBy5Ei4u7vj/PnzOHv2LKytrVnH44SgoCAoKysjJiYGMTExQo/xeDwqslSgTZs2WLhwIfr06QM+n4+wsDCoqqqW+1x6TX9fYWFhuXOBmjRpQq3LKyEvL6/c623cuHFYv349g0REmtBOFin1rUF9W7ZsgYeHBw3qE9OCBQugqqqKRYsW4eDBgxg3bhx0dHSQm5sLDw8PGk4sppKSEoSGhiIlJQUFBQXo0KEDnJycoKCgwDoap9B5rDkhISGwtbWFkpIS6yhS59y5c5g/fz5Wr14t9PmyZMkSrF69Gv3792ecsHaJi4uDlZUVFfa/wdLSEh4eHhg3bpzQSqXly5fj7NmzuHz5MuuIUi8hIQH169cXtK07evQogoODYWxsjGXLllGfcjF06tQJnTp1wqZNm4SOu7m54caNG7h69SqjZNxCsxAl4+HDh+DxeGjVqhUA4Pr16zhw4ACMjY0xZcoUxumkW58+fcR6Ho/Hw/nz539wGu57/fo1ioqK0KJFC5SVlWHdunWCORhLliyBhoYG64ikFrty5Qpmz56N7OxsvH79GioqKuV2N+DxeFTEF4O1tTUaNWqEPXv2CNp6fvjwARMmTMDr169x7tw5xgm5YfDgwRg5ciQmTpwodDw4OBihoaGIjIxklKx24tpOFiqySCka1PdjxMfHIz4+HoaGhhg6dCjrOISQH0RVVRVJSUmc+TCuSaampti2bRu6d+8udPzy5cuYMmWKYIAfkQy6Fit29OhRTJgwAQsXLsTy5cvh4+ODO3fuYM+ePThx4gQV/cTw888/Y8GCBRg+fDhycnJgbGwMBwcH3LhxA0OGDEFAQADriFIvJiYGQ4YMQevWrYWKzw8fPsSpU6fQo0cPxgm5QV9fH5s2bcKQIUOEhj1v2rQJV69exYEDB1hH5IQePXpgypQpGD9+PJ4+fYqffvoJpqamuHv3Ltzc3ODt7c06IiGkikpLS5GamgptbW0qUlWCjIwMnj59Su3CquH27dsYMGAAPn78iHbt2gEAkpOTIS8vj8jISJiYmDBOKL2+br395MkTeHt7Y9SoUYJdklevXsXff/8NHx8fTJs2jVXMWomKLEQi1NXVcePGDZFB95mZmejYsSPy8/PZBCN1zrdmOfB4PMjLy8PAwAC6uro1nIp76DzWLK59GNckBQUF3LhxA6ampkLHU1JS0KlTJ3z48IFRstqJrsXvu3z5MpYvX47k5GTBLj9vb2/Y2NiwjsYJampqSEhIgL6+PtauXYvz588jMjIScXFxGDNmDB4+fMg6Iic8efIEf/75JzIyMgAAbdu2xW+//YYWLVowTsYdNAtRMjQ0NHD16lUYGRlh06ZNOHjwIOLi4hAVFYVp06YhJyeHdURSh2RnZyM4OBjZ2dn4448/0KRJE5w+fRqtW7emm7Ji+P3332FmZoZJkyahtLQUPXv2RHx8PBQVFXHixAmR+RikfA8ePEDr1q1pTnE1FRYWYv/+/ULfdaizxvfJyMiI9Twej0ettyWMa7+laSaLlBo/fjy2bt0qMqgvMDAQTk5OjFJxAw14liw7OzuR+Q3A/8904PF46N69O44cOUKrcSpA55FIi59//hmzZ8/G3r17BX15nz17hrlz56Jjx46M05G6qEePHjh79izrGJzF5/NRVlYG4HM7wF9++QUAoKWlRTufK6FFixZYtWoV6xicRrMQJaO4uFhwvs6dOyf4vdKmTRvk5eWxjFYrZGdnw9XVldqFiSEmJgaDBg1Ct27dcOnSJaxatQpNmjRBcnIyduzYgfDwcNYRpV54eDjGjRsHADh+/Dju37+PjIwM7N27F4sXL0ZcXBzjhNygra2Ny5cvY/v27cjOzkZ4eDhatmyJvXv3QldXV2SHPimfoqIiXF1dWcfgnC/fswn5HvHKcYSJHTt2wNTUFJMnT8bkyZNhZmaGv/76CzIyMpg9e7bgPyLMzs5OrP/s7e1ZR+WEs2fP4ueff8bZs2fx9u1bvH37FmfPnkWnTp1w4sQJXLp0Ca9evcKcOXNYR5VqdB6JtNi5c6fgJpiBgQEMDAzQunVrPH78GDt27GAdjxBSSVZWVli5ciX27t0raHsFAPfu3St3wCkp35s3b7BhwwZMmjQJkyZNgp+fH/V4ryR7e3tER0cD+DzPxsvLC4aGhnB2doaLiwvjdNxhYmKCbdu24fLlyzh79iwGDhwI4PNuq0aNGjFOx30FBQUiA8hJ+RYsWICVK1fi7NmzQvO9+vbtS7OqxPTy5Us0a9YMAHDq1CmMHDkSP/30E1xcXJCamso4HXccOnQIAwYMgIKCAhITE/Hx40cAwNu3b7F69WrG6bjjzp07mDlzJqytrWFtbY2ZM2cKdrUQyTIzM6Pd5BKwfft2Tv2eoXZhUoqG9hFpYWpqisDAQHTt2lXoeFxcHKZMmYJ//vkH586dg4uLC3JzcxmllH50HmsW17aV1jQ+n4+zZ88KbRXv168fbcH/AeharJiGhsY3h5h+aaX466+/igyXJP8vJSUFTk5OyM3NxezZs7F06VIAn29yv3r1iuZgiOHSpUsYOnQo1NTUYGVlBQC4desW8vPzcfz4cfTs2ZNxQm6iWYhVc/HiRdjb2+Pdu3eYMGECdu7cCQBYtGgRMjIyEBERwTihdNu0aVOFjz9+/BgbNmygli5iUFZWRmpqKnR1dYW+z9y/fx9t2rRBUVER64hST1tbG3/99Resra2hq6uLrVu3YsiQIfjnn3/QvXt3vHnzhnVETrCwsICHhwecnZ2FrsXExEQMGjQIT58+ZR1R6h06dAhjxoyBlZWVYP7c1atXcePGDYSGhmL48OGME9Yu9BtQ1Pc+n782a9asH5jkx6F2YVLqwoULrCPUKWZmZjh16hS0tLRYR5E62dnZUFVVFTmuqqoq6AltaGhILUm+g84jkSY8Hg82Njbo2bMn5OTkqLjyA9G5rZi3tzdWrVqFQYMGCdrVXb9+HWfOnMGMGTNw7949TJ8+HSUlJdTe4BvMzc3LXQ27fv16yMrKCv4OCQmBra0tlJSUajIeJ8yYMQOjR4/G1q1bBeestLQUv/32G2bMmEGrjauoS5cughs5RHy9e/fGy5cv8e7dO6EWslOmTIGioqLg77i4OFhZWVErtv/4/fff0bx5c6GdF1/79OlTDSfiLnV1deTl5YnMjUxMTETLli0ZpeKWiRMnYtSoUWjevDl4PB769esHALh27RratGnDOB133Llzp9wFD2pqajSvWEzz5s3DwoULsXz5cqHjS5cuxbx586jIQn64jRs3ivU8Ho9HRRbyY7179w7nz59HmzZt6MP4B7h//z6Ki4tZx5BKlpaWmDt3Lvbs2QNNTU0AwIsXLzBv3jz8/PPPAIC7d+9Sgeo76DzWLG1tbdSvX591DKlUVlaGVatWYdu2bXj27BkyMzOhp6cHLy8v6OjoYNKkSawj1iq0YbhisbGxWLlyJaZNmyZ0fPv27YiKisKhQ4dgbm6OTZs2UZGlkuTl5YX+njp1Kjp16kQr6sqRlZWF8PBwoaKUrKwsZs+ejT179jBMJv1oFuKPISsrKzKjT0dHR+jvQYMGISkpiV7T/6GtrY21a9di1KhR5T6elJQES0vLGk7FTWPGjMH8+fPx999/g8fjoaysDHFxcZgzZw6cnZ1Zx+OEZcuWwdTUFA8fPsTIkSMFRVFZWVksWLCAcTruaNasGbKyskTeB2NjY+k9UEx5eXnlvm7HjRuH9evXM0hE6pp79+6xjvDDUZFFSo0aNQo9e/bEzJkz8eHDB1hZWeH+/fvg8/m0lY/UqKCgINjZ2aFVq1aCAsDDhw+hp6eHo0ePAvjc23jJkiUsY0o9Oo+Soaenhxs3boj0JM/Pz0eHDh0Eu4Ju377NIh4nrFy5Ert378a6deuEblqbmpoiICCAiiwS9u+//7KOINUiIyOxdu1akePW1tbw9PQEAAwePJhuREgAFfy+rUOHDkhPT4eRkZHQ8fT0dLRr145RKm6ws7MT63k8Ho/aM0kYvabLZ2lpiVu3bn2zyMLj8ejciWn16tWYMWMGtLS0UFpaCmNjY5SWlsLR0ZF+s1TCiBEjRI5NmDBB6G/qrFExV1dXuLu7Y+fOneDxeHjy5Ani4+MxZ84ceHl5sY7HCb1798bly5dhYGAgdDw2NhY9evRglIqQ2oWKLFLq0qVLWLx4MQDg8OHD4PP5yM/Px+7du7Fy5UoqspAa06ZNG6SlpSEqKgqZmZkAACMjI/Tv3x8yMjIAxP+BXZfReZSM+/fvl3uT5uPHj3j8+DGDRNyzZ88eBAYGwtraWmj3QLt27WjwoZhOnTqFiIgINGzYEC4uLkI7TN+8eYPhw4fTvDQxNWzYEMePH4eHh4fQ8ePHj6Nhw4YAgPfv30NFRYVFPFJHzJo1C+7u7sjKykLnzp0BfO5T/ueff8LX1xcpKSmC55qbm7OKKZXKyspYRyBEyPLly1FYWPjNx42NjevEalpJaNCgAf766y94e3sjNTUVBQUFsLCwgKGhIetotQ511qjYggULUFZWBmtraxQWFgpaHs+ZMwdubm6s43GCra0t5s+fj1u3bgl91/n777/h4+MjtDOVdp6SmvDo0SMcO3YMubm5Iq08/f39GaWqHhp8L6UUFBSQmZkJLS0tODs7o0WLFvD19UVubi6MjY1RUFDAOmKtQkOpyldcXAwFBQUkJSXB1NSUdRzOovNYfV++9NnZ2WH37t1QU1MTPFZaWoro6GicPXsWd+7cYRWRMxQUFJCRkQFtbW2h9760tDR07NiRPl++48CBA3B2dsbAgQPx9u1b3Lx5E0FBQXBycgIAPHv2DC1atKAV22L666+/MH36dAwePFgwk+XGjRs4deoUtm3bhkmTJsHPzw/Xr1/HwYMHGaflNvqu821fFjt8y5eV77QbQzJoxbZk0GtaMmi2jfhKS0uRmpoKbW1tkXZ2pHro9SyeT58+ISsrCwUFBTA2NoaysjLrSJzxve86X9B3Hcmg13TFoqOjYWtrCz09PWRkZMDU1FTQvalDhw6cXbBIO1mklJaWFuLj49GwYUOcOXMGoaGhAD6vkP1vj21CfpT69eujdevW9CFbTXQeq+/LLh8ejyeyvb5+/frQ0dGBn58fg2TcY2xsjMuXL0NbW1voeHh4OCwsLBil4o7169fD399fMIwvLCwMLi4uKCoqolZrVeDq6gpjY2Ns2bIFERERAD7v8ouJiUHXrl0BQNA2jJAfhVa11yxasU2kCc22+bbff/8dZmZmmDRpEkpLS9GrVy9cuXIFioqKOHHiBHr37s06IqljGjRoAGNjY9YxOIl2ntas7du3o2nTpqxjSK2FCxdizpw58PHxgYqKCg4dOoQmTZrAyckJAwcOZB2vyqjIIqV+//13ODk5QVlZGdra2oIvMJcuXYKZmRnbcKROWbx4MRYtWoS9e/cKWreQyqPzWD1fvhTq6urixo0baNy4MeNE3OXt7Y0JEybg8ePHKCsrQ0REBO7cuYM9e/bgxIkTrONJvbt372Lo0KGCv0eNGgVNTU3Y2tqiuLgY9vb2DNNxS3FxMaZOnQovLy+EhISwjkPqsP8WnQnhAh6PxzpCrUCNPb4tPDwc48aNA/C5jWdOTg4yMjKwd+9eLF68GHFxcYwTktrMwcFB7Od+WahDxPPo0SO0aNFC7N0tdd2mTZvEfu6XhXiOjo4/Kk6tkJ6eLvj9V69ePXz48AHKyspYvnw5hg0bhunTpzNOWDVUZJFSv/32Gzp27IiHDx8KzWzQ09PDypUrGaerfajK/G1btmxBVlYWWrRoAW1tbSgpKQk9npCQwCgZt9B5lIzyVhvn5+dDXV295sNw1LBhw3D8+HEsX74cSkpK8Pb2RocOHXD8+HH079+fdTypp6qqimfPnkFXV1dwrE+fPjhx4gR++eUXPHr0iGE6bqlfvz4OHTpEA0triLa2NurXr886htRTVVWlVe2EE6g4QH60ly9folmzZgA+z6MbNWoUfvrpJ7i4uOCPP/5gnI7Udl+3h+bz+Th8+DDU1NRgZWUFALh16xby8/MrVYwhnxkbG9N3nUrYuHGjWM/j8XiCIgupmJKSkmAOS/PmzZGdnQ0TExMAnz97uIqKLFLMyspK8AHyxZAhQxil4Q6qMksWDWOXDDqPkrF27Vro6Ohg9OjRAICRI0fi0KFDaN68OU6dOoV27doxTsgNPXr0wNmzZ1nH4KSOHTvi9OnTgoGRX/Tq1QvHjx/HL7/8wigZN9nZ2eHIkSMig++J+PT09HDjxg00atRI6Hh+fj46dOiAnJwcAMDt27dZxOMcunFNuOLff/9lHYHUck2bNkVaWhqaN2+OM2fOYOvWrQCAwsJCyMrKMk5Harvg4GDBv+fPn49Ro0Zh27ZtgmuvtLQUv/32G1RVVVlF5Cz6rlM51FZW8jp37ozY2Fi0bdsWgwcPhqenJ1JTUxERESHyO5tLqMgiRWbPno0VK1ZASUkJs2fPrvC5/v7+NZSKe6jKLFlLly5lHaFWoPMoGdu2bcP+/fsBAGfPnsW5c+dw5swZhIWFYe7cuYiKimKckFsKCgpE+vPSD5WKeXh44MqVK+U+1rt3bxw/fhx79uyp4VTcZWhoiOXLlyMuLg6WlpYiu/zoc/r77t+/X+7Mr48fP+Lx48cMEhFCqurUqVOIiIhAw4YN4eLigjZt2ggee/PmDYYPH87ZYbCEeyZOnIhRo0ahefPm4PF46NevHwDg2rVrQtcmqT7qrFGxnTt3IjY2Vqi4Jysri9mzZ6Nr165Yv349w3SEkMry9/dHQUEBAMDHxwcFBQU4ePAgDA0NOX2/m4osUiQxMVEwBDIxMfGbz6P+uxWjKjMhtdfTp0+hpaUFADhx4gRGjRoFGxsb6OjooFOnTozTccO9e/cwc+ZMXLx4EUVFRYLjfD4fPB6v3Ju15P/16tULvXr1+ubjffr0QZ8+fWowEbft2LED6urquHXrFm7duiX0GC2GqNixY8cE/46MjBRqq1FaWoro6Gjo6OgwSMZt48aNo2IzYeLAgQNwdnbGwIEDcefOHWzevBlBQUFwcnICAHz69AkxMTGMU9Y+9Nv625YtWwZTU1M8fPgQI0eOhJycHIDPN7cXLFjAOJ30os4akldSUoKMjAwYGRkJHc/IyKCB7lWwaNEimhNbDY8ePcKxY8eQm5sraHn1BZcLBDXp61Z1SkpK2LZtG8M0ksPj0z4xQkgFSktLsXHjRoSFhZX7IfL69WtGybiFzqNktGjRAuHh4ejatSuMjIywcuVKjBw5Enfu3MHPP/+Md+/esY4o9bp16wY+nw93d3c0bdpU5OZCRQUE8v/69euHcePGwcHBgW7IEia+zOvj8XgibR/q168PHR0d+Pn5UQs7wkRRURHk5eXLfezAgQMYNmyYyM61us7CwgITJ04U3HQNCwsTzL6YNGkSnj17hhYtWtBiCAlTUVFBcnIyzSaoBjMzM5w6dUqwEKqu+3puX0V4PJ6gpSep2OzZs7Fnzx4sWrQIHTt2BPB5R5Wvry/Gjx9PN7ZJjYmOjoatrS309PSQkZEBU1NT3L9/H3w+Hx06dKDdpmK6ceMGysrKRBbKXrt2DbKysiKjM7iCdrKQWo+qzNXj4+ODoKAgeHp6YsmSJVi8eDHu37+PI0eOwNvbm3U8zqDzKBkODg5wdHSEoaEhXr16hUGDBgH4vPvPwMCAcTpuSE5Oxq1bt0RWgpHKMTExwcKFC/Hbb79hyJAhGDduHAYPHkyDxUmN+bJyU1dXFzdu3EDjxo0ZJ+K26OhobNy4Eenp6QCAtm3b4vfffxe0xyHfV1ZWhlWrVmHbtm149uwZMjMzoaenBy8vL+jo6GDSpEkAaMX2t9y9exdDhw4V/D1q1ChoamrC1tYWxcXFsLe3Z5iOez58+AA+nw9FRUUAwIMHD3D48GEYGxvDxsZG8DyabVN99+/fF3TkINRZ40fYsGEDmjVrBj8/P+Tl5QH4PCx77ty58PT0ZJxO+p09exaxsbHo1asX+vbti0uXLmHNmjX4+PEjxo8fj4kTJ7KOyBkLFy7EnDlz4OPjAxUVFRw6dAhNmjSBk5MTBg4cyDoeZ8yYMQPz5s0TKbI8fvwYa9euxbVr1xglqx7aySKl3r9/D19fX0RHR+P58+ciWyBpxYN4qMpcffr6+ti0aROGDBkCFRUVJCUlCY5dvXoVBw4cYB2RE+g8SkZxcTH++OMPPHz4EL/++issLCwAfJ7FpKKigsmTJzNOKP369OmDxYsX041DCSgrK8O5c+dw4MABHD58GLKyshgxYgScnJxoR1Al0GIIycvPz4e6ujrrGJzxv//9D+7u7hgxYgS6dOkCALh69SrCw8OxceNGzJgxg3FCbli+fDl2796N5cuXw9XVFbdv34aenh4OHjyIgIAAxMfHs44o1Vq0aFHuwNeYmBj88ssvcHd3x5o1a2gni5hsbGzg4OCAadOmIT8/H23atEH9+vXx8uVL+Pv7Y/r06awj1hq0G4jUpC+dC8rbSR4XFwcrKytBazsC7Nu3DxMnToS5uTkyMzOxefNmeHh4YMSIESgrK8O+ffuwf/9+jBgxgnVUTvj6Xo6GhgZiY2NhYmKC5ORkDBs2DPfv32cdkROUlZWRkpIi8rlx7949mJubc3YBBBVZpNTYsWMRExOD8ePHCwbNfc3d3Z1RMm7p2LEjBg0aJKgyJycnC1WZ6cv19ykpKSE9PR2tW7dG8+bNcfLkSXTo0AE5OTmwsLDA27dvWUfkBDqPRFpkZ2dj2rRpGDduHExNTUV2XpibmzNKxm1FRUU4fvw4Vq1ahdTUVLoJJiZaDFF9a9euhY6ODkaPHg0AGDlyJA4dOoTmzZvj1KlTaNeuHeOE0q9Vq1ZYsGABZs6cKXT8zz//xOrVq/H48WNGybjFwMAA27dvh7W1tdBN14yMDHTp0gVv3rxhHVGq2dnZoV27dvDx8RF57OLFi/jll1/w4cMH+nwRU+PGjRETEwMTExMEBQVh8+bNSExMxKFDh+Dt7S3YtUaqj4osFaPFJDVHVVUVSUlJdC1+5etWlNHR0Rg6dChWrVoFDw8PAICfnx8OHz6M2NhYxkm5oVmzZrhw4QLatm0LY2Nj+Pr6wtbWFsnJyejWrZtgmDupWKNGjXDixAnB4qYvrly5giFDhnD2OyO1C5NSp0+fxsmTJ9GtWzfWUTgtPT0dISEhAIB69erhw4cPUFZWxvLlyzFs2DAqsoihVatWyMvLQ+vWraGvr4+oqCh06NABN27coBUilUDnUXL27t2L7du3IycnB/Hx8dDW1kZAQAB0dXUxbNgw1vGk3osXL5CdnS20LfzLTAcafF81T58+RWhoKPbt24eUlBRBr2jyfbTlvvq2bduG/fv3A/jcDuLcuXM4c+YMwsLCMHfuXERFRTFOKP3y8/PLvd5sbGwwf/58Bom46fHjx+W27iwrK6NWQmLw8PDAlStXyn2sd+/eOH78OPbs2VPDqbirsLAQKioqAICoqCg4ODhARkYGnTt3xoMHDxinI3XF9xaTEMmiNeSivm5FaW1tjZKSElhbWwseHzJkCNasWcMqHud07twZsbGxaNu2LQYPHgxPT0+kpqaWuxOVfJuNjQ0WLlyIo0ePQk1NDcDn7+OLFi1C//79GaerOhnWAUj5NDQ00LBhQ9YxOE9JSUmwWqR58+bIzs4WPPby5UtWsTjF3t4e0dHRAAA3Nzd4eXnB0NAQzs7OcHFxYZyOO+g8SsbWrVsxe/ZsDBo0CPn5+YKCgLq6OgICAtiG4wgXFxdYWFggPj4eOTk5uHfvntD/JeJ59+4dgoOD0b9/f2hpaWHr1q2wtbXF3bt3cfXqVdbxOCM9PR3Ozs4ARBdDrF27lnE6bnj69Klg2PCJEycwatQo2NjYYN68ebhx4wbjdNxga2uLw4cPixw/evQofvnlFwaJuMnY2BiXL18WOR4eHi5o70m+rVevXli4cOE3H+/Tpw+Cg4NrMBG3GRgY4MiRI3j48CEiIyMFc1ieP39ebpshQn6EL4tJUlNTIS8vj0OHDuHhw4fo1asXRo4cyToeqQPq168vtINKTk4OysrKQn9/+PCBRTRO8vf3F8wR8fHxgbW1NQ4ePAgdHR3s2LGDcTru2LBhAx4+fAhtbW306dMHffr0ga6uLp4+fQo/Pz/W8aqMdrJIqRUrVsDb2xu7d+8WDOsjlUdV5urz9fUV/Hv06NFo3bo14uPjYWhoKDSck1SMzqNkbN68GX/99Rfs7OyEzqmVlRXmzJnDMBl3PHjwAMeOHSt3tTERX9OmTaGhoYHRo0djzZo1sLKyYh2Jk8pbDGFiYgKAFkOIS0NDAw8fPoSWlhbOnDmDlStXAvi8mpN2pn3bpk2bBP82NjbGqlWrcPHiRaGZLHFxcTRQtxK8vb0xYcIEPH78GGVlZYiIiMCdO3ewZ88enDhxgnU8zujXrx/GjRsHBwcHKgZUg7e3NxwdHeHh4QFra2vBazsqKoqKfqTGUGcNwpqBgQEyMjJgZGQE4POu0y+7/IDPraRbtWrFKh7nfN2KTklJCdu2bWOYhrtatmyJlJQU7N+/H8nJyVBQUMDEiRMxduxYkXbmXEJFFiliYWEhNHslKysLTZs2hY6OjshFlpCQUNPxOMnf31/QE9HHxwcFBQU4ePAgDA0Nqf9pFXXp0kWkbyKpPDqPVXPv3r1yfxjLycnh/fv3DBJxT9++fZGcnExFlmo6duwYrK2tISNT8aZgGsBZMVoMUX0ODg5wdHSEoaEhXr16hUGDBgEAEhMT6XVegY0bNwr9raGhgbS0NKSlpQmOqaurY+fOnViyZElNx+OkYcOG4fjx41i+fDmUlJTg7e2NDh064Pjx45xu/VDTTExMsHDhQvz2228YMmQIxo0bh8GDB3P6pgMLI0aMQPfu3ZGXlyc0m8ra2hr29vYMk9U+27dvR9OmTVnHkEq0mISwtmjRImhoaAj+/m/x/ubNmxg1alRNx+KsGzduoKysTLCb5Ytr165BVlaWFt5VgpKSEqZMmcI6hkTR4HspUt6Qw29ZunTpD0xC6rpjx46J/VxbW9sfmITb6DxKnrGxMdasWYNhw4YJDdncvHkzgoODqQAthsDAQKxcuRIuLi4wMzMTuWlD16Jk0QDOiuXk5KCgoADm5uZ4//49PD09ceXKFcFiCG1tbdYRpV5xcTH++OMPPHz4EL/++qugEL1x40aoqKhg8uTJjBOSuqCkpASrV6+Gi4sLrYiVgLKyMpw7dw4HDhzA4cOHISsrixEjRsDJyQm9evViHY/UYl/v8vueWbNm/cAktYOdnR2GDBkCV1dXzJkzB0ePHsWvv/6KiIgIaGho4Ny5c6wj1ir0vZv8aB07dsS8efMwYsQIoeMRERFYu3Ytrl27xigZ92RnZyMgIADp6ekAPt/rcXd3h76+PuNkVUdFFlKrUZW5ar63MvsLGpJdMTqPkhcUFIRly5bBz88PkyZNQlBQELKzs7FmzRoEBQVhzJgxrCNKvYquS7oWJe/rYiAhhNRmysrKuH37NnR0dFhHqVWKiopw/PhxrFq1CqmpqfQ5LaaioiJs3rwZFy5cwPPnz1FWVib0OC3MKZ+urq7Q3y9evEBhYSHU1dUBfB5MrKioiCZNmtAsPzHQYpKaRd+7yY+mrKyMlJQUkWvs3r17MDc3x7///ssoGbdERkbC1tYW7du3R7du3QB87gCRnJzM6R3Q1C5MSnl7e6NPnz7o0qUL5OXlWcfhrBkzZmDevHkiRZbHjx9TlbkC//0RQqqGzqPkTZ48GQoKCliyZAkKCwvh6OiIFi1a4I8//qACi5jouiSk9tm7dy+2b9+OnJwcxMfHQ1tbGwEBAdDV1cWwYcNYx+Oshw8fYunSpdi5cyfrKJxgbW2NmJgYKrJI0NOnTxEaGop9+/YhJSUFHTt2ZB2JMyZNmoSoqCiMGDECHTt2FGrLTb7t3r17gn8fOHAA//vf/7Bjxw7BPIc7d+7A1dUVU6dOZRWRU2h+g+SUlJTg4sWLyM7OhqOjI1RUVPDkyROoqqoKBrnTDW5R169fh6WlJWRlZQEAJ06cwPr165GVlYXmzZtj1qxZcHZ2ZpySO+Tk5PDs2TORIkteXh7q1aNb7OJasGABPDw8hObsfjk+f/58zhZZaCeLlOrfvz/i4+NRUlKCn3/+Gb169ULv3r3RrVs3KCgosI7HGVRlrjlmZmY4deoUtLS0WEfhNDqP4issLERBQQGaNGnCOkqtRNeiZNCKOlEaGhpi3+x6/fr1D07DfVu3boW3tzd+//13rFq1Crdv34aenh527dqF3bt348KFC6wjclZycjI6dOhAOwfEtG3bNvj4+MDJyQmWlpZQUlISepzaUYrn3bt3OHToEA4cOICLFy9CT08PTk5OcHJy4nQLjZqmpqaGU6dOCVbIksrT19dHeHi4yDzEW7duYcSIEUIFGVI+6qwhGQ8ePMDAgQORm5uLjx8/IjMzE3p6enB3d8fHjx+peFUBWVlZ5OXloUmTJjh+/Djs7Owwbtw4dOrUCYmJidi1axfCwsJoVpWYxo4di7y8PBw9ehRqamoAPu/ws7OzQ5MmTRAWFsY4ITfIy8sjNTUVhoaGQsczMzNhbm6OoqIiRsmqh8psUurs2bMoKSnBtWvXcOnSJcTExGDTpk34+PEjfv75Z8TGxrKOyAlUZa459+/fR3FxMesYnEfnsWJ9+/ZFREQE1NXVoaioCEVFRQCfb0jY2dnh/PnzjBPWHnQtkh8lICCAdYRaZfPmzfjrr79gZ2cntBrMysoKc+bMYZhM+n1vdhq1wqmc3377DQDg7+8v8hi1oxRf06ZNoaGhgdGjR2PNmjV0E7aKWrZsCRUVFdYxOC0vLw8lJSUix0tLS/Hs2TMGibiHOmtIhru7O6ysrJCcnIxGjRoJjtvb28PV1ZVhMun39br6devWYd68eVizZo3gmK6uLtatW0dFFjFt2LABPXv2hLa2tqAAnZSUhKZNm2Lv3r2M03GHpqYmkpKSRIosSUlJnF5ES3eZpVi9evXQrVs3aGpqomHDhlBRUcGRI0eQkZHBOhpn2NjYYOHChSJV5kWLFnF2+xkhddnFixfx6dMnkeNFRUW4fPkyg0SEVIzak4iaMGFCpf83vr6+mDZtmqAnPPl/9+7dE1llDHxeaPL+/XsGibjDzs4OPB4PFW3sp9ew+KgdpWQcO3YM1tbW353tFxcXBysrK8jJydVQMm7x8/PD/PnzsW3bNpp7UUXW1taYOnUqgoKC0KFDBwCfd7FMnz4d/fr1Y5yOG9LS0gTn7msWFhZIS0tjkIibLl++jCtXrqBBgwZCx3V0dPD48WNGqbgnMzNTZLHT8OHDsX79ejaBOKhly5ZISUnB/v37kZycDAUFBUycOBFjx45F/fr1WcfjDFdXV0yZMgU5OTno2rUrgM/fa9auXYvZs2czTld1VGSRUoGBgbh48SJiYmLw8eNH9OjRA71798aSJUtgbm7OOh5nUJWZkNohJSVF8O+0tDQ8ffpU8HdpaSnOnDmDli1bsohGSIWoK6tkrF69GqNGjaIiSzl0dXWRlJQkchPxzJkzaNu2LaNU3NC8eXP873//++bcmqSkJFhaWtZwKlLXibsQbNCgQUhKSqJ2lN9gZWWFoqIi6OnpQVFRUeTmF7Wj/L6dO3diwoQJsLKyEpy/kpISDBgwAEFBQYzTcQN11pCMsrKycndDPnr0iHasieHL72cFBYVyF0SUt2ONfJuSkhKmTJnCOganeXl5QUVFBX5+fli4cCEAoEWLFli2bBlmzZrFOF3V0bu6lJo2bRo0NTXh6emJ3377TTDIi1QOVZkJqR3at28PHo8HHo+Hvn37ijyuoKCAzZs3M0hG6jIawFlzqFj1bbNnz8aMGTNQVFQEPp+P69evIyQkBGvWrKGbYN9haWmJW7dufbPI8r1dLkTY8uXLK3zc29u7hpLUDXRtVmzs2LF4/PgxVq9ejaZNm9KutCrQ1NTEqVOnkJmZKeim0aZNG/z000+Mk3EHddaQDBsbGwQEBCAwMBDA58/ngoICLF26FIMHD2acTvpZW1sLPjPi4uLw888/Cx5LTExE69atWUXjpOzsbAQEBCA9PR0AYGxsDHd3d5qbVgk8Hg8eHh7w8PAQ/F6uDQVTGnwvpY4cOYJLly7h4sWLSE9Ph4WFBXr37o3evXuje/fugjkEhEgLGu4sGXQey/fgwQPw+Xzo6enh+vXr0NTUFDzWoEEDNGnSBLKysgwT1j50LVaMBnDWLLoeK7Z//34sW7YM2dnZAD6vBPPx8cGkSZMYJ5Nuly9fxvv37zFw4MByH3///j1u3ryJXr161XAybvpv27ri4mLcu3cP9erVg76+PhISEhglq53ofbFiioqKiI+PR7t27VhHIXXY48eP0bNnT7x69Uqks8bZs2ehpaXFOCE3PHr0CAMGDACfz8fdu3dhZWWFu3fvonHjxrh06RKnZzj8aA8ePBD6W1lZWWiuzZ49ewAAzs7ONZqLqyIjI2Fra4v27dujW7duAD4XrpKTk3H8+HEqntZxVGThgLdv3+Ly5cv4+++/ERISAhkZGRQVFbGOxRlUZa4Z9ENPMug8EmlB12LF7OzsoKKigh07dqBRo0aCc3Xx4kW4urri7t27rCPWKnQ9iqewsBAFBQV0s4FIjXfv3uHXX3+Fvb09xo8fzzpOrULvixXr0KED/ve//6Fz586so3BWaWkpdu3ahejoaDx//lykzdD58+cZJeOW9+/fC3XWMDc3p84aVVBSUoLQ0FCkpKSgoKAAHTp0gJOTExQUFFhHI3WIhYUFBgwYAF9fX6HjCxYsQFRUFC0oqYCFhYXYu0q5eh6pXZgUe/XqFWJiYnDx4kVcvHgR//zzDzQ0NNCjRw/W0TjjW1VmExMTqjJL2Pbt29G0aVPWMTiPzqN40tLSkJubi0+fPgkdt7W1ZZSo9qFrsWI0gJNIi759+yIiIgLq6upQVFQU7HZ+9+4d7Ozs6CZYJYWEhMDW1hZKSkqso9QKqqqq8PHxwdChQ6nIQmqUr68vPD09sWrVKpiZmYnc0FZVVWWUjDvc3d2xa9cuDBkyBKamptRyrYpofoNk1KtXD+PGjWMdo1YYMmQIgoKC0Lx5c9ZROCc9PR1hYWEix11cXBAQEFDzgTjEzs6OdYQfjoosUsrMzAzp6enQ0NBAz5494erqil69etHQ+0pasGABPDw8yq0yz58/n4os37Bp0yaxn/tlKJWjo+OPisNZdB4lLycnB/b29khNTRXqlf/lR195AxEJXYs/Ag3gJNLi4sWLIgVnACgqKsLly5cZJOK2qVOnolOnTrQ7QILevn2Lt2/fso5R69AN74p9aQPYt29foXPF5/PB4/HoO6MYQkNDERYWRjMvqok6a1TNsWPHxH4uLbSrnEuXLuHDhw+sY3CSpqYmkpKSYGhoKHQ8KSmJdpJ/x9KlSyv9v+Ha4icqskipadOmoVevXjA1NWUdhdOoylw1GzduFOt5PB5PcEOWiKLzKHnu7u7Q1dVFdHQ0dHV1cf36dbx69Qqenp7YsGED63hSi65FyaMBnDWrR48e1A7iP1JSUgT/TktLw9OnTwV/l5aW4syZM2jZsiWLaJxGnZSr7r8FfT6fj7y8POzduxeDBg1ilKr2omu1YhcuXGAdgfMaNGgAAwMD1jE4jTprVJ24q96paEpqkqurK6ZMmYKcnBx07doVwOfX9Nq1azF79mzG6Wofri1+opksHKeqqoqkpCTOXHA1TUtLC/7+/hg5cqTQ8bCwMMyZMwe5ubmMkhFCqqJx48Y4f/48zM3NoaamhuvXr8PIyAjnz5+Hp6cnEhMTWUckdQQN4Ky6d+/eif1caufybTIyMoLV2eV9nVdQUMDmzZvh4uJS09E4jeZcVJ2urq7Q3zIyMtDU1ETfvn2xcOFC2uVXCSUlJbh48SKys7Ph6OgIFRUVPHnyBKqqqlBWVmYdjzOKioqQkpJS7jwRWvn+fX5+fsjJycGWLVto51QV0fwGIg1KSkpw4MABDBgwAE2bNoWpqSlOnz4NLS0t1tE4h8/nIyAgAH5+fnjy5AkAoEWLFpg7dy5mzZpF75USxrXv5VRk4TiuXXA1bfny5di4cSMWLFhQbpXZy8uLcUJCSGVoaGggISEBurq60NfXR1BQEPr06YPs7GyYmZmhsLCQdURSh9AAzqr5ujjwPbQy8dsePHgAPp8PPT09XL9+HZqamoLHGjRogCZNmkBWVpZhQm4oLi6GgoICkpKSYGpqitjYWPz888+Qk5NjHY3UUQ8ePMDAgQORm5uLjx8/IjMzE3p6enB3d8fHjx+xbds21hE54cyZM3B2dsbLly9FHqOV7+Kxt7fHhQsX0LBhQ5iYmIjMtYmIiGCUjDvk5eWRmpoq0looMzMT5ubmKCoqYpSM1DWKiopIT0+HtrY26yi1xr///gsAtIjkB+LaPW9qF0ZqNS8vL6ioqMDPzw8LFy4E8LnKvGzZMmqJUwmPHj3CsWPHyh007u/vzygV99B5rD5TU1MkJydDV1cXnTp1wrp169CgQQMEBgZy5oNXGtC1KBk0gLNqvm7hcv/+fSxYsAC//vorunTpAgCIj4/H7t27sWbNGlYROeHLj+T/rs4mlVO/fn20bt1acMO1e/fujBNx1549e/Dzzz+jbdu2QseLiooQFhYGZ2dnRsm4xd3dHVZWVkhOTkajRo0Ex+3t7eHq6sowGbe4ublh5MiR8Pb2RtOmTVnH4SR1dXXY29uzjsFpNL9BMr41X5LH40FeXh4GBgbo2bMnLS6pQMeOHZGUlERFFgmi4gr5L9rJwnFcq+qxRFXmqomOjoatrS309PSQkZEBU1NT3L9/H3w+Hx06dMD58+dZR+QEOo+SERkZiffv38PBwQFZWVn45ZdfkJmZiUaNGuHgwYPo27cv64hSj67FqqMBnJJnbW2NyZMnY+zYsULHDxw4gMDAQFy8eJFNMA5KS0srt3BK1+L37dixAxEREdi7dy8aNmzIOg5nycjIQElJCbt27cLw4cMFx589e4YWLVrQzgExNWrUCFeuXIGRkZHQb7379+/D2NiYdu2KSVVVFYmJiTRcnDBFnTUkQ1dXFy9evEBhYSE0NDQAAG/evIGioiKUlZXx/Plz6Onp4cKFC9QC6xvCwsKwcOFCeHh4wNLSUmSQuLm5OaNk0s/CwkLsXfjUAlCyuHbPm4osHMe1C45wT8eOHTFo0CD4+PgIrrcmTZrAyckJAwcOxPTp01lH5AQ6jz/O69evoaGhQf1PxUTXYtXJyMiI9TxqQyI+RUVFJCcnl9tGo3379nQzUQw5OTmwt7dHamoqeDyeYD7Ll/dEuha/z8LCAllZWSguLoa2trbIjQf6wSweGRkZbNiwAUuWLMG8efOwbNkyAFRkqSwNDQ3ExcXB2NhY6LdebGwshg8fjmfPnrGOyAkuLi7o1q0bJk2axDoKqcNofoNkhISEIDAwEEFBQYLCaVZWFqZOnYopU6agW7duGDNmDJo1a4bw8HDGaaVTeb9jvnxvpN8uFfPx8RH7uUuXLv2BSeoert3zpiILx9Hge1FUZZYsFRUVJCUlQV9fHxoaGoiNjYWJiQmSk5MxbNgw3L9/n3VETqDzSKQFXYtEmhgZGWHYsGFYt26d0PF58+bh6NGjuHPnDqNk3DF06FDIysoiKCgIurq6uH79Ol69egVPT09s2LABPXr0YB1R6n3vxzP9YBaPjIwMnj59Kij8devWDXv37sW7d++oyFIJo0ePhpqaGgIDA6GiooKUlBRoampi2LBhaN26NYKDg1lH5ITCwkKMHDkSmpqaMDMzE5knQq2jxRMeHo6wsLByd0rSb+nKoc4aVaevr49Dhw6hffv2QscTExMxfPhw5OTk4MqVKxg+fDjy8vLYhJRyDx48qPBxaiMmWSEhIbC1tRVZuEM+LwCLi4uDubk51NXVK3yuqakpTp8+zZkdajSTheOoRibKzs6OdYRaRUlJSfCFunnz5sjOzoaJiQkAlDtIkpSPzmPVOTg4iP1cGsD5fXQtEmmyceNGDB8+HKdPn0anTp0AANevX8fdu3dx6NAhxum4IT4+HufPn0fjxo0hIyMDGRkZdO/eHWvWrMGsWbOQmJjIOqLUoyKKZHxZ5NS5c2dcu3YNtra26Nq1Kw1qryQ/Pz8MGDAAxsbGKCoqgqOjI+7evYvGjRsjJCSEdTzOCAkJQVRUFOTl5XHx4kWhRXg8Ho+KLGLYtGkTFi9ejF9//RVHjx7FxIkTkZ2djRs3bmDGjBms43EOFVeqLi8vDyUlJSLHS0pK8PTpUwCfdwh9KWQRUVREqVlTp05Fp06daEF8OWRlZWFjY4P09PTvFllu375dM6EkhIosHHf69Gm0bNmSdQypUpUfylRl/rbOnTsjNjYWbdu2xeDBg+Hp6YnU1FRERESgc+fOrONxBp3HqlNTU2MdoVaha1EyaACnZAwePBiZmZnYunUrMjIyAHzemTFt2jTOrFhirbS0VHDjpnHjxnjy5AmMjIygra1NO4Gq4LfffsPy5cvRuHFj1lE45+vFX61bt8aVK1fg5OSE/v37M0zFPa1atUJycjJCQ0ORkpKCgoICTJo0CU5OTlBQUGAdjzMWL14MHx8fLFiwQOx2n0TY//73PwQGBmLs2LHYtWsX5s2bBz09PXh7e+P169es40kt6qwheX369MHUqVMRFBQECwsLAJ93sUyfPl0wkzM1NRW6urosY0q13bt3o3HjxhgyZAiAz7vGAwMDYWxsjJCQECrCSBgtiK+YqakpcnJyat1rltqFSZHZs2eL/Vx/f/8fmKTuobZr35aTk4OCggKYm5vj/fv38PT0xJUrV2BoaAh/f3/6MBYTnceaFRcXBysrK8jJybGOInXoWpQMGsBJpEWPHj3g6ekJOzs7ODo64s2bN1iyZAkCAwNx69Ytzq0AY42+E1adj48P5s6dC0VFRaHjS5cuxaVLl3DhwgVGyUhd1LBhQ9y4cYMG31eDoqIi0tPToa2tjSZNmuDs2bNo164d7t69i86dO+PVq1esI0olmt8geU+fPsX48eMRHR0taP1XUlICa2tr7N27F02bNsWFCxdQXFwMGxsbxmmlk5GREbZu3Yq+ffsiPj4e1tbWCAgIwIkTJ1CvXj3qCCFhXJslUtPOnDmDhQsXYsWKFbC0tBRZ8K6qqsooWfVQkUWK9OnTR+jvhIQElJSUwMjICMDnIbCysrKwtLTE+fPnWUSstegNkJDahW6SkR+NBnBWXUpKCkxNTSEjI4OUlJQKn2tubl5DqbgrMjIS79+/h4ODA7KysvDLL78gMzMTjRo1wsGDBwUrPIl46Dth9aWlpZU7v8HW1pZRIul37NgxsZ9L51E8Hh4e0NTUxKJFi1hH4Sw9PT0cOnQIFhYWsLKygqurK6ZOnYqoqCiMGTOGdrNIEHXWEE9GRgYyMzMBfC4afLlXRr5PUVERGRkZaN26NebPn4+8vDzs2bMH//zzD3r37o0XL16wjlir0PfJin29w/TrnX98Ph88Ho+zc/yoXZgU+Xp1l7+/P1RUVLB7926hFbITJ06kAaakRt24cQNlZWWCXvlfXLt2DbKysrCysmKUjFvoPNYsWj/wbXQtSsaSJUtw6NAhoRWyBgYG2LBhg2AA57p16zB8+HCGKaVT+/bt8fTpUzRp0gTt27cHj8cr9zXL5S/YNWnAgAGCfxsYGCAjIwOvX7+GhoaG2O1KCJGEnJwcODg4ICUlReh1/eU6pNfzt4k7U5LeF8VXWlqKdevWITIyEubm5iKD76kzxPf17dsXx44dg4WFBSZOnAgPDw+Eh4fj5s2blZqZSL6P5jeIp02bNoLCCn3HqRxlZWW8evUKrVu3RlRUlKCTjry8PD58+MA4HalrauvuZiqySCk/Pz9ERUUJCiwAoKGhgZUrV8LGxgaenp4M05G6ZMaMGZg3b57IDdnHjx9j7dq1uHbtGqNk3ELnkUgLuhYlgwZwVt29e/egqakp+DeRvIYNG7KOwFn0mq06d3d36Ojo4Ny5c9DV1cX169fx6tUreHp6YsOGDazjSbWysjLWEWqd1NRUweyG/7ZNpJuz4gkMDBRcmzNmzECjRo1w5coV2NraYurUqYzT1S60QOz79uzZg/Xr1+Pu3bsAgJ9++glz587F+PHjGSfjhv79+2Py5MmwsLBAZmYmBg8eDAD4559/oKOjwzYcqXN69erFOsIPQUUWKfXu3btyt+u9ePGCfvyRGpWWloYOHTqIHLewsEBaWhqDRNxE55FIC7oWJYMGcFbdl7k/xcXF8PHxgZeXF52nSqrMCmLqsf19CQkJqF+/PszMzAAAR48eRXBwMIyNjbFs2TI0aNCAcUJuiI+Px/nz59G4cWPIyMhARkYG3bt3x5o1azBr1iwkJiayjkjqkNq6SrYmfXkdfzFmzBiMGTNG5Hm//fYbli9fjsaNG9dkPFKH+Pv7w8vLCzNnzkS3bt0AALGxsZg2bRpevnwJDw8Pxgml359//oklS5bg4cOHOHToEBo1agQAuHXrFsaOHcs4HTeUlpYiLi4O5ubmUFdXr/C52traIjsoibDLly9j+/btyMnJwd9//42WLVti79690NXVRffu3VnHqxIqskgpe3t7TJw4EX5+fujYsSOAz61c5s6dS1tzSY2Sk5PDs2fPRLYu5+XloV49egsRF51HIi3oWpSMHTt2YPz48bC0tBQZwLljxw4An7fl+/n5sYwp1erXr49Dhw7By8uLdRTOUVNTYx2hVpk6dSoWLFgAMzMz5OTkYMyYMbC3t8fff/+NwsJCBAQEsI7ICaWlpVBRUQEANG7cGE+ePIGRkRG0tbVx584dxum4Y9OmTeUe5/F4kJeXh4GBAXr27AlZWdkaTkZI+fbt24c5c+ZQkYX8MJs3b8bWrVvh7OwsOGZrawsTExMsW7aMiixiUFdXx5YtW0SO+/j4MEjDTbKysrCxsUF6evp3iyz/3UFJhB06dAjjx4+Hk5MTEhIS8PHjRwDA27dvsXr1apw6dYpxwqqhwfdSqrCwEHPmzMHOnTtRXFwMAKhXrx4mTZqE9evX00A0MVSmymxqaorTp09DS0urZsJxyNixY5GXl4ejR48Kburk5+fDzs4OTZo0QVhYGOOE3EDnsWbR4Ptvo2tRsmgAZ/VMmDAB7du3px/HNSAuLg5WVlaQk5NjHUXqqKmpISEhAfr6+li7di3Onz+PyMhIxMXFYcyYMXj48CHriJzQo0cPeHp6ws7ODo6Ojnjz5g2WLFmCwMBA3Lp1i244iElXVxcvXrxAYWGh0GxORUVFKCsr4/nz59DT08OFCxfotwuRCjTgufroHFZMXl4et2/fhoGBgdDxu3fvwszMDEVFRYySSbeUlBSxn2tubv4Dk9QeVlZWWLt2LaytrVlH4TQLCwt4eHjA2dlZ6P0vMTERgwYNErTf5hoqski59+/fIzs7GwCgr69PxZVKkpeXR3p6OrUhqYbHjx+jZ8+eePXqlaAlTlJSEpo2bYqzZ8/Sjzsx0XmsWfRD5dvoWpS8/w53JuJbuXIl/Pz8YG1tDUtLS5HvObNmzWKUrPah4vO3qaqq4tatWzA0NET//v3xyy+/wN3dHbm5uTAyMqKBsGKKjIzE+/fv4eDggKysLPzyyy/IzMxEo0aNcPDgQUErRVKxkJAQBAYGIigoCPr6+gCArKwsTJ06FVOmTEG3bt0wZswYNGvWDOHh4YzTEkLfuyWBzmHFTE1N4ejoiEWLFgkdX7lyJQ4ePIjU1FRGyaSbjIwMeDzeN2f+fHmMx+OhtLS0htNx05kzZ7Bw4UKsWLGi3N8uqqqqjJJxi6KiItLS0qCjoyP0/peTkwNjY2POFk6pyEJqNaoyS8b79++xf/9+JCcnQ0FBAebm5hg7diz1mKwkOo+SUVJSgosXLyI7OxuOjo5QUVHBkydPoKqqCmVlZdbxOIGuRcmgAZzVV9EiCB6Ph5ycnBpMU7vRDZxv69u3L7S0tNCvXz9MmjQJaWlpMDAwQExMDCZMmID79++zjshZr1+/hoaGBhWhK0FfXx+HDh1C+/bthY4nJiZi+PDhyMnJwZUrVzB8+HDk5eWxCUnIV+jzpXzUWUNyDh06hNGjR6Nfv36CmSxxcXGIjo5GWFgY7O3tGSeUTg8ePBD7uV9mJpKKfT2n6uvvNlSsqhw9PT0EBgaiX79+Qp8he/bsga+vL2dnxVLzdSnVp0+fCn+MnD9/vgbTcNfKlSsxZ84cqjJXk5KSEqZMmcI6BufReay+Bw8eYODAgcjNzcXHjx/Rv39/qKioYO3atfj48SO2bdvGOiIn0LVYfTSAUzLu3bvHOgIhCAgIgJOTE44cOYLFixcL2pGEh4eja9eujNNxW8OGDVlH4Jy8vDyUlJSIHC8pKRG0z2jRogX+/fffmo5GCKkEmt8gOcOHD8e1a9ewceNGHDlyBADQtm1bXL9+XbAzn4gSt3BCa+/Fd+HCBdYRagVXV1e4u7tj586d4PF4ePLkCeLj4zFnzhxOz+ukIouU+u/KpeLiYiQlJeH27duYMGECm1AcNHjwYACfh6JRlbnqsrOzERAQgPT0dACAsbEx3N3dBS0MiHjoPFafu7s7rKyskJycjEaNGgmO29vbw9XVlWEybqFrsfpoAKfkUds1woq5uXm5rUbWr19Pw8VJjevTpw+mTp2KoKAgwc3DxMRETJ8+XdByLTU1ldohE8IBpqamyMnJoderBFhaWmLfvn2sY3DWr7/+ij///FNk4fH9+/cxfvx4XL58mVEybunVqxfrCLXCggULUFZWBmtraxQWFqJnz56Qk5PDnDlz4ObmxjpelVGRRUpt3Lix3OPLli1DQUFBDafhLqoyV19kZCRsbW3Rvn17oa25JiYmOH78OPr37884ITfQeZSMy5cv48qVK2jQoIHQcR0dHTx+/JhRKm6ha1Ey8vLyyl3h3rVrV2rfUkk7duzAxo0bBW3XDA0N8fvvv2Py5MmMk5G6Tl5ennUEUgft2LED48ePh6WlpaCNZ0lJCaytrbFjxw4AgLKyMvz8/FjGJERg3Lhx1CHiG6izhuSUlpbiyJEjgkViJiYmsLW1pcUQYkpOToa5uTn27duHLl26AAB2796NWbNm0cy0Srp8+TK2b9+OnJwc/P3332jZsiX27t0LXV1ddO/enXU8TuDxeFi8eDHmzp2LrKwsFBQUwNjYmPPt32kmC8dkZWWhY8eOeP36NesopI6wsLDAgAED4OvrK3R8wYIFiIqKQkJCAqNk3ELnUTI0NDQQFxcHY2Njod6dsbGxGD58OJ49e8Y6otSja1EyaACnZHh7e8Pf3x9ubm6CH3zx8fHYsmULPDw8sHz5csYJaw8afC+sMnNC6Hs3YSEjIwOZmZkAACMjIxgZGTFOROqClJQUsZ9rbm7+A5PUDjS/QTKysrIwZMgQPHr0SPBeeOfOHWhpaeHkyZO0G18MxcXFWLRoETZt2gRPT09kZWXh9OnT8Pf3p44QlXDo0CGMHz8eTk5O2Lt3L9LS0qCnp4ctW7bg1KlTOHXqFOuInPPw4UMAqBUzqajIwjF79+7F/Pnz8eTJE9ZROIOqzNUjLy+P1NRUGBoaCh3PzMyEubk5ioqKGCXjFjqPkjF69GioqakhMDAQKioqSElJgaamJoYNG4bWrVsjODiYdUSpR9eiZNAATsnQ1NTEpk2bMHbsWKHjISEhcHNzw8uXLxklq31oMLGw3bt3i/1catVLWKE2iqSmycjIgMfjCYoAFaECwffFxMRU+Di1HhLP4MGDwefzsX//fsGsr1evXmHcuHGQkZHByZMnGSfkjqVLl2LFihWoV68eYmJiBIuciHgsLCzg4eEBZ2dnoe/WiYmJGDRokGB2GqlYSUkJfHx8sGnTJkG3JmVlZbi5uWHp0qWCnbxcQ+3CpJSDg4PQ33w+H3l5ebh58yanhwDVtK+rzAkJCfj48SMA4O3bt1i9ejVVmcWgqamJpKQkkRuySUlJaNKkCaNU3EPnUTL8/PwwYMAAGBsbo6ioCI6Ojrh79y4aN26MkJAQ1vE4ga5FyaABnJJRXFwMKysrkeOWlpblDn4m5SspKcHFixeRnZ0NR0dHqKio4MmTJ1BVVRVsu6ch2cKocEKk2Z49e7B+/XpBG8WffvoJc+fOxfjx4xknI7XdvXv3BP9OTEzEnDlzMHfuXKHdpn5+fli3bh2riJxCRRTJiImJwdWrVwUFFgBo1KgRfH19BYudSMWKi4uxYMEC/Pnnn1i4cCFiY2Ph4OCAHTt2CGYZk++7c+cOevbsKXJcTU0N+fn5NR+Io9zc3BAREYF169YJfb4sW7YMr169wtatWxknrBoqskgpNTU1ob9lZGRgZGSE5cuXw8bGhlEq7lm5ciW2bdsGZ2dnhIaGCo5369YNK1euZJiMO1xdXTFlyhTk5OQI5g/ExcVh7dq1mD17NuN03EHnUTJatWqF5ORkhIaGIiUlBQUFBZg0aRKcnJygoKDAOh4n0LUoOTSAs/rGjx+PrVu3wt/fX+h4YGAgnJycGKXilgcPHmDgwIHIzc3Fx48f0b9/f6ioqGDt2rX4+PEjtm3bxjqi1Nu1axd+/fVXkeMlJSXw8vLCmjVraj4UqbP8/f3h5eWFmTNnCm4exsbGYtq0aXj58iU8PDwYJyS1mba2tuDfI0eOxKZNm4RuwJqbm0NLSwteXl6ws7NjkJB7qLNG9cnJyZW7WKSgoEBkVicpn5WVFQoLC3Hx4kV07twZfD4f69atg4ODA1xcXPC///2PdUROaNasGbKysqCjoyN0PDY2lnaLV8KBAwcQGhqKQYMGCY59+XwZO3YsZ4ss4BNSiykoKPDv3bvH5/P5fGVlZX52djafz+fzs7Oz+XJycgyTcUdZWRnf39+f37JlSz6Px+PzeDx+y5Yt+QEBAfyysjLW8TiDziORFnQtSk5JSQk/PDycv2LFCv6KFSv4ERER/JKSEtaxpJ6Hh4fgPzc3N76KigrfxMSEP2nSJP6kSZP4pqamfFVVVf7MmTNZR+WEYcOG8ceNG8f/+PGj0HedCxcu8A0MDBin4wYVFRX+iBEj+K9fvxYcy8jI4Hfo0IGvra3NLhipk3R0dPi7d+8WOb5r1y6+jo4Og0SkrpKXl+enpaWJHE9LS+PLy8szSMQ94eHhfAUFBf7kyZP5cnJygs/ozZs38wcNGsQ4HXeMHz+eb2Jiwr969Sq/rKyMX1ZWxo+Pj+ebmpryJ0yYwDoeJ7i4uPALCgpEjickJPBNTEwYJOKm1atX842NjflXr17lq6io8C9fvszft28fX1NTk79p0ybW8ThDU1Pzm58vjRs3ZpBIMmgmi5S7desW0tPTAQAmJibUgqSS9PT0EBgYiH79+gn1S9yzZw98fX2RlpbGOiKnfFk9oqKiwjgJt9F5rJxjx46J/VxbW9sfmKT2oWux6mgAZ9X16dNHrOfxeDycP3/+B6fhvkaNGuHKlSswMjIS+q5z//59GBsbo7CwkHVEqZednY1x48bh4cOHCA4ORmZmJubNmwc7Ozv873//E9lhTsiPJC8vj9u3b8PAwEDo+N27d2FmZkaz00iN6dChA0xNTREUFCTYLfDp0ydMnjwZt2/fRkJCAuOE0o/mN0hGfn4+JkyYgOPHjwtmNRQXF2PYsGEIDg6Guro624Ac9/HjR8jJybGOwQl8Ph+rV6/GmjVrBN+x5eTkMGfOHKxYsYJxOu5Yvnw5MjIyEBwcLLj2Pn78iEmTJsHQ0BBLly5lnLBqqMgipZ4/f44xY8bg4sWLgg+M/Px89OnTB6GhodDU1GQbkCPWrFmDffv2YefOnejfvz9OnTqFBw8ewMPDA15eXnBzc2MdkRDyHTIyMmI9j8fj0QBOUmNoACeRFhoaGoiLi4OxsbHQDZzY2FgMHz4cz549Yx2RE8rKyvD777/jzz//hKysLHbv3o2xY8eyjkXqIFNTUzg6OmLRokVCx1euXImDBw8iNTWVUTJS11y/fh1Dhw4Fn8+Hubk5ACAlJQU8Hg/Hjx9Hx44dGSeUfoqKikhLS4OOjo7QZ3ROTo5gxiQRX1ZWlmARctu2bUWK0UQ8Q4YMQVBQEJo3b846Cmd9+vQJWVlZKCgogLGxsWAGIhGPvb09oqOjIScnh3bt2gEAkpOT8enTJ1hbWws9NyIigkXEKqGZLFLKzc0N//77L/755x+0bdsWAJCWloYJEyZg1qxZNOBZTAsWLEBZWRmsra1RWFiInj17CqrMVGD5NgsLC/B4PLGeSyuYvo3Oo2SUlZWxjsB5dC1KHg3glIzg4GCMGTOGZipVg42NDQICAhAYGAjgc8G5oKAAS5cupUGmlXDy5EmEhoaiS5cuyMzMxI4dO9CrVy+0aNGCdTRSx/j4+GD06NG4dOmS4PMkLi4O0dHRCAsLY5yO1CUdO3ZETk4O9u/fj4yMDADA6NGj4ejoCCUlJcbpuIHmN0hGeXMjL1y4AB6PB3l5eRgYGGDYsGFC38vJt126dAkfPnxgHYPTGjRoABUVFaioqFCBpQrU1dUxfPhwoWNaWlqM0kgO7WSRUmpqajh37hx+/vlnoePXr1+HjY0N8vPz2QTjKKoyV46Pj4/Yz+XqNr6aQOeRSAu6FiWvYcOGOHHiBLp27Sp0PC4uDkOHDsXr168ZJeOWpk2b4sOHDxg5ciQmTZokcj7J9z169AgDBgwAn8/H3bt3YWVlhbt376Jx48a4dOkSmjRpwjqi1Js6dSp2796NVatWYfbs2Xj27BlcXFxw7do1bN26FaNGjWIdkdQxt27dwsaNG4VWbHt6elLraEI4hjprSEafPn2QkJCA0tJSQZvezMxMyMrKok2bNrhz5w54PB5iY2NhbGzMOK30+3pXFamckpIS+Pj4YNOmTSgoKAAAKCsrw83NDUuXLhW0syN1ExVZpJSKigouX76M9u3bCx1PTExEr1698O7dOzbBOOzhw4cAakd1VBqFhITA1taWVjVVE53Him3atKnc41+vYurZsydkZWVrOFntQ9dixZydnZGQkIAdO3YI2mVcu3YNrq6usLS0xK5du9gG5IiSkhIcP34cu3btwunTp6Gnp4eJEydiwoQJaNasGet4nFFSUoLQ0FCkpKSgoKAAHTp0gJOTE+0QEpOpqSn2798vaFfwxZ9//on58+cLfkQTQkhdc/fuXVy4cAHPnz8X2V3u7e3NKBV30PwGyQgICMDly5cRHBwMVVVVAMDbt28xefJkdO/eHa6urnB0dMSHDx8QGRnJOK30MzU1xenTp+neWBVMnz4dERERWL58Obp06QIAiI+Px7Jly2BnZ4etW7cyTsgNHz58AJ/Ph6KiIgDgwYMHOHz4MIyNjWFjY8M4XdVRkUVKDRs2DPn5+QgJCRG0KXj8+DGcnJygoaGBw4cPM07IDVRlrjmqqqpISkqi1RDVROexYrq6unjx4gUKCwuhoaEBAHjz5g0UFRWhrKyM58+fQ09PDxcuXKAvjdVE12LFaACn5D179gz79u3D7t27kZGRgYEDB2LSpEkYOnSo2LOZCKmKiga+3rlzR7BqNi4uDlZWVjQclvxwpaWlOHLkiGAni4mJCWxtbWkRCalRf/31F6ZPn47GjRujWbNmQq1neTwetZitBOqsUT0tW7bE2bNnRXap/PPPP7CxscHjx4+RkJAAGxsbvHz5klFKUheoqakhNDQUgwYNEjp+6tQpjB07Fm/fvmWUjFtsbGzg4OCAadOmIT8/H0ZGRmjQoAFevnwJf39/TJ8+nXXEKqGZLFJqy5YtsLW1hY6OjuBG4cOHD2Fqaop9+/YxTscdbm5uiIiIwLp160SqzK9evaIqswRRvVYy6DxWbPXq1QgMDERQUBD09fUBfB6AOHXqVEyZMgXdunXDmDFj4OHhgfDwcMZpuY2uxYqpq6vj6NGjNIBTgpo2bYru3bsjMzMTmZmZSE1NxYQJE6ChoYHg4GD07t2bdUSpcezYMbGfa2tr+wOT1A4VFU2+FFgAYNCgQVR8Jj9cVlYWhgwZgkePHgmuvzVr1kBLSwsnT54UfP8h5EdbuXIlVq1ahfnz57OOwnk0v6F63r59i+fPn4sUWV68eCHo8qKuro5Pnz6xiMcZly9fxvbt25GTk4O///4bLVu2xN69e6Grq4vu3buzjscJcnJyIjOWgM+LQRs0aFDzgTgqISEBGzduBACEh4ejWbNmSExMxKFDh+Dt7U1FFiJZWlpaSEhIwLlz5wRD5tq2bYt+/foxTsYtBw4cEKkym5ubQ0tLC2PHjqUiCyEcs2TJEhw6dEjoBoOBgQE2bNiA4cOHIycnB+vWrRMZokaIpNEATsl59uwZ9u7di+DgYOTk5MDOzg4nTpxAv3798P79eyxfvhwTJkzAgwcPWEeVGnZ2dmI9j8fjobS09MeGqUOo+ExqwqxZs6Cnp4f4+HjBZ8irV68wbtw4zJo1CydPnmSckNQVb968wciRI1nH4DTqrCEZw4YNg4uLC/z8/ARzi2/cuIE5c+YIvhNdv34dP/30E8OU0u3QoUMYP348nJyckJCQgI8fPwL4XMBavXo1Tp06xTghN8ycORMrVqxAcHCwYJHOx48fsWrVKsycOZNxOu4oLCyEiooKACAqKgoODg6QkZFB586dOf2bj4osUozH46F///7o378/6yicRVVmQmqXvLw8lJSUiBwvKSnB06dPAQAtWrTAv//+W9PRSB2TmJhY4QDO//3vf/D09KQBnN8xdOhQREZG4qeffoKrqyucnZ2FClNKSkrw9PTE+vXrGaaUPv/ti08IqT1iYmJw9epVoffCRo0awdfXF926dWOYjNQ1I0eORFRUFKZNm8Y6CmdRZw3J2L59Ozw8PDBmzBjBb8F69ephwoQJgtXwbdq0QVBQEMuYUm3lypXYtm0bnJ2dERoaKjjerVs3rFy5kmEybklMTER0dDRatWolmOWXnJyMT58+wdraGg4ODoLnRkREsIop9QwMDHDkyBHY29sjMjISHh4eAIDnz58L5i5xERVZpMi3BjqXZ9asWT8wSe1BVWZCapc+ffpg6tSpCAoKgoWFBYDPX3SmT5+Ovn37AgBSU1Ohq6vLMiapA77sUvneAE4PDw8awFmBJk2aICYmRnDjoTyampq4d+9eDaYihBB25OTkyl0sUlBQQIvESI0yMDCAl5cXrl69CjMzM5FdF3RP4vuos4ZkKCsr46+//sLGjRuRk5MDANDT0xNqvda+fXtG6bjhzp076Nmzp8hxNTU15Ofn13wgjlJXVxfpmkGzYCvP29tb8FvZ2tpa8FswKipKcJ+Hi2jwvRQR96Ygj8cTfLCQitnb2yM6OhpycnLlVpm/RlXm6lFRUUFycjL1Ka8mOo8Ve/r0KcaPH4/o6GjBD72SkhJYW1tj7969aNq0KS5cuIDi4mLY2NgwTsttdC1WjAZwEmnxrUU6X7eu69mzJw3MlgB6XyQ1wdnZGQkJCdixYwc6duwIALh27RpcXV1haWmJXbt2sQ1I6oyK7k/QPQnxfFlM0rZtW6Hj6enp6NmzJ168eMEoGalr9PT0EBgYiH79+gl9n9mzZw98fX2RlpbGOiKpY54+fYq8vDy0a9cOMjIyAD63/VNVVUWbNm0Yp6sa2skiRWiVpuRRlbl6SktLERcXB3Nzc6irq1f4XG1tbeop+w10HiWnWbNmOHv2LDIyMpCZmQng81DirwcT9+nTh1U8qUfXouTQAE7JiY6ORnR0NJ4/fy7SBmvnzp2MUnHHxo0b8eLFCxQWFkJDQwPA5z76ioqKUFZWxvPnz6Gnp4cLFy7Qd6Bq4vF4rCOQOmDTpk2YMGECunTpIvgcLi4uxrBhwxAQEMA2HKlT6P5E9VFnDSItXF1d4e7ujp07d4LH4+HJkyeIj4/HnDlz4OXlxToeZ3z48AF8Ph+KiooAgAcPHuDw4cMwNjamRZ6V1KxZMzRr1kzo2JfFJVxFO1kIIRWSl5dHeno6tV+qJjqPkvfl44tuelUOXYuS4eTkhPj4+HIHcHbt2hV79+5FaGgoNmzYgJs3bzJOK718fHywfPlyWFlZoXnz5iKv58OHDzNKxh0hISEIDAxEUFAQ9PX1AQBZWVmYOnUqpkyZgm7dumHMmDFo1qwZwsPDGaflNtrJQmpSVlYW0tPTAQBt27aFgYEB40SEkMqizhpEWvD5fKxevRpr1qxBYWEhgM/tKefMmYMVK1YwTscdNjY2cHBwwLRp05Cfnw8jIyM0aNAAL1++hL+/P6ZPn846otRycHDArl27oKqqKjS7pjxcfT+knSxSavjw4ejYsSPmz58vdHzdunW4ceMG/v77b0bJuIWqzNVnamqKnJwcuiFbTXQeJWfPnj1Yv3497t69CwD46aefMHfuXIwfP55xMm6ga1EyaACnZGzbtg27du2i1281LFmyBIcOHRIUWIDPffQ3bNiA4cOHIycnB+vWrRPZ2Usqr7w5GYRI2uzZs0WOXbhwQagF4Je5YIT8aI8ePcKxY8eQm5srsjvX39+fUSruoM4aRFrweDwsXrwYc+fORVZWFgoKCmBsbCw014Z8X0JCguC3Xnh4OJo1a4bExEQcOnQI3t7eVGSpgJqammBBnZqaGuM0PwbtZJFSmpqaOH/+PMzMzISOp6amol+/fnj27BmjZNxCVebqO3PmDBYuXIgVK1bA0tISSkpKQo9/GfhMKkbnUTL8/f3h5eWFmTNnolu3bgCA2NhY/Pnnn1i5ciU8PDwYJ5R+dC1KVkFBwTcHcJLva9SoEa5fvy5UICCVo6ioiEuXLsHKykro+I0bN9CrVy8UFhbi/v37MDU1RUFBAaOU0uvUqVOIiIhAw4YN4eLiItQD+s2bNxg+fDjOnz/PMCGpa/r06YOEhASUlpYK2qFmZmZCVlYWbdq0wZ07d8Dj8RAbGyvSspIQSYqOjoatrS309PSQkZEBU1NT3L9/H3w+Hx06dKD3RkJInaOoqIiMjAy0bt0ao0aNgomJCZYuXYqHDx/CyMhIsEuI1E1UZJFSCgoKSEpKEpozAAAZGRmwsLDAhw8fGCXjlsaNGyMmJgYmJiYICgrC5s2bharMX7bgk2/7MoAKEG7LxOfzwePxUFpayiIW59B5lAxdXV34+PjA2dlZ6Pju3buxbNky6h0tBroWiTSZP38+lJWVqRd0NQwZMgRPnz5FUFAQLCwsAACJiYlwdXVFs2bNcOLECRw/fhyLFi1Camoq47TS5cCBA3B2dsbAgQPx9u1b3Lx5E0FBQXBycgIAPHv2DC1atKD3RVKjAgICcPnyZQQHBwsWPrx9+xaTJ09G9+7d4erqCkdHR3z48AGRkZGM05LarGPHjhg0aBB8fHwE7RKbNGkCJycnDBw4kBYsioE6axBpYW9vX26b7a93STo6OorcgyTCzM3NMXnyZNjb28PU1BRnzpxBly5dcOvWLcF3clJ3UbswKWVmZoaDBw/C29tb6HhoaCitWKqEwsJCqKioAACioqLg4OAAGRkZdO7cGQ8ePGCcjhsuXLjAOkKtQOdRMvLy8tC1a1eR4127dkVeXh6DRNxD1yJh7etWOGVlZQgMDMS5c+dgbm4uGPL8BbUi+b4dO3Zg/PjxsLS0FJy/kpISWFtbY8eOHQAAZWVl+Pn5sYwpldavXw9/f3/MmjULABAWFgYXFxcUFRVh0qRJjNORumr9+vU4e/as0M5SNTU1LFu2DDY2NnB3d4e3tzfdoCU/XHp6OkJCQgB8bon64cMHKCsrY/ny5Rg2bBgVWcQwbNgwoc4aHTt2pM4ahAk1NTUcOXIE6urqsLS0BPC59VV+fj5sbGxw8OBBrF27FtHR0YKOEUSUt7c3HB0d4eHhAWtra3Tp0gXA5/uNXxY7ke979uwZ5syZg+joaDx//hz/3f/B1QVOVGSRUl5eXnBwcEB2djb69u0L4PN23ZCQEJrHUgkGBgY4cuQI7O3tERkZKWgl9Pz5c2qJI6ZevXqxjlAr0HmUDAMDA4SFhWHRokVCxw8ePAhDQ0NGqbiFrkXCWmJiotDf7du3BwDcvn1b6Hh5q+2IqGbNmuHs2bPIyMhAZmYmAMDIyEhoJWKfPn1YxZNqd+/exdChQwV/jxo1CpqamrC1tUVxcTHs7e0ZpiN11du3b/H8+XORhXUvXrzAu3fvAHye8/Df+RiESJqSkpLgOmvevDmys7NhYmICAHj58iXLaJxB8xuItGjWrBkcHR2xZcsWQWeDsrIyuLu7Q0VFBaGhoZg2bRrmz5+P2NhYxmml14gRI9C9e3fk5eWhXbt2guPW1tb0vbESfv31V+Tm5sLLywvNmzevNb/7qMgipYYOHYojR45g9erVCA8Ph4KCAszNzXHu3Dm6QVYJVGWWjMuXL2P79u3IycnB33//jZYtW2Lv3r3Q1dVF9+7dWcfjDDqP1efj44PRo0fj0qVLghU2cXFxiI6ORlhYGON03EHXImGpKrupHj16hBYtWgi1uyPC2rRpIyis1JYfKj+aqqoqnj17Bl1dXcGxPn364MSJE/jll1/w6NEjhulIXTVs2DC4uLjAz88PP//8M4DPM5bmzJkDOzs7AMD169fx008/MUxJ6oLOnTsjNjYWbdu2xeDBg+Hp6YnU1FRERESgc+fOrONxAnXWINJix44diIuLE/ouLSMjAzc3N3Tt2hWrV6/GzJkz0aNHD4YpuaFZs2Zo1qyZ0LGOHTsySsNNsbGxuHz5smCxXW1Bv1Sl2JAhQxAXF4f379/j5cuXOH/+vEiBJSQkBO/fv2eUUPqNGDECubm5uHnzJs6cOSM4bm1tLVhRQip26NAhDBgwAAoKCkhISMDHjx8BfF5lt3r1asbpuIPOo2QMHz4c165dQ+PGjXHkyBEcOXIEjRs3xvXr12nliJjoWiRcZGxsjPv377OOIbX27NkDMzMzKCgoCBbm7N27l3UsqdexY0ecPn1a5HivXr1w/PhxBAQE1HwoUudt374d1tbWGDNmDLS1taGtrY0xY8bA2toa27ZtA/C5qBoUFMQ4Kant/P390alTJwCfFzpZW1vj4MGD0NHREbSjJBX70lnj4cOHiIyMFLT5o84apKaVlJQgIyND5HhGRoagNZO8vDwt1CmHg4ODYCepg4NDhf8R8WhpaYm0CKsNaPA9x6mqqiIpKQl6enqso5BaysLCAh4eHnB2dhYMPNTT00NiYiIGDRpEg73EROeRSAu6FgkXfX2tEmH+/v7w8vLCzJkzBTv8YmNj8eeff2LlypWCVqlEVExMDK5cuYKFCxeW+/iFCxewZ88eBAcH13AyQoCCggLk5OQAAPT09KCsrMw4ESGkssLDw+Ho6IjS0lJYW1sjKioKALBmzRpcunSp3EI/IT/CrFmzEBISgkWLFgntkly9ejUcHR3xxx9/ICgoCLt27aJ2Yf8xceJEbNq0CSoqKpg4cWKFz6XvjOKJioqCn58ftm/fDh0dHdZxJIaKLBxHNx1EOTg4YNeuXVBVVf1uJTkiIqKGUnGXoqIi0tLSoKOjI3S95eTkwNjYGEVFRawjcgKdR8kpLS3FkSNHkJ6eDgAwMTGBra0tZGVlGSfjBroWCRfR951v09XVhY+PD5ydnYWO7969G8uWLcO9e/cYJSOEEFJbFBQUoKysTOgY7cQQz9OnTwXzG760arp+/TpUVVXRpk0bxulIXVFaWgpfX19s2bIFz549AwA0bdoUbm5umD9/PmRlZZGbmwsZGRm0atWKcVpSG2loaAjtlHr//j1KSkqgqKiI+vXrCz339evXNR1PImgmC6l11NTUBC9cNTU1xmm4r1mzZsjKyhKpLsfGxtLNrkqg8ygZWVlZGDJkCB49eiSYPbBmzRpoaWnh5MmT0NfXZ5xQ+tG1SEjtkpeXh65du4oc79q1K/Ly8hgk4p5Tp05BVlYWAwYMEDoeGRmJsrIyDBo0iFEyQghh5969e5g5cyYuXrwotAiHz+eDx+MJWgyRitH8BsJaSUkJDhw4gMmTJ2Px4sWC1lf/LZS2bt2aRTxSR9SFNrxUZCG1ztfb82irXvW5urrC3d0dO3fuBI/Hw5MnTxAfH485c+bAy8uLdTzOoPMoGbNmzYKenh7i4+PRsGFDAMCrV68wbtw4zJo1CydPnmScUPrRtUhI7WJgYICwsDAsWrRI6PjBgwdhaGjIKBW3LFiwAL6+viLH+Xw+FixYQEUWQkidNG7cOPD5fOzcuRNNmzalWQ1ios4aRNrUq1cP06ZNE3SCoF1oVffs2TPMmTMH0dHReP78uchcESo+f9uECRME/3Z2dkbv3r3Rq1evWrVQlooshJAKLViwAGVlZbC2tkZhYSF69uwJOTk5zJkzB25ubqzjcQadR8mIiYnB1atXBQUWAGjUqBF8fX0FswhIxehaJFxEN3a+zcfHB6NHj8alS5cE74NxcXGIjo5GWFgY43TccPfuXRgbG4scb9OmDbKyshgkIoQQ9pKTk3Hr1i3B7nEiHuqsQaRRx44dkZiYCG1tbdZROO3XX39Fbm4uvLy80Lx5c/qNUkVycnLw9fWFq6srWrRogV69egmKLlxeJEYzWTiOepRXjKrMkvPp0ydkZWWhoKAAxsbGNHyziug8Vk/Dhg1x4sQJkdY4cXFxGDp0KGd7d7JA1yLhEvq+U7Fbt25h48aNghWKbdu2haenJywsLBgn44ZmzZrhwIED6Nu3r9Dxc+fOwdHREc+fP2eUjBBC2OnTpw8WL16Mfv36sY5CCKmmsLAwLFy4EB4eHrC0tISSkpLQ4+bm5oyScYuKigouX76M9u3bs45SKzx+/BiXLl1CTEwMYmJikJmZiebNm+PRo0eso1UJ7WSRQqWlpYiLi4O5uTnU1dUrfK62trbIgCDy/6jKLDkNGjSAiooKVFRU6GZsNdB5rJ5ffvkFU6ZMwY4dOwS9jK9du4Zp06bB1taWcTpuoWuRsFZcXAwFBQUkJSXB1NS0wuempaWhRYsWNZSMeywtLbFv3z7WMThr2LBh+P3333H48GFBy4KsrCx4enrSZwshpM4KCgrCtGnT8PjxY5iamorcd6CbsoRwx5gxYwB8br/9BY/HoxlLlaSlpSWyeJtUnYaGBho1agQNDQ2oq6ujXr160NTUZB2rymgni5SSl5dHeno6dHV1WUfhNKoyV19JSQl8fHywadMmFBQUAACUlZXh5uaGpUuXUpFPTHQeJSM/Px8TJkzA8ePHBeesuLgYw4YNQ3Bw8HcL04SuRSJd9PT0cPjwYbRr1451FE4rLS3FkSNHBDtZTExMYGtrC1lZWcbJuOHt27cYOHAgbt68iVatWgEAHj16hB49eiAiIoI+WwghddLVq1fh6OiI+/fvC47RTdnKoc4aRFo8ePCgwsepjZh4oqKi4Ofnh+3bt0NHR4d1HM5atGgRLl68iMTERLRt21bQLqxnz57Q0NBgHa/KaCeLlDI1NUVOTg4VWaqJqszV5+bmhoiICKxbtw5dunQBAMTHx2PZsmV49eoVtm7dyjghN9B5lAx1dXUcPXoUWVlZQm1xDAwMGCfjDroWiTRZvHgxFi1ahL179wrNWiLiy8rKwpAhQ/Do0SNB3/w1a9ZAS0sLJ0+erFXDJH8UNTU1XLlyBWfPnkVycjIUFBRgbm6Onj17so5GCCHMuLi4wMLCAiEhITT4voqoswaRFlREqToNDQ2h1+779++hr68PRUVFkQWK1L5cPL6+vtDU1MTSpUvh4OCAn376iXUkiaCdLFLqzJkzWLhwIVasWFFuv0RVVVVGybiFqszVp6amhtDQUAwaNEjo+KlTpzB27Fi8ffuWUTJuofMoGbNnzy73OI/Hg7y8PAwMDDBs2DC6WVsBuhaJNLGwsEBWVhaKi4uhra0t8n0nISGBUTLuGDx4MPh8Pvbv3y9473v16hXGjRsHGRkZnDx5knFCbikqKoKcnBzdCCOE1HlKSkpITk6mxUzVQJ01iLRJS0tDbm4uPn36JHSc2qN+2+7du8V+7oQJE35gktojOTkZMTExuHjxIi5fvowGDRoIdrP07t2bs0UX2skipQYPHgzg8xvd1z/yaGvu91GVWbLk5OTKLVDp6uqiQYMGNR+Io+g8SkZiYiISEhJQWloqWLGdmZkJWVlZtGnTBv/73//g6emJ2NhYGBsbM04rnehaJNLEzs6OdQTOi4mJwdWrV4WKy40aNYKvry+6devGMBl3lJWVYdWqVdi2bRuePXuGzMxM6OnpwcvLCzo6Opg0aRLriIQQUuP69u1LRZZqos4aRFrk5OTA3t4eqampgrZ/AAT3zuge47d9XThxdnZG79690atXL9otXg3t2rVDu3btBDOCkpOTsXHjRsyYMQNlZWWcvR6pyCKlLly4wDoCZwUEBLCOUKvMnDkTK1asQHBwMOTk5AAAHz9+xKpVqzBz5kzG6biDzqNkfNmlEhwcLNjR9/btW0yePBndu3eHq6srHB0d4eHhgcjISMZppRNdi0SaLF26lHUEzpOTk8O///4rcrygoIAKp2JauXIldu/ejXXr1sHV1VVw3NTUFAEBAVRkIYTUSUOHDoWHhwdSU1NhZmYmsmCRVr5/X0BAABYsWECdNQhz7u7u0NXVRXR0NHR1dXH9+nW8evUKnp6e2LBhA+t4nCEnJwdfX1+4urqiRYsWgt0XvXr1gqGhIet4nMHn85GYmIiLFy/i4sWLiI2Nxbt372Bubo5evXqxjldl1C6M1GpUZa4+e3t7REdHQ05OTjCYODk5GZ8+fYK1tbXQcyMiIlhE5AQ6j5LRsmVLnD17VmSXyj///AMbGxs8fvwYCQkJsLGxwcuXLxmllG50LRJpk5+fj/DwcGRnZ2Pu3Llo2LAhEhIS0LRpU7Rs2ZJ1PKnn7OyMhIQE7NixAx07dgQAXLt2Da6urrC0tMSuXbvYBuQAAwMDbN++HdbW1lBRUUFycjL09PSQkZGBLl264M2bN6wjEkJIjZORkfnmY9Rd49vK66xRUlJCnTUIU40bN8b58+dhbm4ONTU1XL9+HUZGRjh//jw8PT2RmJjIOiKnPH78GJcuXUJMTAxiYmKQmZmJ5s2b49GjR6yjcYKGhgYKCgrQrl07QaGqR48eUFdXZx2tWmgnixS7fPkytm/fjpycHPz9999o2bIl9u7dC11dXXTv3p11PE6gKnP1qaurY/jw4ULHtLS0GKXhLjqPkvH27Vs8f/5cpMjy4sULvHv3DsDnc/3fHrPk/9G1SKRJSkoK+vXrBzU1Ndy/fx+urq5o2LAhIiIikJubiz179rCOKPU2bdqECRMmoEuXLoKbN8XFxRg2bBjt7hXT48ePy22HU1ZWhuLiYgaJCCGEvbKyMtYROIk+e4k0Ki0thYqKCoDPBZcnT57AyMgI2trauHPnDuN03KOhoYFGjRpBQ0Pj/9q787Cqy/z/46/DKiirA65MiKRACuFSow4iauYyLmGaiqOOaemoKI1NTTm5VOZYKDXNdzJNGy2kVJzcSs04uNS4gVRGrilqGipuiBvL7w9/8R2+WCEZ94HzfFyX16Wfc6xnn/nMJfI+933L29tbTk5O8vPzM51VbbzzzjuKioqqceeNM2SxUStWrNDvf/97xcXFKSMjQ9euXZN08xuMM2fO1Lp16wwXVg/z58+XVHbKnJiYqMcff5wpcwUtWrTIdEKNwH28M/r27auRI0cqMTFRbdu2lSTt3LlTkydPLj3bYceOHdX2oLSqwLMIW/LEE09oxIgRmj17dulf/KSbZ9MNGTLEYFn14e3trQ8++EAHDx5Udna2JCk0NJQ99G9DWFiYtmzZorvuuqvM9eXLlysyMtJQFQCgOuL8BtiiFi1aKCsrS02aNNH999+v2bNny8XFRW+++aaCgoJM51UbzzzzjKxWqzIzMxUaGqro6Gg9/fTT6tixo3x8fEznVRu9evUynfCLYMhio1544QW98cYbGjZsmFJSUkqvd+jQQS+88ILBsuqJKXPlXblyRSUlJXJ3d5ckHT16VCtXrlRYWJi6detmuK764D7eGfPmzVNCQoIGDRqkwsJCSZKTk5OGDx+uuXPnSpJCQkK0YMECk5k2jWcRtmTnzp2aN29eueuNGjXSqVOnDBRVP0888US5a2lpabJYLKpVq5aCg4NLz7PCrT333HMaPny4Tpw4oeLiYqWmpmrfvn1avHix1qxZYzoPAIzZuXOn0tLSlJubW25ly5w5cwxVVR/srAFbMWXKFF2+fFmSNGPGDP3ud79TVFSU6tatq/fee89wXfUxa9Ys+fn5aerUqYqNjeXDnSiDM1lslLu7u7766isFBgaW2Rv68OHDCgsL09WrV00nVgu3mjJ36tSJKfNt6Natm2JjYzVmzBidP39ezZs3l4uLi86cOaM5c+Zo7NixphOrBe7jnZWfn6/Dhw9LkoKCglSnTh3DRdUHzyJsib+/v9avX6/IyMgyX+9s3LhRI0eO1LFjx0wn2ryYmBhlZGSoqKhIzZs3lyTt379fjo6OCgkJ0b59+2SxWLR169ZyWy3if23ZskUzZsxQVlaW8vPz1apVKz333HMMnwHYrZkzZ2rKlClq3ry56tWrV+acEYvFok8++cRgXfXC+Q2wRXl5eeXOEMKPy8rKUnp6uqxWq7Zs2SIXF5fS7zN26tSJoYud++GTzGBU/fr1dfDgwXLXt27dylK+2zBr1iwdOnRIU6dOVUpKiubOnau+ffsyYLkNGRkZioqKknRz24z69evr6NGjWrx4sV577TXDddUH9/HOqlOnjsLDwxUeHs6A5TbxLMKW9OnTRzNmzCg998JisSgnJ0dPPfVUubODcGt9+/ZV165d9e2332r37t3avXu3jh8/rgceeECDBw/WiRMn1LFjRyUkJJhOtWlRUVHauHGjcnNzVVBQoK1btzJgAWDXXn31VS1cuFDZ2dmyWq1KS0sr/cGA5fawswZska+vLwOW2xQREaH4+Hilpqbq9OnTWrdunVxcXDRu3DiFhoaazoNhbBdmo0aPHq2JEydq4cKFslgs+vbbb/XZZ59p8uTJ+utf/2o6r9rIzMwsnTInJiYyZa6EgoKC0n3yN2zYoNjYWDk4OOg3v/mNjh49ariu+uA+wlbwLMKWJCYm6uGHH5a/v7+uXLmi6OhonTp1Su3atdOLL75oOq9aePnll7Vx48YyB0d6eXlp2rRp6tatmyZOnMiKjJ8watQoDR06VJ06dTKdAgA2w8HBQR06dDCdUa1xfgNMio2NrfB7U1NTf8GSmqOkpESZmZmyWq2yWq3aunWrLl68qPDwcEVHR5vOg2EMWWzU008/reLiYnXp0kUFBQXq2LGjXF1dNXnyZE2YMMF0XrURERFROmmWbi7tmzt3rsaNG6fi4mIVFRUZLrR9wcHB+ve//62HHnpI69evL/0kbG5ubplv6ODHcR9hK3gWYUu8vLy0ceNGbd26VZ9//nnpNk1du3Y1nVZtXLhwQbm5ueW2Ajt9+rQuXrwoSfL29tb169dN5FULp0+fVvfu3eXn56dBgwYpLi5O9957r+ksADAqISFB//jHP5SUlGQ6pdri/AaY5OXlZTqhxvH19VV+fr4iIiIUHR2t0aNHKyoqSt7e3qbTYAM4k8XGXb9+XQcPHlR+fr7CwsLYFuc2/dSU+fuDsvHDli9friFDhqioqEhdunTRhg0bJEkvvfSSNm/erA8//NBwYfXAfYSt4FkEapa4uDh99tlnSkxMVNu2bSXdPKh48uTJat++vZYsWaKUlBS98sor2rVrl+Fa23Xu3DktW7ZMycnJ2rJli0JCQhQXF6chQ4YoMDDQdB4AVLni4mL16tVL+/fvV1hYmJydncu8zifffxrnN6C62bZtm9q0aSNXV1fTKTZp7dq1ioqK4sOJuCWGLNXA94e+BgQEGC6pfnx8fMpMmTt16sSUuRJOnTqlkydPKiIiQg4ON49y2rFjhzw9PRUSEmK4rvrgPsJW8CzCluzcuVNpaWnKzc1VcXFxmdfmzJljqKr6yM/PV0JCghYvXqzCwkJJkpOTk4YPH665c+eqdu3a2rNnjySxOqOCjh8/rqVLl2rhwoU6cOBA6X0FAHsyfvx4LViwQDExMeUOvpekRYsWGSqrvr7fWePdd99lZw3YJE9PT+3Zs4ezoIFKYMhiowoLCzV9+nS99tprys/Pl3TzoOcJEyZo6tSp5T5FgltjygwAgO2aOXOmpkyZoubNm5f7Bo7FYuFg3duQn5+vw4cPS5KCgoJY/VxJN27c0Nq1a/XOO+9o7dq18vX11YkTJ0xnAUCV8/DwUEpKinr16mU6pdpiZw1UNx4eHsrKymLIAlQCZ7LYqAkTJig1NVWzZ89Wu3btJEmfffaZpk2bprNnz+qf//yn4cLqgS8IKyc2NlZvv/22PD09f/KwNJaJ/zDuI2wFzyJs1auvvqqFCxdqxIgRplOqvTp16ig8PNx0RrWVlpam5ORkrVixQsXFxYqNjdWaNWvUuXNn02kAYISvr6+aNm1qOqNa4/wGALAfDFlsVHJyslJSUtSjR4/Sa+Hh4QoICNDgwYMZsuAX5eXlVfppYg5LqzzuI2wFzyJslYODgzp06GA6A3auUaNGysvLU/fu3fXmm2+qd+/e7EUOwO5NmzZNU6dO1aJFi+Tu7m46p1p655132FkDAOwE24XZKH9/f6Wnpys0NLTM9ezsbHXs2FGnT582VAYAAHBnzJ49W99++62SkpJMp8COzZ8/XwMGDOCTxQDwXyIjI3Xo0CGVlJQoMDCw3JblGRkZhsoA/FLYLgyoPFay2Kjx48fr+eef16JFi0o/SXft2jW9+OKLGj9+vOE6AACAn2/y5Mnq1auXmjZtqrCwsHLfwGH7OlSF0aNHm04AAJvTr18/0wkAqth/n48I4PYwZLFRmZmZ2rRpkxo3bqyIiAhJUlZWlq5fv64uXbqU2VOfb0Dgl/Tdd99p8uTJ2rRpk3Jzc/V/F78VFRUZKqteuI+wFTyLsCXx8fFKS0tTTEyM6taty1/sUOWysrK0evVq+fr6auDAgfrVr35V+trFixc1adIkLVy40GAhAJgxdepU0wkAqhibHQGVx3ZhNuoPf/hDhd+7aNGiX7AE9q5Hjx7KycnR+PHj1aBBg3LfAOvbt6+hsuqF+whbwbMIW+Lh4aGUlBT16tXLdArs0IYNG9S7d2/dfffdunTpki5fvqxly5YpJiZG0s2hdMOGDRk+A7Bru3fvVnZ2tiTpnnvuUWRkpOEiAABsD0MWAD/Kw8NDW7Zs0b333ms6pVrjPsJW8CzCltx1111av369QkJCTKfADrVv314xMTF68cUXVVJSopdfflnPP/+8li1bpu7duzNkAWDXcnNzNWjQIFmt1tIzq86fP6+YmBilpKTIz8/PbCCAClm3bp1SU1Pl6+urkSNHlvm6+9y5c+rfv78++eQTg4VAzeBgOgC3duXKFRUUFJT++ujRo0pKStKGDRsMVsEeBQQEsGT0DuA+wlbwLMKWTJs2TVOnTi3zNQ9QVfbu3auRI0dKurkH+Z///GfNmzdPDz/8sNasWWO4DgDMmjBhgi5duqS9e/cqLy9PeXl5+vLLL3Xx4kXFx8ebzgNQAcnJyerTp49OnTqlzz77TJGRkXr33XdLX79+/brS09MNFgI1BytZbFS3bt0UGxurMWPG6Pz582revLlcXFx05swZzZkzR2PHjjWdCDuxYcMGJSYmat68eQoMDDSdU21xH2EreBZhSyIjI3Xo0CGVlJQoMDCw3MH3GRkZhspgD/z9/fXhhx+qdevWZa6npKTo0UcfVWJiosaNG8dKFgB2ycvLSx9//LHatm1b5vqOHTvUrVs3nT9/3kwYgAqLjIzUH/7wh9LB6Pvvv6+RI0fq1Vdf1aOPPsqqXeAO4uB7G5WRkaG5c+dKkpYvX6769esrMzNTK1as0HPPPceQBb8oHx+fMuc0XL58WU2bNpW7u3u5b4Dl5eVVdV61wX2EreBZhK3q16+f6QTYsXvvvVdpaWnlhiyDBg1SSUmJhg8fbqgMAMwrLi4u93WiJDk7O6u4uNhAEYDbdeDAAfXu3bv01wMHDpSfn5/69OmjGzdu6KGHHjJYB9QsDFlsVEFBgTw8PCTd/NRxbGysHBwc9Jvf/EZHjx41XIeaLikpyXRCjcB9hK3gWYQtKiwslMVi0ciRI9W4cWPTObBDY8eO1ebNm2/52uDBg1VSUqL58+dXcRUA2IbOnTtr4sSJWrp0qRo2bChJOnHihBISEtSlSxfDdQAqwtPTU999952aNGlSei0mJkZr1qzR7373Ox0/ftxgHVCzsF2YjQoPD9eoUaP00EMPqUWLFvroo4/Url077d69W7169dKpU6dMJ8JODBs2TJ06dVJ0dLSaNm1qOqfa4j7CVvAswpZ4eHjoiy++YOs6AABszLFjx9SnTx/t3btXAQEBpddatGihVatW8QEJoBro16+fIiIiNH369HKvWa1W/e53v9OVK1fYLgy4Azj43kY999xzmjx5sgIDA3X//ferXbt2km6uaomMjDRcB3vi6uqqWbNmqVmzZgoICNDQoUO1YMECHThwwHRatcJ9hK3gWYQt6dy5M4dtwrhRo0bJarWazgAAmxIQEKCMjAytXbtWkyZN0qRJk7Ru3TplZGQwYAGqiYSEBNWqVeuWr3Xq1EmrV6/WsGHDqrgKqJlYyWLDTp06pZMnTyoiIkIODjfnYTt27JCnp6dCQkIM18HenDhxQps3b1Z6errS09O1f/9+NWjQgOWlt4n7CFvBswhb8MYbb2j69OmKi4tT69atVbt27TKv9+nTx1AZ7Enfvn21fv16+fn5adCgQRo6dKgiIiJMZwEAAACoJjiTxYbVr19f9evXL3PtvvvuM1QDe+fj46O6devKx8dH3t7ecnJykp+fn+msaof7CFvBswhb8Mc//lGSNGfOnHKvWSwWti5Alfjggw907tw5LVu2TMnJyZozZ45CQkIUFxenIUOGsJ0dALsUHx+v4OBgxcfHl7n++uuv6+DBg5z5B1Qj69atk6Ojox588MEy19evX6/i4mL16NHDUBlQc7CSxYbExsbq7bfflqenp2JjY3/0vampqVVUBXv3zDPPyGq1KjMzU6GhoYqOjlanTp3UsWNH+fj4mM6rNriPsBU8iwDw444fP66lS5dq4cKFOnDggAoLC00nAUCVa9SokVatWqXWrVuXuZ6RkaE+ffqw+hmoRsLDwzVr1iz17NmzzPWPPvpITz31lLKysgyVATUHK1lsiJeXlywWS+nPAVswa9Ys+fn5aerUqYqNjVWzZs1MJ1VL3EfYCp5FAPhhN27c0K5du7R9+3YdOXJE9erVM50EAEacPXv2lt+X8PT01JkzZwwUAaisAwcOKCwsrNz1kJAQHTx40EARUPMwZLEhixYtuuXPAZMyMzOVnp4uq9WqxMREubi4lH7yvVOnTnyDtoK4j7AVPIuwNenp6XrllVeUnZ0tSQoLC9OTTz6pqKgow2WwJ2lpaUpOTtaKFStUXFys2NhYrVmzRp07dzadBgBGBAcH66OPPtL48ePLXP/www8VFBRkqApAZXh5eenw4cPltkA9ePBguTMRAVQO24UBuC1ZWVmaO3eu3n33XRUXF7NffiVxH2EreBZh0jvvvKM//OEPio2NVYcOHSRJ27Zt08qVK/X2229ryJAhhgthDxo1aqS8vDx1795dcXFx6t27t1xdXU1nAYBRCxcu1Pjx4/Xkk0+WDpw3bdqkxMREJSUlafTo0YYLAVTU448/rs8++0wrV65U06ZNJd0csPTv319t27bVggULDBcC1R9DFhv13XffafLkydq0aZNyc3P1f/9n4ptgqColJSXKzMyU1WqV1WrV1q1bdfHiRYWHhys6Olpz5841nVgtcB9hK3gWYUtCQ0P12GOPKSEhocz1OXPmaP78+aWrW4Bf0vz58zVgwAB5e3ubTgEAm/LPf/5TL774or799ltJUmBgoKZNm6Zhw4YZLgNwOy5cuKDu3btr165daty4saSbZ9BFRUUpNTWVr4GAO4Ahi43q0aOHcnJyNH78eDVo0KD0rJbv9e3b11AZ7I2Pj4/y8/MVERFRuqVQVFQUfwjfJu4jbAXPImyJq6ur9u7dq+Dg4DLXDx48qBYtWujq1auGygAAwPdOnz4tNzc31alTp9xr27ZtU5s2bVgBCNi4kpISbdy4UVlZWXJzc1N4eLg6duxoOguoMRiy2CgPDw9t2bJF9957r+kU2Lm1a9cqKipKnp6eplOqNe4jbAXPImxJcHCwnnzyST3++ONlrr/xxhtKTEzUgQMHDJXB3uzatUvvv/++cnJydP369TKvpaamGqoCANvn6empPXv2cE4LUE1cvXpVrq6u5T7MDeDncTAdgFsLCAgot0UYYEKvXr34ZuwdwH2EreBZhC3505/+pPj4eI0dO1ZLlizRkiVLNGbMGE2aNEmTJ082nQc7kZKSovbt2ys7O1srV67UjRs3tHfvXn3yySfy8vIynQcANo3vWwC2r7i4WM8//7waNWqkOnXq6JtvvpEk/fWvf9Vbb71luA6oGRiy2KikpCQ9/fTTOnLkiOkUAACAX8TYsWOVkpKiL774QpMmTdKkSZP05Zdf6r333iu3ugX4pcycOVNz587V6tWr5eLioldffVVff/21Bg4cqF//+tem8wAAAH6WF154QW+//bZmz54tFxeX0ustWrTg0HvgDmG7MBvi4+NTZrne5cuXVVhYKHd3dzk7O5d5b15eXlXnAQAA/GyvvfaaHnvsMdWqVUs5OTkKCAhguwIYVbt2be3du1eBgYGqW7eurFarWrZsqezsbHXu3FknT540nQgANsvDw0NZWVlsFwbYsODgYM2bN09dunQp8//Zr7/+Wu3atdO5c+dMJwLVnpPpAPyvpKQk0wkAAAC/qCeeeEKDBg1SrVq11KRJE508eVL+/v6ms2DHfHx8dOnSJUlSo0aN9OWXX6ply5Y6f/68CgoKDNcBAAD8PCdOnFBwcHC568XFxbpx44aBIqDmYchiQ4YPH17682HDhqlTp06Kjo5W06ZNDVYBAADcOQ0bNtSKFSvUs2dPlZSU6Pjx47p69eot38tWTagKHTt21MaNG9WyZUsNGDBAEydO1CeffKKNGzeqS5cupvMAwKaxGhWwfWFhYdqyZYvuuuuuMteXL1+uyMhIQ1VAzcKQxUa5urpq1qxZGj16tBo2bKjo6OjSocvdd99tOg8AAKBSpkyZogkTJmj8+PGyWCxq27ZtufeUlJTIYrGoqKjIQCHszeuvv1466Hv22Wfl7OysTz/9VP3799eUKVMM1wGAbWMHesD2Pffccxo+fLhOnDih4uJipaamat++fVq8eLHWrFljOg+oETiTxcadOHFCmzdvVnp6utLT07V//341aNBAx48fN50GAABQKZcuXdLRo0cVHh6ujz/+WHXr1r3l+yIiIqq4DPZo2LBhiomJUceOHVlBDgD/pbCwUFarVYcOHdKQIUPk4eGhb7/9Vp6enqpTp47pPAC3YcuWLZoxY4aysrKUn5+vVq1a6bnnnlO3bt1MpwE1AitZbJyPj4/q1q0rHx8feXt7y8nJSX5+fqazAAAAKs3Dw0MtWrTQokWL1KFDB7m6uppOgh1zcXHRSy+9pEcffVSNGjViBTkASDp69Ki6d++unJwcXbt2TQ888IA8PDz0t7/9TdeuXdMbb7xhOhHAbYiKitLGjRtNZwA1FitZbNQzzzwjq9WqzMxMhYaGlv5lr2PHjvLx8TGdBwAAcMdcv35dubm5Ki4uLnOdM1lQlVhBDgD/q1+/fvLw8NBbb72lunXrKisrS0FBQbJarRo9erQOHDhgOhFABY0aNUpDhw5Vp06dTKcANRYrWWzUrFmz5Ofnp6lTpyo2NlbNmjUznQQAAHBHHThwQCNHjtSnn35a5jpnssAEVpADwP/asmWLPv30U7m4uJS5HhgYqBMnThiqAlAZp0+fVvfu3eXn56dBgwYpLi5O9957r+ksoEZhyGKjMjMzlZ6eLqvVqsTERLm4uJSuZunUqRNDFwAAUO2NGDFCTk5OWrNmjRo0aCCLxWI6CXboVivIn376aVaQA7BrxcXFt/yww/Hjx+Xh4WGgCEBlffDBBzp37pyWLVum5ORkzZkzRyEhIYqLi9OQIUMUGBhoOhGo9tgurJrIysrS3Llz9e677/7gFzsAAADVSe3atbV7926FhISYToEdc3BwkJ+fnxISElhBDgD/3yOPPCIvLy+9+eab8vDw0Oeffy4/Pz/17dtXv/71r7Vo0SLTiQAq6fjx41q6dKkWLlyoAwcOqLCw0HQSUO2xksVGlZSUKDMzU1arVVarVVu3btXFixcVHh6u6Oho03kAAAA/W1hYmM6cOWM6A3aOFeQAUF5iYqIefPBBhYWF6erVqxoyZIgOHDigX/3qV1q6dKnpPACVdOPGDe3atUvbt2/XkSNHVK9ePdNJQI3AShYb5ePjo/z8fEVERJT+JS8qKkre3t6m0wAAAO6ITz75RFOmTNHMmTPVsmVLOTs7l3nd09PTUBnsGSvIAeCmwsJCpaSk6PPPP1d+fr5atWqluLg4ubm5mU4DcJvS0tKUnJysFStWqLi4WLGxsYqLi1Pnzp3Zshe4Axiy2Ki1a9cqKiqKby4AAIAay8HBQZLK/cWOg+9RlX5qBfncuXNNJwIAAFRaPV7eAgAAHkBJREFUo0aNlJeXp+7duysuLk69e/eWq6ur6SygRmHIAgAAACPS09N/9HW2SEVVYAU5ANy0atWqCr+3T58+v2AJgDtp/vz5GjBgAF/bAL8ghiwAAAAA7BYryAHgpu9XmP4UVpsCAFAWQxYAAAAYc/78eb311lvKzs6WJN1zzz0aOXKkvLy8DJcBAAAA1VtWVpZWr14tX19fDRw4UL/61a9KX7t48aImTZqkhQsXGiwEagaGLAAAADBi165devDBB+Xm5qb77rtPkrRz505duXJFGzZsUKtWrQwXAgAAANXThg0b1Lt3b9199926dOmSLl++rGXLlikmJkaS9N1336lhw4asTAPuAIYsAAAAMCIqKkrBwcGaP3++nJycJEmFhYUaNWqUDh8+rM2bNxsuBADAPr322mu3vG6xWFSrVi0FBwerY8eOcnR0rOIyABXVvn17xcTE6MUXX1RJSYlefvllPf/881q2bJm6d+/OkAW4gxiyAAAAwAg3NzdlZmYqJCSkzPWvvvpKbdq0UUFBgaEyAADsW5MmTXT69GkVFBTIx8dHknTu3Dm5u7urTp06ys3NVVBQkNLS0hQQEGC4FsCteHl5KSMjQ02bNi29lpycrMcee0wpKSlq27YtQxbgDqnYqWYAAADAHebp6amcnJxy148dOyYPDw8DRQAAQJJmzpyptm3b6sCBAzp79qzOnj2r/fv36/7779err76qnJwc1a9fXwkJCaZTAfwAV1dXnT9/vsy1IUOGaMGCBXrkkUe0cuVKM2FADcRKFgAAABgRHx+vlStX6pVXXlH79u0lSdu2bdOTTz6p/v37KykpyWwgAAB2qmnTplqxYoXuvffeMtczMzPVv39/HT58WJ9++qn69++vkydPmokE8KO6deumbt26afLkyeVeW7p0qYYPH66ioiJWsgB3gJPpAAAAANinV155RRaLRcOGDVNhYaEkydnZWWPHjtWsWbMM1wEAYL9OnjxZ+mfzfyssLNSpU6ckSQ0bNtSlS5eqOg1ABY0dO/YHzzgcPHiwSkpKNH/+/CquAmomVrIAAADAqIKCAh06dEjSzU/Ouru7Gy4CAMC+9erVS6dOndKCBQsUGRkp6eYqltGjR6t+/fpas2aNVq9erWeeeUZffPGF4VoAAMziTBYAAAAYceHCBeXl5cnd3V0tW7ZUy5Yt5e7urry8PF28eNF0HgAAduutt96Sr6+vWrduLVdXV7m6uqpNmzby9fXVW2+9JUmqU6eOEhMTDZcC+CmjRo2S1Wo1nQHUaKxkAQAAgBE9evRQ79699cc//rHM9TfeeEOrVq3SunXrDJUBAABJ+vrrr7V//35JUvPmzdW8eXPDRQBuV9++fbV+/Xr5+flp0KBBGjp0qCIiIkxnATUKQxYAAAAY4evrq23btik0NLTM9a+//lodOnTQ2bNnDZUBAIDvff9tI4vFYrgEQGWdO3dOy5YtU3JysrZs2aKQkBDFxcVpyJAhCgwMNJ0HVHtsFwYAAAAjrl27dstDdW/cuKErV64YKAIAAN9bvHixWrZsKTc3N7m5uSk8PFxLliwxnQWgEnx8fPTYY4/JarXq6NGjGjFihJYsWaLg4GDTaUCNwJAFAAAARtx333168803y11/44031Lp1awNFAABAkubMmaOxY8eqZ8+eev/99/X++++re/fuGjNmjObOnWs6D0Al3bhxQ7t27dL27dt15MgR1atXz3QSUCOwXRgAAACM2LZtm7p27aq2bduqS5cukqRNmzZp586d2rBhg6KiogwXAgBgn5o0aaLp06dr2LBhZa7/61//0rRp0/TNN98YKgNQGWlpaUpOTtaKFStUXFys2NhYxcXFqXPnzmwFCNwBDFkAAABgzJ49e/Tyyy9rz549pVuR/OUvf9Hdd99tOg0AALtVq1Ytffnll+W2Ejpw4IBatmypq1evGioDcLsaNWqkvLw8de/eXXFxcerdu7dcXV1NZwE1CkMWAAAAAAAAlGrRooWGDBmiZ555psz1F154Qe+9956++OILQ2UAbtf8+fM1YMAAeXt7m04BaiyGLAAAADDC0dFRJ0+elL+/f5nrZ8+elb+/v4qKigyVAQBg31asWKFHHnlEXbt2VYcOHSTd3OZz06ZNev/99/XQQw8ZLgQAwHY4mQ4AAACAffqhz/pcu3ZNLi4uVVwDAAC+179/f23fvl1z587Vv//9b0lSaGioduzYocjISLNxAG7brl279P777ysnJ0fXr18v81pqaqqhKqDmYMgCAACAKvXaa69JkiwWixYsWKA6deqUvlZUVKTNmzcrJCTEVB4AAJDUunVrvfPOO6YzAPxMKSkpGjZsmB588EFt2LBB3bp10/79+/Xdd9+xKg24Q9guDAAAAFWqSZMmkqSjR4+qcePGcnR0LH3NxcVFgYGBmjFjhu6//35TiQAA2L2ioiL9+9//VnZ2tiTpnnvuUZ8+fcr8uQ3A9oWHh+vxxx/XuHHj5OHhoaysLDVp0kSPP/64GjRooOnTp5tOBKo9hiwAAAAwIiYmRqmpqfLx8TGdAgAA/svBgwfVq1cvHT9+XM2bN5ck7du3TwEBAVq7dq2aNm1quBBARdWuXVt79+5VYGCg6tatK6vVqpYtWyo7O1udO3fWyZMnTScC1Z6D6QAAAADYp7S0tDIDlqKiIu3Zs0fnzp0zWAUAAOLj4xUUFKRjx44pIyNDGRkZysnJUZMmTRQfH286D8Bt8PHx0aVLlyRJjRo10pdffilJOn/+vAoKCkymATUGQxYAAAAYMWnSJL311luSbg5YOnbsqFatWikgIEBWq9VsHAAAdiw9PV2zZ8+Wr69v6bW6detq1qxZSk9PN1gG4HZ17NhRGzdulCQNGDBAEydO1OjRozV48GB16dLFcB1QM3DwPQAAAIxYtmyZhg4dKklavXq1jhw5oq+//lpLlizRs88+q23bthkuBADAPrm6upZ+8v2/5efny8XFxUARgMp6/fXXdfXqVUnSs88+K2dnZ3366afq37+/pkyZYrgOqBk4kwUAAABG1KpVSwcPHlTjxo312GOPyd3dXUlJSfrmm28UERGhixcvmk4EAMAuDRs2TBkZGXrrrbd03333SZK2b9+u0aNHq3Xr1nr77bfNBgKosGHDhikmJkYdO3bkPCXgF8J2YQAAADCiXr16+uqrr1RUVKSPPvpIDzzwgCSpoKBAjo6OhusAALBfr732mpo2bap27dqpVq1aqlWrltq3b6/g4GAlJSWZzgNwG1xcXPTSSy/p7rvvVkBAgIYOHaoFCxbowIEDptOAGoOVLAAAADBi2rRpSkpKUoMGDVRQUKD9+/fL1dVVCxcu1Pz58/XZZ5+ZTgQAwK4dPHhQ2dnZkqTQ0FAFBwcbLgJQWSdOnNDmzZuVnp6u9PR07d+/Xw0aNNDx48dNpwHVHmeyAAAAwIhp06apRYsWOnbsmAYMGCBXV1dJkqOjo55++mnDdQAA2K8nnnii3LW0tDRZLBbVqlVLwcHB6tu3r3x9fQ3UAagMHx8f1a1bVz4+PvL29paTk5P8/PxMZwE1AitZAAAAAAAAUComJkYZGRkqKipS8+bNJUn79++Xo6OjQkJCtG/fPlksFm3dulVhYWGGawH8mGeeeUZWq1WZmZkKDQ1VdHS0OnXqpI4dO8rHx8d0HlAjMGQBAACAMZcvX1Z6erpycnJ0/fr1Mq/Fx8cbqgIAwL4lJSVpy5YtWrRokTw9PSVJFy5c0KhRo/Tb3/5Wo0eP1pAhQ3TlyhWtX7/ecC2AH+Pg4CA/Pz8lJCQoNjZWzZo1M50E1DgMWQAAAGBEZmamevbsqYKCAl2+fFm+vr46c+aM3N3d5e/vr8OHD5tOBADALjVq1EgbN24st0pl79696tatm06cOKGMjAx169ZNZ86cMVQJoCKysrKUnp4uq9WqLVu2yMXFpXQ1S6dOnRi6AHeAg+kAAAAA2KeEhAT17t1b586dk5ubm/7zn//o6NGjat26tV555RXTeQAA2K0LFy4oNze33PXTp0/r4sWLkiRvb+9yq1AB2J6IiAjFx8crNTVVp0+f1rp16+Ti4qJx48YpNDTUdB5QI3DwPQAAAIzYs2eP5s2bJwcHBzk6OuratWsKCgrS7NmzNXz4cMXGxppOBADALvXt21cjR45UYmKi2rZtK0nauXOnJk+erH79+kmSduzYwSfggWqgpKREmZmZslqtslqt2rp1qy5evKjw8HBFR0ebzgNqBIYsAAAAMMLZ2VkODjcXVvv7+ysnJ0ehoaHy8vLSsWPHDNcBAGC/5s2bp4SEBA0aNEiFhYWSJCcnJw0fPlxz586VJIWEhGjBggUmMwFUgK+vr/Lz8xUREaHo6GiNHj1aUVFR8vb2Np0G1BicyQIAAAAjunXrphEjRmjIkCEaPXq0Pv/8c8XHx2vJkiU6d+6ctm/fbjoRAAC7lp+fX3pGWlBQkOrUqWO4CMDtWrt2raKiouTp6Wk6BaixGLIAAADAiF27dunSpUuKiYlRbm6uhg0bpk8//VR33323Fi5cqIiICNOJAAAAAAD8KIYsAAAAqDKrVq1Sjx495OzsbDoFAAAAAICfjSELAAAAqoyjo6NOnTolPz8/OTo66uTJk/L39zedBQAAAABApTiYDgAAAID98PPz03/+8x9JUklJiSwWi+EiAAAAAAAqz8l0AAAAAOzHmDFj1LdvX1ksFlksFtWvX/8H31tUVFSFZQAAAAAA3D62CwMAAECV+vrrr3Xw4EH16dNHixYtkre39y3f17dv36oNAwAAAADgNjFkAQAAgBHTp0/Xk08+KXd39x9937Zt29SmTRu5urpWURkAAAAAABXDkAUAAAA2zdPTU3v27FFQUJDpFAAAAAAAyuDgewAAANg0PhMEAAAAALBVDFkAAAAAAAAAAAAqgSELAAAAAAAAAABAJTBkAQAAAAAAAAAAqASGLAAAALBpFovFdAIAAAAAALfEkAUAAAA2jYPvAQAAAAC2ylLC31oBAAAAAAAAAABum5PpAAAAANiPyMjICm//lZGR8QvXAAAAAADw8zBkAQAAQJXp16+f6QQAAAAAAO4YtgsDAAAAAAAAAACoBFayAAAAwKhdu3YpOztbkhQWFqbWrVsbLgIAAAAAoGIYsgAAAMCI48ePa/Dgwdq2bZu8vb0lSefPn1f79u2VkpKixo0bmw0EAAAAAOAnOJgOAAAAgH0aNWqUbty4oezsbOXl5SkvL0/Z2dkqLi7WqFGjTOcBAAAAAPCTOJMFAAAARri5uenTTz9VZGRkmeu7d+9WVFSUCgoKDJUBAAAAAFAxrGQBAACAEQEBAbpx40a560VFRWrYsKGBIgAAAAAAbg9DFgAAABjx8ssva8KECdq1a1fptV27dmnixIl65ZVXDJYBAAAAAFAxbBcGAAAAI3x8fFRQUKDCwkI5OTlJUunPa9euXea9eXl5JhIBAAAAAPhRTqYDAAAAYJ+SkpJMJwAAAAAA8LOwkgUAAAA2bdasWRozZoy8vb1NpwAAAAAAUAZDFgAAANg0T09P7dmzR0FBQaZTAAAAAAAog4PvAQAAYNP4TBAAAAAAwFYxZAEAAAAAAAAAAKgEhiwAAAAAAAAAAACVwJAFAAAAAAAAAACgEhiyAAAAAAAAAAAAVAJDFgAAANi0qKgoubm5mc4AAAAAAKAcS0lJSYnpCAAAANgfR0dHnTx5Uv7+/mWunz17Vv7+/ioqKjJUBgAAAABAxbCSBQAAAEb80Gd9rl27JhcXlyquAQAAAADg9jmZDgAAAIB9ee211yRJFotFCxYsUJ06dUpfKyoq0ubNmxUSEmIqDwAAAACACmO7MAAAAFSpJk2aSJKOHj2qxo0by9HRsfQ1FxcXBQYGasaMGbr//vtNJQIAAAAAUCEMWQAAAGBETEyMUlNT5ePjYzoFAAAAAIBK4UwWAAAAGBETEyNXV9dy169cuaIZM2YYKAIAAAAA4PawkgUAAABGODo66uTJk/L39y9z/ezZs/L391dRUZGhMgAAAAAAKoaVLAAAADCipKREFoul3PWsrCz5+voaKAIAAAAA4PY4mQ4AAACAffHx8ZHFYpHFYlGzZs3KDFqKioqUn5+vMWPGGCwEAAAAAKBi2C4MAAAAVepf//qXSkpKNHLkSCUlJcnLy6v0NRcXFwUGBqpdu3YGCwEAAAAAqBiGLAAAADAiPT1dHTp0kJMTi6sBAAAAANUTZ7IAAADACA8PD2VnZ5f++oMPPlC/fv30zDPP6Pr16wbLAAAAAACoGIYsAAAAMOLxxx/X/v37JUmHDx/WI488Ind3dy1btkx//vOfDdcBAAAAAPDTGLIAAADAiP379+vee++VJC1btkzR0dFKTk7W22+/rRUrVpiNAwAAAACgAhiyAAAAwIiSkhIVFxdLkj7++GP17NlTkhQQEKAzZ86YTAMAAAAAoEIYsgAAAMCINm3a6IUXXtCSJUuUnp6uXr16SZK++eYb1atXz3AdAAAAAAA/jSELAAAAjEhKSlJGRobGjx+vZ599VsHBwZKk5cuXq3379obrAAAAAAD4aZaSkpIS0xEAAADA965evSpHR0c5OztLkpYuXao+ffqodu3ahssAAAAAACiLIQsAAABsmqenp/bs2aOgoCDTKQAAAAAAlMF2YQAAALBpfCYIAAAAAGCrGLIAAAAAAAAAAABUAkMWAAAAAAAAAACASmDIAgAAAAAAAAAAUAkMWQAAAAAAAAAAACqBIQsAAABs2l133SVnZ2fTGQAAAAAAlGMpKSkpMR0BAAAA+7V7925lZ2dLksLCwtSqVSvDRQAAAAAAVIyT6QAAAADYp9zcXA0aNEhWq1Xe3t6SpPPnzysmJkYpKSny8/MzGwgAAAAAwE9guzAAAAAYMWHCBF26dEl79+5VXl6e8vLy9OWXX+rixYuKj483nQcAAAAAwE9iuzAAAAAY4eXlpY8//lht27Ytc33Hjh3q1q2bzp8/byYMAAAAAIAKYiULAAAAjCguLr7lgfbOzs4qLi42UAQAAAAAwO1hyAIAAAAjOnfurIkTJ+rbb78tvXbixAklJCSoS5cuBssAAAAAAKgYtgsDAACAEceOHVOfPn20d+9eBQQElF5r0aKFVq1apcaNGxsuBAAAAADgxzFkAQAAgDElJSX6+OOP9fXXX0uSQkND1bVrV8NVAAAAAABUDEMWAAAAAAAAAACASnAyHQAAAAD7tXPnTqWlpSk3N7fcYfdz5swxVAUAAAAAQMUwZAEAAIARM2fO1JQpU9S8eXPVq1dPFoul9LX//jkAAAAAALaK7cIAAABgRL169fS3v/1NI0aMMJ0CAAAAAEClOJgOAAAAgH1ycHBQhw4dTGcAAAAAAFBpDFkAAABgREJCgv7xj3+YzgAAAAAAoNLYLgwAAABGFBcXq1evXtq/f7/CwsLk7Oxc5vXU1FRDZQAAAAAAVAwH3wMAAMCI+Ph4paWlKSYmRnXr1uWwewAAAABAtcNKFgAAABjh4eGhlJQU9erVy3QKAAAAAACVwpksAAAAMMLX11dNmzY1nQEAAAAAQKUxZAEAAIAR06ZN09SpU1VQUGA6BQAAAACASmG7MAAAABgRGRmpQ4cOqaSkRIGBgeUOvs/IyDBUBgAAAABAxXDwPQAAAIzo16+f6QQAAAAAAH4WVrIAAAAAAAAAAABUAmeyAAAAwJjz589rwYIF+stf/qK8vDxJN7cJO3HihOEyAAAAAAB+GitZAAAAYMTnn3+url27ysvLS0eOHNG+ffsUFBSkKVOmKCcnR4sXLzadCAAAAADAj2IlCwAAAIx44oknNGLECB04cEC1atUqvd6zZ09t3rzZYBkAAAAAABXDkAUAAABG7Ny5U48//ni5640aNdKpU6cMFAEAAAAAcHsYsgAAAMAIV1dXXbx4sdz1/fv3y8/Pz0ARAAAAAAC3hyELAAAAjOjTp49mzJihGzduSJIsFotycnL01FNPqX///obrAAAAAAD4aRx8DwAAACMuXLighx9+WLt27dKlS5fUsGFDnTp1Sr/5zW/04Ycfqnbt2qYTAQAAAAD4UQxZAAAAYNS2bduUlZWl/Px8tWrVSl27djWdBAAAAABAhTBkAQAAgDGbNm3Spk2blJubq+Li4jKvLVy40FAVAAAAAAAV42Q6AAAAAPZp+vTpmjFjhtq0aaMGDRrIYrGYTgIAAAAA4LawkgUAAABGNGjQQLNnz9bvf/970ykAAAAAAFSKg+kAAAAA2Kfr16+rffv2pjMAAAAAAKg0hiwAAAAwYtSoUUpOTjadAQAAAABApXEmCwAAAIy4evWq3nzzTX388ccKDw+Xs7NzmdfnzJljqAwAAAAAgIrhTBYAAAAYERMT84OvWSwWffLJJ1VYAwAAAADA7WPIAgAAAAAAAAAAUAmcyQIAAAAAAAAAAFAJDFkAAAAAAAAAAAAqgSELAAAAAAAAAABAJTBkAQAAAAAAAAAAqASGLAAAAAAAAAAAAJXAkAUAAACA3bNarbJYLDp//rzpFAAAAADVCEMWAAAAAAAAAACASmDIAgAAAKBaWb58uVq2bCk3NzfVrVtXXbt2VXp6upydnXXq1Kky7500aZKioqIkSUePHlXv3r3l4+Oj2rVr65577tG6det05MgRxcTESJJ8fHxksVg0YsQISVJxcbFeeuklNWnSRG5uboqIiNDy5ctL//nfr4BZv369IiMj5ebmps6dOys3N1cffvihQkND5enpqSFDhqigoKBqbhAAAACAKuNkOgAAAAAAKurkyZMaPHiwZs+erYceekiXLl3Sli1b1Lp1awUFBWnJkiV68sknJUk3btzQu+++q9mzZ0uSxo0bp+vXr2vz5s2qXbu2vvrqK9WpU0cBAQFasWKF+vfvr3379snT01Nubm6SpJdeeknvvPOO3njjDd19993avHmzhg4dKj8/P0VHR5d2TZs2Ta+//rrc3d01cOBADRw4UK6urkpOTlZ+fr4eeugh/f3vf9dTTz1V9TcNAAAAwC+GIQsAAACAauPkyZMqLCxUbGys7rrrLklSy5YtJUmPPvqoFi1aVDpkWb16ta5evaqBAwdKknJyctS/f//S9wcFBZX+c319fSVJ/v7+8vb2liRdu3ZNM2fO1Mcff6x27dqV/p6tW7dq3rx5ZYYsL7zwgjp06FDa8Ze//EWHDh0q/Xc8/PDDSktLY8gCAAAA1DBsFwYAAACg2oiIiFCXLl3UsmVLDRgwQPPnz9e5c+ckSSNGjNDBgwf1n//8R5L09ttva+DAgapdu7YkKT4+vnQYMnXqVH3++ec/+u86ePCgCgoK9MADD6hOnTqlPxYvXqxDhw6VeW94eHjpz+vVqyd3d/cyQ5x69eopNzf3jtwDAAAAALaDIQsAAACAasPR0VEbN27Uhx9+qLCwMP39739X8+bN9c0338jf31+9e/fWokWL9N133+nDDz/UyJEjS3/vqFGjdPjwYf3+97/XF198oTZt2ujvf//7D/678vPzJUlr167Vnj17Sn989dVXZc5lkSRnZ+fSn1ssljK//v5acXHxnbgFAAAAAGwIQxYAAAAA1YrFYlGHDh00ffp0ZWZmysXFRStXrpR0c5Dy3nvv6c0331TTpk1Lt/D6XkBAgMaMGaPU1FT96U9/0vz58yVJLi4ukqSioqLS94aFhcnV1VU5OTkKDg4u8yMgIKCK/msBAAAA2DLOZAEAAABQbWzfvl2bNm1St27d5O/vr+3bt+v06dMKDQ2VJD344IPy9PTUCy+8oBkzZpT5vZMmTVKPHj3UrFkznTt3TmlpaaW/76677pLFYtGaNWvUs2dPubm5ycPDQ5MnT1ZCQoKKi4v129/+VhcuXNC2bdvk6emp4cOHV/l/PwAAAADbwkoWAAAAANWGp6enNm/erJ49e6pZs2aaMmWKEhMT1aNHD0mSg4ODRowYoaKiIg0bNqzM7y0qKtK4ceMUGhqq7t27q1mzZvqf//kfSVKjRo00ffp0Pf3006pXr57Gjx8vSXr++ef117/+VS+99FLp71u7dq2aNGlStf/hAAAAAGySpaSkpMR0BAAAAADcKY8++qhOnz6tVatWmU4BAAAAUMOxXRgAAACAGuHChQv64osvlJyczIAFAAAAQJVgyAIAAACgRujbt6927NihMWPG6IEHHjCdAwAAAMAOsF0YAAAAAAAAAABAJXDwPQAAAAAAAAAAQCUwZAEAAAAAAAAAAKgEhiwAAAAAAAAAAACVwJAFAAAAAAAAAACgEhiyAAAAAAAAAAAAVAJDFgAAAAAAAAAAgEpgyAIAAAAAAAAAAFAJDFkAAAAAAAAAAAAq4f8B/LGjZvr7SUgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from utils import filter_top_outliers, filter_bottom_outliers\n", "df_per_sample_filtered = filter_top_outliers(df_per_sample, \"WER\", 100)\n", "\n", "plot = box_plot_per_dimension(df_per_sample_filtered, \"WER\", \"system\", \"Average WER per system\", \"system\", \"WER\")\n", "plot.show()\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAPhCAYAAAA1rSIkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1hU1f4/8Pcw3ETl5oWLZoFlKkmSlU4klZqFYmQ6So7dwAtCp9Q8nZLLhEGdLuqpEzBe85tOoRPaROkptTyUZ7wVNoaZllOGeEm5aVwG9szvD357N9sZywoYWOvzep6eh9lrEWu59uyZ/dlrfZbCbrfbQQghhBBCCCGEEEII+UM83N0AQgghhBBCCCGEEEK6IgqsEUIIIYQQQgghhBDyJ1BgjRBCCCGEEEIIIYSQP4ECa4QQQgghhBBCCCGE/AkUWCOEEEIIIYQQQggh5E+gwBohhBBCCCGEEEIIIX8CBdYIIYQQQgghhBBCCPkTKLBGCCGEEEIIIYQQQsifQIE1QgghhBBCCCGEEEL+BAqsEUIIIYQQQgghhBDyJ1BgjRBCCCFuVVBQAIVCgZEjR7q7KZ3ONddcA4VCgXHjxrksX7VqFRQKBRQKBQ4cOCAdf+6556Tjrv47ffo0AOCHH36QHffw8EBwcDDi4+NhMpk6pI9dTX19PZ577jns2rXL3U0hhBBCSCfg6e4GEEIIIYRver0e11xzDfbt24fvvvsO1157rbub1Kn4+vri008/xenTpxEaGior0+v18PX1RWNjo8vfLSwsRI8ePZyOBwYGyl4/+OCDmDBhAgRBwNGjR1FQUIC77roL+/fvx7Bhw9qsLyyor69HTk4OAODOO+90b2MIIYQQ4nYUWCOEEEKI21gsFvzvf//D5s2bMXfuXOj1emi12g5tg81mg9Vqha+vb4f+3SsVGxuL/fv3Y+PGjXjyySel4xUVFfjss88wefJkFBcXu/zdqVOnonfv3r/7N2666SbMnDlTej169GjEx8ejsLAQBQUFf70TbeCXX35B9+7d3d0MQgghhBAZWgpKCCGEELfR6/UICgrCxIkTMXXqVOj1eqmsubkZwcHBeOyxx5x+r66uDr6+vli0aJF0rKmpCVqtFtdeey18fHxw1VVX4emnn0ZTU5PsdxUKBR5//HHo9XpERUXBx8cH//nPfwAAr776Km677Tb06tUL3bp1w4gRI/Duu+86/f2GhgY88cQT6N27N3r27In77rsPJ0+ehEKhwHPPPSere/LkSSQnJyMkJAQ+Pj6IiorC2rVrr/jfyNfXFw888ADefvtt2fF33nkHQUFBuOeee674/3WlRo8eDQD4/vvvf7fuunXroFAoUFpairlz56JXr17w9/fHww8/jOrqaqf627Ztw+jRo9G9e3f07NkTEydORHl5uazOo48+ih49euD777/HhAkT0LNnT2g0msu24cKFC5g/fz6uueYa+Pj4oG/fvrj77rvx5ZdfAgC0Wi28vLzw888/O/3unDlzEBgYKM36O3DgAO655x707t0b3bp1Q0REBJKTkwG0Lp3t06cPACAnJ0daQus45keOHMHUqVMRHBwMX19f3HzzzXj//fdd/pt9/vnneOKJJ9CnTx8EBgZi7ty5sFqtqKmpwcMPP4ygoCAEBQXh6aefht1u/92xIIQQQkjHoxlrhBBCCHEbvV6PBx54AN7e3njwwQdRWFiI/fv345ZbboGXlxcmT56MzZs3Y8WKFfD29pZ+77333kNTUxOSkpIAtM46u++++/D5559jzpw5GDJkCA4dOoTly5fj6NGjeO+992R/95NPPsGmTZvw+OOPo3fv3rjmmmsAAK+99hruu+8+aDQaWK1WFBUVQa1W44MPPsDEiROl33/00UexadMmPPTQQxg1ahT++9//yspFZ86cwahRo6RgXp8+fbBt2zakpKSgrq4O8+fPv6J/pxkzZmD8+PH4/vvvMXDgQADA22+/jalTp8LLy+uyv1dVVeV0zNPT02kp6KV++OEHAEBQUNAVtQ8AHn/8cQQGBuK5557Dt99+i8LCQvz444/YtWsXFAoFAGD9+vV45JFHcM899+Cll15CfX09CgsLcfvtt6OsrEwaBwBoaWnBPffcg9tvvx2vvvoq/Pz8Lvu3U1NT8e677+Lxxx/H0KFDcf78eXz++ef45ptvcNNNN+Ghhx7CkiVLsHHjRjz++OPS71mtVrz77ruYMmUKfH19cfbsWYwfPx59+vTBM888g8DAQPzwww/YvHkzAKBPnz4oLCzEvHnzMHnyZDzwwAMAgOjoaABAeXk5YmNj0a9fPzzzzDPo3r07Nm3ahPvvvx/FxcWYPHmyrN1/+9vfEBoaipycHOzZswcrV65EYGAg/ve//2HAgAF44YUXsHXrVrzyyiu44YYb8PDDD1/xeBBCCCGkg9gJIYQQQtzgwIEDdgD27du32+12u91ms9n79+9vf/LJJ6U6H330kR2AvaSkRPa7EyZMsEdGRkqv169fb/fw8LB/9tlnsno6nc4OwL57927pGAC7h4eHvby83KlN9fX1stdWq9V+ww032MeMGSMd++KLL+wA7PPnz5fVffTRR+0A7FqtVjqWkpJiDwsLs587d05WNykpyR4QEOD09y519dVX2ydOnGhvaWmxh4aG2p9//nm73W63Hz582A7A/t///tf+5ptv2gHY9+/fL/2eVqu1A3D53/XXXy/Vs1gsdgD2nJwc+88//2w/ffq0/bPPPrPfcsstdgB2g8Hwm+2z2+3S3x8xYoTdarVKx19++WU7ALvRaLTb7Xb7hQsX7IGBgfbZs2fLfv/06dP2gIAA2fFHHnnEDsD+zDPP/O7ft9vt9oCAAHt6evpv1lGpVPaRI0fKjm3evNkOwP7pp5/a7Xa7fcuWLU7/lpf6+eefncZZNHbsWPuwYcPsjY2N0jGbzWa/7bbb7Nddd510TPw3u+eee+w2m03WRoVCYU9NTZWOtbS02Pv372+/4447frN/hBBCCHEPWgpKCCGEELfQ6/UICQnBXXfdBaB1ieb06dNRVFQEQRAAAGPGjEHv3r2xceNG6feqq6uxfft2TJ8+XTpmMBgwZMgQDB48GOfOnZP+GzNmDADg008/lf3tO+64A0OHDnVqU7du3WR/p7a2FqNHj5aWFAKQlo2mpaXJfvdvf/ub7LXdbkdxcTEmTZoEu90ua9c999yD2tpa2f/3tyiVSkybNg3vvPOO9G931VVXSUs2L6e4uBjbt2+X/ffmm2861dNqtejTpw9CQ0MxevRofPPNN1i6dCmmTp16Re0DWpdUOs6emzdvHjw9PbF161YAwPbt21FTU4MHH3xQ9m+hVCoxcuRIpzES/x9XIjAwEHv37kVlZeVl6zz88MPYu3evbHmr+O94xx13SP8fAPjggw/Q3Nx8RX9bVFVVhU8++QTTpk3DhQsXpP6dP38e99xzD44dO4aTJ0/KficlJUWazQcAI0eOhN1uR0pKinRMqVTi5ptvxvHjx/9QewghhBDSMWgpKCGEEEI6nCAIKCoqwl133QWLxSIdHzlyJJYuXYqdO3di/Pjx8PT0xJQpU/D222+jqakJPj4+2Lx5M5qbm2WBtWPHjuGbb76R8l9d6uzZs7LXERERLut98MEHyM3NxcGDB2W52RyDHz/++CM8PDyc/h+X7mb6888/o6amBitXrsTKlSuvqF2/ZcaMGXj99dfx1Vdf4e2330ZSUpKsXa7ExcVd0eYFc+bMgVqtRmNjIz755BO8/vrrUnDzSl133XWy1z169EBYWJi0rPTYsWMAIAU7L+Xv7y977enpif79+1/R33755ZfxyCOP4KqrrsKIESMwYcIEPPzww4iMjJTqTJ8+HfPnz4der0d2djZqa2vxwQcfYMGCBdK/4x133IEpU6YgJycHy5cvx5133on7778fM2bMgI+Pz2+24bvvvoPdbkdWVhaysrJc1jl79iz69esnvR4wYICsPCAgAABw1VVXOR13la+OEEIIIe5HgTVCCCGEdLhPPvkEp06dQlFREYqKipzK9Xo9xo8fDwBISkrCihUrsG3bNtx///3YtGkTBg8ejBtvvFGqb7PZMGzYMCxbtszl37s0UOE4M0302Wef4b777kNcXBwKCgoQFhYGLy8vvPnmm04bB1wJm80GAJg5cyYeeeQRl3XE3FxXYuTIkRg4cCDmz58Pi8WCGTNm/OE2Xc51112HcePGAQASEhKgVCrxzDPP4K677sLNN9/cJn9D/PdYv349QkNDnco9PeVfS318fODhcWWLK6ZNm4bRo0djy5Yt+Pjjj/HKK6/gpZdewubNmxEfHw+gNV9cQkKCFFh799130dTUJNsNVaFQ4N1338WePXtQUlKCjz76CMnJyVi6dCn27NmDHj16/G7/Fi1adNkNJS4NviqVSpf1XB230+YFhBBCSKdEgTVCCCGEdDi9Xo++ffsiPz/fqWzz5s3YsmULdDodunXrhri4OISFhWHjxo24/fbb8cknnyAjI0P2OwMHDsRXX32FsWPH/u4srsspLi6Gr68vPvroI9nspEuXTl599dWw2WywWCyyWVrfffedrF6fPn3Qs2dPCIIgBa3+qgcffBC5ubkYMmQIhg8f3ib/T1cyMjKwatUqZGZmSktff8+xY8ekZb0AcPHiRZw6dQoTJkwAAGnThb59+7bZv4ejsLAwpKWlIS0tDWfPnsVNN92EvLw8KbAGtC4HTUxMxP79+6HX6xETE4OoqCin/9eoUaMwatQo5OXl4e2334ZGo0FRURFmzZp12fNLnB3n5eXVLv0jhBBCSOdEOdYIIYQQ0qEaGhqwefNmJCQkYOrUqU7/Pf7447hw4QLef/99AICHhwemTp2KkpISrF+/Hi0tLbJloEDrjKWTJ09i1apVLv/eL7/88rvtUiqVUCgUsiWQP/zwg9OOouJspIKCAtnxf//7307/vylTpqC4uBhff/2109/7+eeff7dNl5o1axa0Wi2WLl36h3/3jwgMDMTcuXPx0Ucf4eDBg1f0OytXrpTlJSssLERLS4sU2Lrnnnvg7++PF154wWX+sj/z7wG0Liuura2VHevbty/Cw8Nly3kBID4+Hr1798ZLL72E//73v7LZakBrXr1LZ4aJAUzx/yXuTlpTU+P0N++8806sWLECp06dcmrnn+0fIYQQQjo3mrFGCCGEkA71/vvv48KFC7jvvvtclo8aNQp9+vSBXq+XAmjTp0/Hv//9b2i1WgwbNgxDhgyR/c5DDz2ETZs2ITU1FZ9++iliY2MhCAKOHDmCTZs24aOPPvrdJY0TJ07EsmXLcO+992LGjBk4e/Ys8vPzce2118JsNkv1RowYgSlTpuBf//oXzp8/j1GjRuG///0vjh49CkCej+2f//wnPv30U4wcORKzZ8/G0KFDUVVVhS+//BI7duxAVVXVH/q3u/rqq/Hcc89dcf13333X5fLFu+++GyEhIb/5u08++ST+9a9/4Z///KfL5bqXslqtGDt2LKZNm4Zvv/0WBQUFuP3226Vx9vf3R2FhIR566CHcdNNNSEpKQp8+fXDixAl8+OGHiI2NxRtvvHHFfRNduHAB/fv3x9SpU3HjjTeiR48e2LFjB/bv3+8UgPTy8kJSUhLeeOMNKJVKPPjgg7Ly//u//0NBQQEmT56MgQMH4sKFC1i1ahX8/f2lmXfdunXD0KFDsXHjRgwaNAjBwcG44YYbcMMNNyA/Px+33347hg0bhtmzZyMyMhJnzpyByWRCRUUFvvrqqz/cP0IIIYR0bhRYI4QQQkiH0uv18PX1xd133+2y3MPDAxMnToRer8f58+fRq1cv3Hbbbbjqqqvw008/Oc1WE3/nvffew/Lly/HWW29hy5Yt8PPzQ2RkJJ588kkMGjTod9s1ZswYrFmzBv/85z8xf/58RERE4KWXXsIPP/wgC6wBwFtvvYXQ0FC888472LJlC8aNG4eNGzfi+uuvh6+vr1QvJCQE+/btw5IlS7B582YUFBSgV69eiIqKwksvvfQH/+X+uMvtqvnpp5/+bmAtPDwcM2bMwPr16/H9999LSzkv54033pDylzU3N+PBBx/E66+/Lgs0zpgxA+Hh4fjnP/+JV155BU1NTejXrx9Gjx6Nxx577I93EK0zyNLS0vDxxx9j8+bNsNlsuPbaa1FQUOCy/w8//DDeeOMNjB07FmFhYbKyO+64A/v27UNRURHOnDmDgIAA3HrrrdDr9bLNKlavXo2//e1vWLBgAaxWK7RaLW644QYMHToUBw4cQE5ODtatW4fz58+jb9++iImJQXZ29p/qHyGEEEI6N4WdMqESQgghhPxlBw8eRExMDDZs2ACNRuPu5nSYdevW4bHHHsP+/fvbbKOD9vTVV19h+PDheOutt/DQQw+5uzmEEEII6eIoxxohhBBCyB/U0NDgdOxf//oXPDw8EBcX54YWkSu1atUq9OjRAw888IC7m0IIIYQQBtBSUEIIIYSQP+jll1/GF198gbvuuguenp7Ytm0btm3bhjlz5uCqq65yd/OICyUlJTh8+DBWrlyJxx9/HN27d3d3kwghhBDCAAqsEUIIIYT8Qbfddhu2b9+O559/HhcvXsSAAQPw3HPPISMjw91NI5fxt7/9DWfOnMGECROQk5Pj7uYQQgghhBFuzbFWWlqKV155BV988QVOnTqFLVu24P7775fK7XY7tFotVq1ahZqaGsTGxqKwsBDXXXedVKeqqgp/+9vfUFJSAg8PD0yZMgWvvfaayx2wCCGEEEIIIYQQQghpK27NsfbLL7/gxhtvRH5+vsvyl19+Ga+//jp0Oh327t2L7t2745577kFjY6NUR6PRoLy8HNu3b8cHH3yA0tJSzJkzp6O6QAghhBBCCCGEEEI41Wl2BVUoFLIZa3a7HeHh4XjqqaewaNEiAEBtbS1CQkKwbt06JCUl4ZtvvsHQoUNlu1D95z//wYQJE1BRUYHw8HCXf6upqQlNTU3Sa5vNhqqqKvTq1Uu2JTwhhBBCCCGEEEII4YvdbseFCxcQHh4OD4/fnpPWaXOsWSwWnD59GuPGjZOOBQQEYOTIkTCZTEhKSoLJZEJgYKBsa/dx48bBw8MDe/fuxeTJk13+v1988UXKrUEIIYQQQgghhBBCLuunn35C//79f7NOpw2snT59GgAQEhIiOx4SEiKVnT59Gn379pWVe3p6Ijg4WKrjyrPPPouFCxdKr2trazFgwAD89NNP8Pf3b6suOHnggQfQ2NiInj17YuPGjU7l06ZNw8WLF+Hr64vNmze3Wzs60oQJE6Sft27d+ofLuyoe+81jn7ds2YJVq1bhiSeewL333utUvm3bNvz73//G7NmzLxvo72p47DOP5zbAZ78XLVqEw4cPY8SIEXj++eedyjMzM/Hll19i6NChePXVV93QwrbH4zinpqbixIkTGDx4MJYtW+ZUvmDBAnz77bcYMGAAdDqdG1rY9mic+RhnAFiyZAn27NmDMWPGSKt+HL3yyiv49NNPMWrUKGRnZ7uhhW2Px/ObxpmPcWaxz42NjaioqPhDv3PixAm8+uqrWLRoEQYMGHDFv9e/f3/4+vr+0SZK6urqcNVVV6Fnz56/W7fTBtbak4+PD3x8fJyO+/v7t2tgbd26dZg5cyYaGhpgtVrRu3dvqezcuXNobGyEp6cn1q1b167t6EgrV65EWloagNY+RkZGSmXHjx+Hp2frKVhQUMBMnwEgOTkZb731FgBg165duO+++6Sy999/X+r3ww8/zEy/CwoK8MQTTwBoDXoPGjRIKjt69KjU59dff52ZPj/44IN466238M477+CBBx6Q+ggALS0tKCoqgo+PDx588EF4e3u7saVth8c+63Q6PP744wCAs2fP4tprr5XKvvvuO+nf4I033mDm3AaAZcuW4emnnwYA/PDDD4iOjpbKzGaz1O+XX36ZmX6/8sorSExMxFdffQVPT0/4+flJZfX19VK/X3nlFWb6zOO1+4033sADDzyA7777Dh4eHrINry5evIjvv/8enp6eTL2nJ0yYgI8//hgAUFxcjMcee0wqe/PNN6VxHj9+PDN95nGcAeC5555DQkICPvvsMyxevFh2U9nY2IjPP/8cnp6eeO6555jZ7G3SpEnYtm0bAOC9997Dww8/LJW99dZb0vkdHx/PzFjzOM4vvPCCFCQ8cuQIbr31Vqls37590jgvWbKEmXG++uqrcfLkSQCt/XJ8qLdo0SKpz/369esyffb393eaHPV7evToAU9PTwwdOlT2PaWjXEm6sE6bY+348eMYOHAgysrKMHz4cKneHXfcgeHDh+O1117D2rVr8dRTT6G6uloqb2lpga+vLwwGwxXPlqirq0NAQABqa2vb/YQcO3YsBEEAAPTs2ROPPfYY3nzzTVy4cAEAoFQqsXPnznZtQ0e78847Za8nTJjgFFHftWtXxzWog1za7+7du+OXX36RHWOt35f2ecyYMfjkk09kx1jrs06nQ1FREYKCgpCcnAyVSgWTyYS1a9eiuroaSUlJSE1NdXcz2xSPfb703B4/frx0kypi7dwGnPt9880348CBA7JjrPVbo9FIX2JvueUWPPTQQ1i/fj32798PoPXLq16vd2cT2xyP1+4HHngAVVVVAIAhQ4ZI38e++eYbAEBwcDAzqwdEl46zKzTObEhNTcWRI0egUCgwbtw4qNVqGAwG7NixA3a7HYMHD2Zqlh7A5/lN4wwMHjwYR44ckR1jbZx5PLcvdfToUcyZMwcrV67s0MDaH4kTddrAmrh5waJFi/DUU08BaO1Y3759nTYvOHDgAEaMGAEA+Pjjj3Hvvff+5uYFl+rIwBogD645YjGoJvqtCwLLFwIe+81jn3U6HQwGg+x9rVQqoVarmQswiXjsM4/nNsBnvx2Da45YDKqJeBxnx6CLI1aDLQCNsyOWxxn4NehyKRaDLSIez28aZzlWx5nHPjuiwNrvuHjxIr777jsAQExMDJYtW4a77roLwcHBGDBgAF566SX885//xP/93/8hIiICWVlZMJvNOHz4sDTdNT4+HmfOnIFOp0NzczMee+wx3HzzzXj77bevuB0dHVgDgIqKCsyaNQtNTU3w8fHB6tWrfzchXld3+PBhaVko0Lr8ZOjQoW5sUcdYu3attCwUaF3+mZyc7MYWtT+z2SwtLQJalxA5LiNjkdVqhdFoRGVlJcLDw5GYmMjMUsjL4bHPX3/9tbQsFGhdanTDDTe4sUUdY9++fdKyUKB1+afjEgwW1dbWIiMjA2fOnEFISAjy8vIQEBDg7ma1Kx6v3VVVVVi4cCHOnz+PXr16YdmyZQgODnZ3s9rVCy+8IJtxO378eCxevNiNLWp/PI4z0Hqv9eKLL0qf088++ywzywIv56WXXpKWhQKt94r/+Mc/3Nii9sfjOJeWlspyxy1ZsgRxcXFubFH7u/ShH8sP+y5FgbXfsWvXLtx1111Oxx955BGsW7cOdrsdWq0WK1euRE1NDW6//XYUFBTI/jGrqqrw+OOPo6SkBB4eHpgyZQpef/31P3QxcUdgjRBCCCGEEEII+SsEQYDZbEZVVRWCg4MRHR0NpVLp7mYR0mYosNZFUGCNEEIIIYQQQkhXUlpaioKCApw+fVo6FhoairS0NOZncBF+dIXAmkcHtYkQQgghhBBCCCFtoLS0FFqtFpGRkcjPz8fWrVuRn5+PyMhIaLValJaWuruJhHCDAmuEEEIIIYQQQkgXIQgCCgoKoFKpkJubi6ioKPj5+SEqKgq5ublQqVQoLCx0uWEeIaTtUWCNEEIIIYQQQgjpIsxmM06fPg2NRgMPD/ktvYeHBzQaDU6dOgWz2eymFhLCFwqsEUIIIYQQQgghXURVVRUAICIiwmW5eFysRwhpXxRYI4QQQgghhBBCuojg4GAAgMVicVkuHhfrsUYQBJSVlWHnzp0oKyujJa/E7Tzd3QBCCCGEEEIIIW1LEASYzWZUVVUhODgY0dHRUCqV7m4WaQPR0dEIDQ2FXq9Hbm6ubDmozWaDXq9HWFgYoqOj3djK9kE7oZLOiAJrhBBCCCGEEMIQCj6wTalUIi0tDVqtFhkZGbj11lvh4+ODpqYm7Nu3D3v27EFOTg5zgVRxJ1SVSoWsrCxERETAYrFAr9dDq9UiJyeHzm/iFgq73W53dyPcra6uDgEBAaitrYW/v7+7m0MIIYQQQgghf4pj8EGj0ciCDyaTiYIPDNHpdDAYDLKlkEqlEmq1GqmpqW5sWdsTBAEajQaRkZEuZ+llZmbCYrFgw4YNzAUUeXf06FHMmTMHK1euxKBBgzrs7/6ROBHNWCOEEEIIuQQtoSKEdEWCIKCgoAAqlUoWfIiKikJubi4yMzNRWFiI2NhYuqZ1caWlpdi4cSNGjRrlNGNt48aNGDp0KFMBVHEn1KysrMvuhJqeng6z2YyYmBg3tZLwigJrhBBCCCEOaAkVIaSrouADHy4XQAWAxMREJgOotBMq6cxoV1BCCCGEkP9PXEIVGRmJ/Px8bN26Ffn5+YiMjIRWq0Vpaam7m0gIIZdFwQc+iAFUjUZz2QDqqVOnYDab3dTCtsf7Tqikc6PAGiGEEEIInGcAREVFwc/PT1pCpVKpUFhYKMtlQwghnQkFH/jAYwDVcSdUm80mK2N9J1TS+VFgjRBCCCEEfM4AIISwhYIPfOAxgCruhGoymZCZmYny8nLU19ejvLwcmZmZMJlMmDdvHjNLXy8lCALKysqwc+dOlJWV0UO+ToZyrBFCCCGEgM8ZAIQQtojBB61Wi8zMzMvuCspq8IEXjgFUVztkshpAjYuLQ05ODgoKCpCeni4dDwsLY3q3W8r92vlRYI0QQgghBPIZAFFRUU7lLM4AIISwh9fgA094DqDGxcUhNjaWm527xdyvKpUKWVlZsnHWarX0nu4kFHa73e7uRrhbXV0dAgICUFtbC39/f3c3hxBCCCFuIAgCNBoNIiMjXc4AyMzMhMViwYYNG5j9Ak8IYYcgCNwEH3jlaiZTWFgY5s2bR8EWBtD3klZHjx7FnDlzsHLlSgwaNKjD/u4fiRPRjDVCCCGEEPA9A4AQwh6lUomYmBh3N4O0I95mb/FGzP2alZV12dyv6enpMJvN9F53MwqsEUIIIYT8f+ISqjfeeEO2hCokJISWWxBCCCGkwzjmfrVarTAajaisrER4eDgSExMp92snQoE1QgghhBAHhw8fxvnz52XHzp07h8OHD1NgjRBCSKdBSe3ZJuZ0XbZsGT799FPZTqA6nQ533XWXrB5xH4/fr0IIIYQQwgedToeioiL4+/tj0aJFKC4uxqJFi+Dv74+ioiLodDp3N5EQQgiRktpHRkYiPz8fW7duRX5+PiIjI6HValFaWuruJpK/KDo6Gn5+ftixY4fL7yU7duyAn58fc7u/dkUUWCOEEEIIAWC1WmEwGBAUFASDwYCEhAT06tULCQkJsuNWq9XdTSWEEMIxQRBQUFAAlUqF3NxcREVFwc/PD1FRUcjNzYVKpUJhYaFshhPpegRBQGNjIwDg+uuvR0REBLp164aIiAhcf/31AIDGxkYa506AAmuEEEIIIQCMRiMEQUBKSgo8PeXZMjw9PZGcnAxBEGA0Gt3UQkIIIeTXpPYajeaySe1PnToFs9nsphaStmA0GmGz2XDffffhhx9+QHp6OiZMmID09HT8+OOPmDRpEmw2G30v6QQoxxohhBBCCIDKykoAgEqlclkuHhfrEUIIIe7gmNTeFUpqzwbx+8YjjzyCJ5980mn31+rqapSUlND3kk6AZqwRQgghhAAIDw8HAJhMJpfl4nGxHiGEEOIOYrJ6i8Xislw8TkntuzbH7yVKpRIxMTEYO3YsYmJioFQq6XtJJ0KBNUIIIYQQAImJiVAqlVizZg1aWlpkZS0tLVi7di2USiUSExPd1EJCCCGkNal9aGgo9Ho9bDabrMxms0Gv1yMsLIyS2ndx9L2k66DAGiGEEEIIAG9vb6jValRXV0OtVqOkpATnzp1DSUmJ7Li3t7e7m0oIIYRjSqUSaWlpMJlMyMjIwJYtW7B161Zs2bIFGRkZMJlMmDdvHpRKpbubSv4C+l7SdVCONUIIIYSQ/y81NRUAYDAYsHTpUum4UqlEUlKSVE4IIYS4U1xcHKZPnw6DwSBLYaBUKjF9+nTExcW5sXWkrdD3kq6BAmuEEEIIIQ5SU1ORnJwMo9GIyspKhIeHIzExkZ4IE0II6TRKS0uxceNGjBo1Crfeeit8fHzQ1NSEffv2YePGjRg6dCgF1xhB30s6PwqsEUIIIYRcQlx+QQghhHQ2giCgoKAAKpUKubm58PD4NcNTYmIiMjMzUVhYiNjYWFoOygj6XtK5UY41QgghhBBCCCGkizCbzTh9+jQ0Go0sqAYAHh4e0Gg0OHXqFMxms5taSAhfaMYaIYQQQgghnBAEAWazGVVVVQgODkZ0dDTNaCGki6mqqgIAREREuCwXj4v1CCHtiwJrhBBCCCGEcKC0tBQFBQU4ffq0dCw0NBRpaWmUi4mQLiQ4OBgAYLFYEBUV5VRusVhk9Qgh7YuWghJCCCGEEMK40tJSaLVaREZGIj8/H1u3bkV+fj4iIyOh1WpRWlrq7iYSQq5QdHQ0QkNDodfrYbPZZGU2mw16vR5hYWGIjo52UwsJ4QsF1gghhBBCCGHYpYnOo6Ki4Ofnh6ioKOTm5kKlUqGwsBCCILi7qYSQK6BUKpGWlgaTyYTMzEyUl5ejvr4e5eXlyMzMhMlkwrx582iZNyEdhAJrhBBCCCGEMIwSnRPCnri4OOTk5OD48eNIT0/HhAkTkJ6eDovFgpycHFreTUgHohxrhBBCCCGEMIwSnRPCpri4OIwaNQpGoxGVlZUIDw9HYmIivL293d00QrhCgTVCCCGEEEIYRonOCS942/XW1YYkxcXFtCEJIR2MAmuEEEIIIYQwzDHReW5urmw5KCU6Z5fVauVqJhNvu96KG5J4espv6c+fPw+tVkvLQQnpQJRjjRBCCCGEEIZRonP+6HQ6xMfHIz8/H1u2bEF+fj7i4+Oh0+nc3bR2wduut4IgYNmyZbDb7WhubpaVNTc3w263Y/ny5bQhCSEdhGasEUIIIeQ38ba0hhAWiYnOCwoKkJ6eLh0PCwujmS2M0el0KCoqQlBQEFJSUqBSqWAymbBmzRoUFRUBAFJTU93cyrZz6a634oxMcdfbzMxMFBYWIjY2lpnProMHD6KmpgYAXI5zdXU1qqurcfDgQYwYMcK9jW0H9L2EdDYUWCOEEELIZfG2tIYQlsXFxSE2NpZuSBlmtVphMBgQFBQEvV6PDz/8EBs2bEB4eDj0ej00Gg0MBgOSk5OZWRYq7nqblZV12V1v09PTYTabERMT46ZWtq0DBw4AAHr06AGDwSAtB01ISMC9996L+++/HxcvXsSBAweYC6zR9xLSGdFSUEIIIYS4xNvSGkJ4oFQqERMTg7FjxyImJoaCaowxGo0QBAEDBw7EpEmTZEtBJ02ahIEDB0IQBBiNRnc3tc3wuOvt0aNHAQDx8fFOOdY8PT1x7733yuqxgr6XkM6KAmuEEEIIcXLp0pqoqCj4+flJS2tUKhUKCwspfwshhHQilZWVAFpnNPn7+2PatGmYP38+pk2bBn9/f2mmk1iPBY673rrC4q63vr6+AIBDhw7BZrPJymw2Gw4dOiSrxwL6XkI6MwqsEUIIIcSJuLRGo9FcdmnNqVOnYDab3dRCQgghl+rbty8AwNvbG56enti0aRP+9a9/YdOmTfD09JSWf4r1WOC4662rIBOLu96KfTly5AgWL16MLVu2YOvWrdiyZQsWL16Mb7/9VlaPBfS9hHRmlGONEEIIIU54XFpDCCFdnUKhANCaa+3nn3+WlTm+FuuxQNz1VqvVIjMzExqNBhEREbBYLNDr9TCZTMjJyWFq2fPkyZOxYsUK2Gw27NmzB3v27HGq4+HhgcmTJ7uhde2DvpeQzoxmrBFCCCHECY9LawghpKtzTOiuUCgwfvx4rF69GuPHj5cF0xzrsUDc9fb48eNIT0/HhAkTkJ6eDovFwuSut97e3lCpVL9ZR6VSMbNBBUDfS0jnRjPWCCGEEOLEcWlNbm6ubNkFq0trCCGkqxPzSymVSthsNnz88cf4+OOPAbTOYPLw8IAgCEzmoeJp11tBEPD9998jPDwcZ86ckY2nUqlESEgIjh8/DkEQmOk/fS8hnRkF1gghhBDihMelNYQQ0tXV19cDaJ3RVFxcjA8//BCVlZUIDw/HxIkTMWXKFDQ0NEj1WCPuess6Md9Yfn4+rrvuOhiNRmmcExMTcezYMaSnp8NsNjPz70HfS0hnRoE1QgghhLgkLq0pKChAenq6dDwsLIzJpTWEENLVNTU1AQAaGhqg0WiQnJwMjUYDk8kEjUaDhoYGWT3SNTnmG/P29oZarZaVs5pvjL6XkM6KAmuEEEIIuSyeltY4slqtTjMAWMpVQwhh07Bhw/D5558jICAANTU1WLp0qVTm4eGBgIAA1NbWYtiwYW5sJfmrHPONDR482OkzmuV8Y7x+LxEEgbs+dyUUWCOEEELIb+JlaY1Ip9PBYDDIctbodDqo1Wqkpqa6sWWEEPLbxN0ia2tr4e3tDavVKpV5enqitraWud0ieSTmG3v99ddRW1sr24wiNDQUAQEBTOcb4+17SWlpKQoKCpzGOS0tjWbpdRK0KyghhJA/RRAElJWVYefOnSgrK2MyETLhj06nQ1FREfz9/bFo0SIUFxdj0aJF8Pf3R1FREXQ6nbubSAghl+W4W6RjUM3xNWu7RfJIqVTizjvvxLfffoumpibZ51VTUxO+/fZb3HHHHTSjiQGlpaXQarWIjIxEfn4+tm7divz8fERGRkKr1aK0tNTdTSQAFHa73e7uRrhbXV2dNC3a39/f3c0hhJBOj56cERZZrVbEx8fD398fBoMBnp6/TuxvaWmBWq1GXV0dtm3bRjelhJBOSRAEaDQaeHh44PTp07DZbFKZuFuk3W7Hhg0bKOjShYnjLC75PXPmjFQmzlirq6tjdpx5WRYpjnNkZKTLnVAzMzNhsViYHWfR0aNHMWfOHKxcuRKDBg3qsL/7R+JEtBSUEELIHyI+OVOpVMjKypLtyKTVail5LOmyjEYjBEFASkqKLKgGtC6hSk5OxtKlS2E0Gp0SRRNCSGfA426RPBLHOSsry2WOtSNHjjA7zjw93HUcZ8egGtCaM1Gj0TA7zl0NLQUlhBByxQRBQEFBAVQqFXJzcxEVFQU/Pz9ERUUhNzcXKpUKhYWFtCyUdEmVlZUAIC2jupR4XKxHCCGdjeNuka6wulskbxzHWcw3NnbsWMTExECpVDI7zrwti6T3c9dBgTVCCCFXTHxyJi4zcSQ+OTt16hTMZrObWkjInxceHg4AMJlMLsvF42I9QgjpbMRdIJctW4b4+Hjk5+djy5YtyM/PR3x8PJYtWyarR7omx11BXWFxV1AeH+7yOM5dFQXWCCGEXDF6ckZYlpiYCKVSiTVr1qClpUVW1tLSgrVr10KpVCIxMdFNLSSEkN8WHR2N7t27Y8eOHejZsyemTZuGBQsWYNq0aejZsyd27NiB7t27M7tbJC/EXUH1ej1++eUX/Otf/8KiRYvwr3/9C7/88gv0ej1zu4I6Pty12+2yDbTsdjuTD3cdx9kxXyLQmmONxXHuqijHGiGEtAFekqg6PjlzldOD9SdnvIwzr7y9vaFWq1FUVAS1Wo3k5GSoVCqYTCasXbsW1dXVSEpKoo0LCCGdliAIaGhoAADU19dj06ZNUpl47WpoaIAgCPT51YUplUqkpaUhOzsbEydOlI4fOHAA7733HgBgyZIlTI2x+NC2srISzz//vFOOtZSUFFk9FojjrNVqsXjxYvTr1w9NTU3w8fHByZMnsXfvXuTk5DA1zl0VBdYIIeQv4imJqvjk7PXXX3fahSokJASBgYHMPjnjaZx5lpqaCgAwGAxYunSpdFypVCIpKUkqJ4SQzshoNEozWxQKhaxMfG2z2WgTFgZ89NFHv1vO0vcT8aHtCy+84HIDrRdeeEFWjxVxcXG47bbbsHv3bqey2NhYpsa4K6OloIQQ8hfwlkRVqVTizjvvxLfffgur1YqnnnoK7777Lp566ilYrVZ8++23uOOOO5h7csbbOPMuNTUV27ZtQ3p6OiZPnoz09HRs27aNgmqEkE7v5MmTAICbb74ZRqNRdh0zGo24+eabZfVI19TQ0IDdu3dDqVSib9++srK+fftCqVRi9+7d0uxFFkRFRUGpVCIwMBBarRZWqxUmkwlWqxVarRaBgYFQKpWIiopyd1PblE6nw+7duxEUFCRb2h0UFITdu3dDp9O5u4kENGONEEL+tEuTqIrJ/MUkqpmZmSgsLERsbCwzgSZBELBr1y5cf/31qK2tlc3oCQsLw/XXX4///ve/mD17NlN95m2cya/LQgkhpCvy9fXFo48+KptlXVxcjIEDB7qxVaStrFixAkDrd5SBAwfiwQcfhK+vLxobG7Fv3z6cPXtWqjd//nw3trTtlJeXQxAEVFdX47777kNTU5NU5uPjI70uLy9HTEyMu5rZpqxWKwwGA4KCglBUVITDhw+jqqoKKpUKKSkpSEpKgsFgQHJyMqWpcDMKrLkJ5enhB49jzUufxSSqWVlZUhJVxz5rNBqkp6fDbDYz8wHv2OfrrrsORqMRlZWVCA8PR2JiIo4dO8Z0ny+3EyprfSZ84uXaTQjLhgwZgvfeew+ff/45Ro0aJVsut379emk52ZAhQ9zcUvJXVFRUAGjdNOr48eOy3axDQkKkMRfrseBKc6exlGPNaDRCEASMHj0aDz/8sFMKltGjR+P999+npd2dAAXW3IDy9PCDx7Hmqc88JlH9rT4XFxcz3WfaCZWwjKdrNyEs6927t/Tzt99+i+PHjyMkJATHjx/Ht99+67Ie6Xp8fHwAtG4mddtttyE7O1uWb+x///ufrB4LAgMDAQDDhg3DsmXL8PXXX0sPgm644QYsXLgQhw4dkuqxoLKyEgDw/vvvO41lTU0N3n//fVk94j6UY62D8ZynRxAE2bbIgiC4u0ntisex5q3PYnLUvLw8l33Oy8uT1WMBz30Wdzy9FOs7oRL28XbtJoQHvXv3Rl1dHZYuXYqpU6di6dKlqKurYz6gxsv9xm233QagdUOK7OxsREVFwc/PD1FRUcjOzpY2qhDrsUapVCImJgZjx45FTEwMs7OrQ0NDpZ9vuukm2Wf0TTfd5LIecQ+asdaBeM7Tw9uTcB7Hmsc+i0lU/f39sWTJEnh6ekrHlyxZArVajbq6OqaSqPLYZ3EnVL1eLzu3gdad1fR6PbM7ofKMl2WRPF67HfEyzrzjaZxramoAAOfPn8ctt9yCxsZG1NbWIiAgAL6+vti/f7+sHkt4ut+or68HANjtdiQkJGDYsGHo1asXzp8/j0OHDsFut8vqsUA8Zw8dOoSMjAzceuutUm61ffv24dChQ7J6LLjmmmsAtAYSc3JypDxqUVFRyMnJQXx8PARBkOoR96HAWgfiNU+P+CTc1bbIWq0WOTk5zH3Y8TjWPPZZTKJaU1OD7OxsaDQa2fldU1MDu93OVBJVHvusVCqRlpYGrVaLzMxMpz6bTCbk5OQwe5PGI55uzni8dot4Gmee8TbO4uzpYcOGYd++fU7l0dHRMJvNzM2y5u1+Q1zuKAaWysrKZOXicZaWRYrn7Lhx4/Dpp5/K8soplUqMGzcOO3bsYOrc/vrrrwG0PhyYPn06kpOToVKpYDKZsHbtWmlG5tdff42RI0e6s6nco8BaB+IxTw+vT8J5HGue+7x48WKsWbMG6enpUllYWBgWL16MvLw86jMD4uLikJOTg4KCAqc+s/ZlnXe83ZzxeO0G+BtnXvE4ztHR0fDz84PZbEZQUBDuvvtu9OvXDydPnsT27dthNpvh5+fH1CxrHu83xCW9TU1N8PT0xDXXXCPtCvrDDz9IO2SytPQ3OjoagYGB2LFjB0aNGoWRI0dKAcS9e/dix44dCAoKYurcFt1555347LPPsHTpUumYUqnEnXfeiV27drmvYURCgbUO5Jinx9UyKRbz9PD6JJzHsea5z+Hh4dDr9U7LTI4cOSKrxwIe+yyKi4tDbGwsN8uJeMTjzRmP124ex5lHvI6zIAhobGwEAAwaNAhhYWHw8vJCWFgYBg0ahL1796KxsRGCIDDTbx7vNwYPHgygNbgSHByM7777TioLCQnBuXPnIAiCVI81CoUCgwYNkoLl4uxMcQksK4YPH47169fj/Pnz+PDDD1FSUoLKykqEh4dj0qRJ+Pvf/y7VI+5Fmxd0IMc8PTabTVbGap4eXp+E8zjWvPdZoVDIkqgqFArqM4N4SZbLK/HmTKPRwG63yxJg2+12aDQanDp1Cmaz2d1NbTM8Xrsdx/lyN+GsjTOPeB1no9EIm82GW265BQcOHMBrr72Gl19+Ga+99hoOHDiAm2++GTabDUaj0d1NbTM83m988MEHACCl53BUXV0tLREU67HAbDajpqYGs2fPhsViQXp6OiZMmID09HT88MMPmD17Nmpqaph6Tw8fPhyBgYE4dOgQcnJyMHToUMyePRtDhw5FTk4ODh06hKCgIAqsdQI0Y60D8Zinh8cn4QCfY019pj6z2mfCD/Gmq7KyEs8//7xTTqaUlBRZPRbw+J7m8SacR7yOc2VlJQBg//79GDVqFPr16wer1Qpvb2+cPHkSe/bskdVjAY/3G47jJ+4A6uo1S+MsvlcnT56MpKQkpxUETU1NWLVqFVPvaaVSiYULF0Kr1eLLL7+U5ZXz8fGBQqHAggULmPqM7qoosNbBeMvTw/NueryNNUB9pj6z22fCB/GmKy8vD7fddptTTqa8vDxZPVbw9p7m8SacR7yOc2hoKIDW5YA//PCDFEgTy0JCQnDmzBmpHgt4vN8Qx2/gwIHQ6XT4+uuvpSDTDTfcgLlz5+L48eNMjfOl7+lLl/Wy+p52/Ix2fOAXHByMefPmMfcZ3VVRYM0NeMrTw+OTcEc8jbWI+kx9JqSrioqKglKphL+/P5YsWQJPT0/p+JIlS6BWq1FXV+fyJr2r4+k9zeNNOI94HefIyEgAwJkzZ5w2bdiwYYM040WsxwIe7zfE8Tt79qyUmkPU0tKCn3/+WVaPBby+pwG+PqO7KgqsuYmYp4cHvD0JvxRPYy2iPvOBxz4TtpWXl0v5arKzs51uzmpqamC321FeXs7kuc/Le5rHm3Ae8TrOjvm2vvnmGxw/fhwhISE4fvw4vvnmG5f1WMDb/UZdXR0A4MKFC1Cr1bj77rsRFhaGU6dOYfv27bhw4YKsHgt4fU+LePmM7qoosEY6BEXZCSGEdHZiXpbFixdjzZo1TjdnixcvRl5eHlP5W3jF2004r3gcZzFgdsstt+CLL77A0qVLpTIPDw/cfPPNOHDgAHOBNYCv+w1xuWN0dDTMZjM2bdokKxePs7wskpf3NOkaKLBGOgxF2QkhhHRm4g1IeHg49Hq9083ZkSNHZPVI18bTTTjPeBvnwMBAAK0Btj59+uDMmTNSWZ8+fVBbWyurxxpe7jeio6MRGBgIs9mMkSNHon///tImFRUVFdi7dy8CAwNpWSQhHYQCa4QQQgghcM7f4nhzxnr+Fl7xchPuSBAE7m5IeRrn3r17AwCOHTuGwMBA3HnnnfD19UVjYyMOHjyIY8eOyeqRrs/DwwNjxoyR5dIDnHcLZQlP72mR1WqF0WhEZWUlwsPDkZiYCG9vb3c3i/x/FFgjhBBCCAHlbyHsKy0tddpZLjQ0FGlpabSEihHiJiweHh6oqanBrl27ZOVeXl6w2WxMbsLCE7PZjJqaGsyePRslJSVOyyJnzZqF1atXw2w2cxeAYpFOp4PBYIAgCLJjarUaqampbmwZEVFgjRBCCCHk/6P8LYRVpaWl0Gq1TjtF6vV6aLVaOr8ZIW7CIggCvLy8MHr0aAwZMgTffPMNPvvsMzQ3N0v1KODSdYm5PidPnoykpCSnWahNTU1YvXo15QRlgE6nQ1FREYKCgpCSkgKVSgWTyYQ1a9agqKgIACi41glQYI0QQgghxAHlbyGsEQQBBQUFUKlUyM3NhYeHB4DW2U25ubnIzMxEYWEhYmNj6Tzv4s6ePQsA8PPzg7+/Pz755BN88sknAFpnJ9bV1aG+vl6qR7omMdenxWJBVFSUU5DUYrHI6pGuyWq1wmAwICgoCAaDAZ6ereGbhIQE3HvvvVCr1TAYDEhOTqZloW7m4e4GEH4IgoCysjLs3LkTZWVlsqmshBBCSGci5m8ZO3YsYmJiKNhAujSz2YzTp09Do9FIQTWRh4cHNBoNTp06BbPZ7KYWkrbyzTffAADuv/9+6PV6LF++HFlZWVi+fDn0ej0SExNl9UjX5JgTtLm5WXaP1dzcTDlBGWE0GiEIAlJSUqBQKGTjrFAokJycDEEQYDQa3d1U7tGMNdIhKKcHIYQQQoh7iMvBIiIiXJaLx2nZGDuOHj2K5uZmfPfdd1Ky8yFDhkibF5CuzTEn6MSJE2G1WqUyb29vNDc3U05QBlRWVgJo3YhCo9E43UvPnDlTVo+4DwXWSLujnB6EEEIIIe5z6bKxS9GyMXb069cPAHDgwAHce++9srL8/Hyneqzhbddbu90uC6oBcHpNuq7w8HAAwCuvvILbbrvN6V761VdfldUj7qOw2+12dzfC3erq6hAQEIDa2lr4+/u7uzlMEQQBGo0GkZGRspweAGCz2ZCZmSltC83yhx4hhBBCiLvQ9zF+WK1W3HPPPfitWzyFQoGPPvqIuZxMPK2QEQQBU6ZMQU1NDXx8fNDU1CSVia8DAwNRXFxM7+kurKGhAfHx8fDy8sKHH34oe89arVZMnDgRzc3N2LZtG7p16+bGlravo0ePYs6cOVi5ciUGDRrUYX/3j8SJKMeam/CSb4xyevAz1o547DMhhBDSWYnLxkwmEzIzM1FeXo76+nqUl5cjMzMTJpMJ8+bNoxtwRohBNU9PT4wZMwZpaWkYM2aMlPicxXkV4gqZyMhI5OfnY+vWrcjPz0dkZCS0Wi1KS0vd3cQ2dfDgQdTU1ABwHk/xdU1NDQ4ePNjBLSNt6ciRIwCA5uZmTJ8+HSUlJTh37hxKSkowffp0aZdfsR5xH1oK6gY8PU3hPacHT2Mt4rHPhBBCSGcXFxeHnJwcFBQUID09XToeFhZGaTkYsmXLFgBAQEAALly4INsVVKlUSrMvtmzZgunTp7uzqW2Gx11vv/zyS+nnESNGYObMmdISwQ0bNsBkMkn1RowY4a5mkr9IvEeeMmUK3nvvPSxdulQqUyqVmDJlCoqLi5m9l+5KaMZaB+PtaYpjTg9XWM7pwdtYA3z2mRBCCOkq4uLinHaK3LBhAwXVGHLo0CEAwDPPPIP//Oc/SE9Px+TJk5Geno5t27bh6aefltVjAY8rZM6cOQMAuOaaa5CXl4eoqCj4+fkhKioKeXl5uOaaa2T1SNck3iOPGTMG27Ztc3o/jxkzRlaPuA/NWOtAPD5NcdwK2lVOD1a3guZxrHnsMyGEENLVKJVKxMTEuLsZpJ2IeZZOnToFb29vqNVqWbm4ooClfEw8r5BRKBTubgJpR5feSzu+n1m+l+6KaMZaB+LxaYpjTo+MjAxs2bIFW7duxZYtW5CRkcFsTg8ex5rHPhNCCCGEdCbjx48HALz55ptoaWmRlbW0tGDdunWyeizgcYVMaGgogNa+LV68WHaPtXjxYvzwww+yeqRrovyYXQfNWOtAvD5NiYuLw/Tp02EwGKT1/kDrhWL69OlMLj/gcax57DMhhBBCSGdy0003oXv37rhw4QKmTp2KlJQUqFQqmEwmrFmzBhcuXED37t1x0003ubupbYbHFTIxMTHYsGEDAGDPnj3Ys2fPZeuRro3yY3YNFFjrQI5PU6KiopzKWXyaArTm3dq4cSNGjRqFW2+9Fb6+vmhsbMS+ffuwceNGDB06lLkLAo9jzWOfCSGEEEI6E6VSiX/84x/Izs5GTU2NLNm56B//+AdTM1zEWT1arRaZmZnQaDRSIn+9Xg+TyYScnBym+jx8+HD4+fmhvr4eHh4esNlsUpn4unv37hg+fLj7GknaTFxcHGJjY2E2m1FVVYXg4GBER0czdU53dRRY60A8Pk25XN4tAEhMTGQ275bjWOfk5ODrr7+WLoI33HADk2PNY58dCYLA3Ycdj33mldVqhdFoRGVlJcLDw5GYmAhvb293N4u0MR7f0w0NDVixYgUqKirQv39/zJ07l6ncU67QOLM/znFxcViyZAny8/NlyetZ3qVdnNWTn58vm9UTGhrK7Kweb29v1NfXw9PTE1arVTouvvby8nJj69oXb+9pgPJjdnYUWOtAPD5NEfNuZWVlXTbvVnp6OsxmM1MXCsexTkhIQFNTk1Tm4+MDq9XK3FiLfc7OznbZ56amJixZsoSpPotKS0tRUFAgJQQG2P7yCvDZZ17pdDoYDAYIgiA7plarkZqa6saWkbbE43s6IyMDu3fvll4fOHAA7733HmJjY5GXl+fGlrUfGmc+xvly7Ha7u5vQrg4fPoyff/5Zduzs2bM4fPgwc+e32WxGTU0NoqOjnfIXW61WDBs2DIcOHWLuHgug9zTpnGjzgg4mPk05fvw40tPTMWHCBKSnp8NisTD5NIX3vFuX+wLD8heby+1OxOquRaWlpdBqtYiMjER+fj62bt2K/Px8REZGQqvVorS01N1NbHM89plXOp0ORUVF8Pf3x6JFi1BcXIxFixbB398fRUVF0Ol07m4iaQM8vqfFGzMvLy/MmDEDGzZswIwZM+Dl5YXdu3cjIyPD3U1sczTOfIwz8OtYDxw4UDbWAwcOZHasxc+rgIAA2edVQEAAk59X4r2T2WxGUFAQpk2bhvnz52PatGkICgrCoUOHZPVYwet7mnR+CjvLd/hXqK6uDgEBAaitrYW/v3+H/E1epuGXlZVhwYIFyM/Pd5l3q7y8HOnp6Vi+fDlTT1MEQYBGo0FkZKTLZZFarRYWiwUbNmxgZtx577Or5d2ZmZnUZ9JlWa1WxMfHw9/fHwaDAZ6ev05yb2lpgVqtRl1dHbZt20bLQrswHt/TDQ0NiI+Ph5eXFz788EPZ+Wu1WjFx4kQ0Nzdj27ZtzCwtonHmY5wBPseax8+r/fv34+9//zt69uyJLVu2OPV58uTJuHDhAl555RXccsstbmxp2+H1PU2Ao0ePYs6cOVi5ciUGDRrUYX/3j8SJaMaam4hrpMeOHYuYmBhmPtgu5Zh3yzGpJsBuXjng1yWwGo0GXl5esrH28vKCRqPBqVOnnKZud2W89/lyS52pz6SrMhqNEAQBKSkpsi/sQGv+luTkZAiCAKPR6KYWkrbA43t6xYoVAAC1Wu10k+3t7Y2pU6fK6rGAxpmPcQb4HGseP6+OHz8OAOjbt6/Lce7Tp4+sHgtYfE83Njbi6NGjHfJfY2Oju7vLNMqxRtoVj3nlAD6XwFKfnVGfSVdWWVkJAFCpVC7LxeNiPdI18fierqioAABMmDDBZfmECRPwzjvvSPVYQOPsjMVxBvgcax4/r8Q8id9//73LeywxoOaYT7GrY/E9feLECcyZM6dD/lZHz/biDQXWSLsT88oVFBTIdukJCwtjMq8cAAQHBwMALBaLyyWwFotFVo8F1Gfqs3jcsR5reFnGDwDh4eEAAJPJhISEBKdyk8kkq0e6Jh7f0/3798eBAwewdetWlzc0W7duleqxgsaZj3EG+BxrHj+vxL7cd9992Lt3r9NOqPfddx/ef/99pvrM4nt6wIABWLly5RXX//HHH5GXl4eMjAxcffXVf/hvkfZDOdbgnhxrPOLphpTH/BbUZ+ozq30W8babHo85a3jE43uaxzw9NM58jDPA51jz+Hkl9tnX1xfdu3fH2bNnpbK+ffvil19+QWNjI1N95vU97chducbcjXKsEeKAl7xywK9LYE0mEzIzM1FeXo76+nqUl5cjMzMTJpMJ8+bNY+rfgPpMfWa1zwCfu+l5e3tDrVajuroaarUaJSUlOHfuHEpKSmTHWfnCzise39PdunVDbGwsmpubMXHiRKxYsQI//fQTVqxYId2YxcbGMnVjRuPMxzgDfI41j59X3t7eGDVqFH755RdZUA0Azp49i19++QWjRo1iqs+8vqdJ10Az1kAz1kj7cTXDJSwsDPPmzWNyhgtAfRZRn9nB49N/RzqdDgaDAYIgSMeUSiXUajVSU1Pd2LL2ZbVaYTQaUVlZifDwcCQmJjJ1g3Ipnt7TooyMDOzevdvpeGxsLPLy8tzQovZH4/wrlscZaB3r/Px8nDlzRjrG8ixrgK/PK0EQMGXKFNTU1Fy2TmBgIIqLi5n7bsLrexqgGWudecYaBdZAgTXSvnhaAiuiPlOfWVJWVoYFCxYgPz/fZb6a8vJypKenY/ny5YiJiXFDC9sfb0Emnm7OHPHynnbU0NCAFStWoKKiAv3798fcuXOZn+1A48zHOPOWvkDEy+fVF198gaeeegoDBgxAU1OTLIAaEhICHx8fnDhxAkuXLsWIESPc2NL2weN7GqDAWmcOrNHmBYS0M3EJLE+oz3zgpc887rB2KXGZDQ90Oh2KiooQFBSElJQUqFQqmEwmrFmzBkVFRQDAbHCNl/e0o27dumH+/PnubkaHonFmn5i+QKVSISsrS7ZbpFarZXbzMICfz6uDBw8CAH766SeoVCpkZ2fLxlncsOHgwYNMBtZ4e0+Tzo9yrBFCCCG/wXGHNVdY3GGNV1arFQaDAUFBQTAYDEhISECvXr2QkJAgO261Wt3dVEIIcUkQBBQUFEClUiEnJwdWqxUmkwlWqxU5OTlQqVQoLCyUzcglXY/NZgMADBkyBLm5uYiKioKfnx+ioqKQm5uLIUOGyOoRQtoXBdYIIYSQ3xAdHY3Q0FDo9XqnL6g2mw16vR5hYWGIjo52UwtJWzEajRAEASkpKbJd5QDA09MTycnJEAQBRqPRTS0khJDfZjabcfr0aURFRWHmzJlYsGABnn/+eSxYsAAzZ87E0KFDcerUKZjNZnc3lfwF4rK0pqYml+WNjY2yeoSQ9kWBNUIIIeQ38LjDGq8qKysBACqVymW5eFysRwghnY2YlmDVqlVOie1ramqwevVqWT3SNYmz5L///ntkZGTIvptkZGTg+PHjsnqEkPZFOdYIIYSQ3xEXF4ecnBwUFBQgPT1dOh4WFsZ0rhrehIeHAwBMJhMSEhKcysWcNWI9QgjpbAIDA6WfY2JiMHLkSPj6+qKxsRF79+7Fnj17nOqRrqd3797Sz1988YX0+QQAPj4+LusRQtoPBdYIIYSQKxAXF4fY2FjudtPjSWJiInQ6HdasWYN7771Xthy0paUFa9euhVKpRGJiohtbSQghlyemLOjWrRuOHz8uBdIAoG/fvujWrRsaGhoo91YXJ6ap8PDwkO38CgDNzc0IDw+H3W6nNBWEdBAKrBFCCCFXiMfd9Hgi7iZXVFQEtVqN5ORkaVfQtWvXorq6GklJSfD29nZ3UwkhxCUxd1pDQwN8fX0xbdo0hIWF4dSpU9i+fTsaGhqkerfccos7m0r+AqVSiTvvvFPaxfrGG2+UZiZ+9dVXqKysRFJSEj38I6SDUGCNEEIIIeT/S01NBQAYDAYsXbpUOq5UKpGUlCSVE0JIZyTOROvVqxdqamqwadMmqUypVKJXr144f/48zVjr4gRBwK5duxAeHo4zZ85g165dUplSqUR4eDj++9//Yvbs2RRcI6QDUGCNEEIIIcRBamoqkpOTYTQaUVlZifDwcCQmJtJMNUJIpyfuAnn+/HmMGjUKI0eOhI+PD5qammQ51mi3yK5N3P1VoVBg1KhRuPXWW6Vx3rdvH/bs2QO73Q6z2Uwz7QnpABRYI4QQQgi5hLgslBBCupJLNyUYNGgQIiIiYLFYsHfv3svWI13LuXPnAAC33nor8vLy4OHhIZUlJibi2Wefxd69e6V6hJD2RYE10mGsViuXT/8FQaBk54Qwgt7P/ODxM4v6zEefGxoasGLFClRUVKB///6YO3cuunXr5u5mtSuexrmurk76uaysTLZ5geNukY71WMLLWNfU1AAARo8ejbNnz2LevHm4ePEievTogcLCQtx+++3Yu3evVI8Q0r46dWBNEAQ899xz2LBhA06fPo3w8HA8+uijyMzMhEKhAADY7XZotVqsWrUKNTU1iI2NRWFhIa677jo3t5440ul0MBgMEARBdkytVjOdr6a0tBQFBQWy3XpCQ0ORlpaGuLg4N7aMEPJH0fuZHzx+ZlGffz3Gcp8zMjKwe/du6fWBAwfw3nvvITY2Fnl5eW5sWfvhbZzFmWjXXXcdLly4IPvMCgoKQs+ePXHs2DEmZ6zxNNbi+C1duhR2u106Lm6yI94rszjOhHRGHr9fxX1eeuklFBYW4o033sA333yDl156CS+//DL+/e9/S3VefvllvP7669DpdNi7dy+6d++Oe+65B42NjW5sOXGk0+lQVFQEf39/LFq0CMXFxVi0aBH8/f1RVFQEnU7n7ia2i9LSUmi1WkRGRiI/Px9bt25Ffn4+IiMjodVqUVpa6u4mEkKuEL2f+cHjZxb1mY8+i0E1Ly8vzJgxAxs2bMCMGTPg5eWF3bt3IyMjw91NbHM8jnPv3r0BAMeOHUNERASefPJJPP3003jyyScRERGBY8eOyeqxgrexFsdPDKoFBwfjmWeeQXBwsOw4a+NMSGelsDuGuDuZhIQEhISEYM2aNdKxKVOmoFu3btiwYQPsdjvCw8Px1FNPYdGiRQCA2tpahISEYN26dUhKSrqiv1NXV4eAgADU1tZSIs82ZrVaER8fD39/fxgMBnh6/jpJsqWlBWq1GnV1ddi2bRtT07QFQYBGo0FkZCRyc3NleQ9sNhsyMzNhsViwYcMGWkZGSCdH72d+8PiZxXufi4qKcPjwYWl599ChQ5GUlMRcnxsaGhAfHw8vLy98+OGHsn5ZrVZMnDgRzc3N2LZtGzPLQnkcZ+DXz6yAgADU1NTgzJkzUlloaCgCAgJQV1fH1GcWj9exyspKzJgxA0DrrDTHJZ9BQUGorq4GALz99tsIDw93RxNJOzh69CjmzJmDlStXYtCgQe5uTodxV7//SJyoUy8Fve2227By5UocPXoUgwYNwldffYXPP/8cy5YtAwBYLBacPn0a48aNk34nICAAI0eOhMlkumxgrampCU1NTdJrVnMMdAZGoxGCICAlJUX2IQcAnp6eSE5OxtKlS2E0GplKEi3u1JOVlSW7CQcADw8PaDQapKen0049hHQB9H7mB4+fWTz3efTo0XjkkUeclnfffvvtKCkpYarPK1asAACo1WqnwIK3tzemTp2Kd955BytWrMD8+fPd0MK2x+M4A4BSqURaWhq0Wi1GjRqFpKQkp90ic3JymAmqAXxex9LT06WfhwwZ4rQrqMlkkupt2bLFXc38QxobG3HixIl2/zsDBgyAr69vu/8dwpdOHVh75plnUFdXh8GDB0OpVEIQBOTl5UGj0QCA9AEZEhIi+72QkBDZh+elXnzxReTk5LRfw4mksrISAKBSqVyWi8fFeqyoqqoCAERERLgsF4+L9QghnRe9n/nB42cWz31+//33cdtttyErK0vaNVGv16OkpERWjwUVFRUAgAkTJrgsnzBhAt555x2pHgt4HGdRXFwccnJyUFBQIAVYACAsLAw5OTnM5QXl8Tp28eJFAK3B8tLSUtk4h4aGYsqUKSguLpbqdQUnTpzAnDlz2v3v8Dbbi3SMTh1Y27RpE/R6Pd5++21ERUXh4MGDmD9/PsLDw/HII4/86f/vs88+i4ULF0qv6+rqcNVVV7VFk8klxKnHJpMJCQkJTuXihwBrU5TF/AYWiwVRUVFO5RaLRVaPENJ50fuZHzx+ZvHY59DQUADAwIEDZcu7o6KikJubi1mzZuH48eNSPRb0798fBw4cwNatW13euG7dulWqxwoex9lRXFwcYmNjudjJmsfrWI8ePVBdXY3t27e7nH21Y8cOqV5XMWDAAKxcufKK6//444/Iy8tDRkYGrr766j/0dwhpa51684K///3veOaZZ5CUlIRhw4bhoYcewoIFC/Diiy8C+PUD0zF3gPj6tz4kfXx84O/vL/uPtI/ExEQolUqsWbMGLS0tsrKWlhasXbsWSqUSiYmJbmph+4iOjkZoaCj0ej1sNpuszGazQa/XIywsDNHR0W5qISHkStH7mR88fmbx2OfIyEgAwNmzZ12+p3/++WdZPRbMnTsXAGAwGGC1WmVlVqsV7777rqweC3gc50splUrExMRg7NixiImJYTKoBvB5HSssLAQA1NTUICwsTLZJRVhYGGpra2X1ugJfX18MGjToiv8Tg2lXX331H/o9WgZK2kOnDqzV19c75bNRKpXSh2NERARCQ0Oxc+dOqbyurg579+697FRg0rG8vb2hVqtRXV0NtVqNkpISnDt3DiUlJbLjrCQSFYn5LUwmEzIzM1FeXo76+nqUl5cjMzMTJpMJ8+bNY/YLDiEsofczP3j8zOKxz2Ju3QsXLrjs84ULF2T1WNCtWzfExsaiubkZEydOxIoVK/DTTz9hxYoV0sYFsbGxzGxcAPA5zpeyWq0wGAx47bXXXAZVWcHjdaxPnz7Sz2VlZXjttdfw8ssv47XXXkNZWZnLeoSQ9tOpl4JOmjQJeXl5GDBgAKKiolBWVoZly5YhOTkZAKBQKDB//nzk5ubiuuuuQ0REBLKyshAeHo7777/fvY0nktTUVACtT0mXLl0qHVcqlUhKSpLKWeOY38IxwSir+S0IYRm9n/nB42cWb30Wl22PGzcOn376qVOfx40bhx07djC3vFtcMrV792688847eOedd6Sy2NhY5OXlubF1bY/XcRbpdDoYDAYIgiA7plarmXtPA/xdx8xm8xXXo42VCGl/nTqw9u9//xtZWVlIS0vD2bNnER4ejrlz5yI7O1uq8/TTT+OXX37BnDlzUFNTg9tvvx3/+c9/aIpnJ5Oamork5GQYjUZUVlYiPDwciYmJTD05coWn/BaEsI7ez/zg8TOLpz6Ly7vr6+vx4YcfoqSkROrzpEmTsGTJEmaXd+fl5aGhoQErVqxARUUF+vfvj7lz5zI1U03E8zjrdDoUFRUhMDAQw4cPR7du3dDQ0ICDBw+iqKgIAJgLNAF8XcfOnTsn/ezn54fm5ma0tLTA09MTXl5eqK+vd6pHCGk/Crvdbnd3I9ytrq4OAQEBqK2tpXxrhBBCCCGMKy0thVarhUqlgkajke0WaTKZaCYqI3gcZ6vVivj4eHh6esJqtcLxVk+hUMDb2xstLS3Ytm0bkwEnXhQVFUGn08HT0xOCIDiNs1KpREtLC1JTU5GUlOTGlrafo0ePYs6cOVzt8sljnwH39fuPxIk69Yw1QgghhBBC2hot7+YDj+NsNBohCAIEQYCHh4dTwKWpqUmqp1ar3dVM8hd99913AFo3Z3A1zuImDmI9Qkj7osAaIaTNCYJAy+UIIV2a1WrlYjmRI96u3bS8mw+8jXNFRYX08y233IL+/fvDarXC29sbFRUV2Lt3r1M9lvByHWtoaJB+7t69O/r27SuN89mzZ6XNORzrEULaDwXWCCFtqrS0FAUFBTh9+rR0LDQ0FGlpaUw+GSaEsIe3pN8Av9dupVJJib05wNM4//zzzwBad4Ldv3+/FEgDAA8PDynfmliPJTxdx2w2m/TzhQsXpEDab9UjhLQfD3c3gBDCDjGXSWRkJPLz87F161bk5+cjMjISWq0WpaWl7m4iIYT8JjHpt7+/PxYtWoTi4mIsWrQI/v7+Uk4b1tC1mxD2NDQ0ICAgQHYdCwgIYHYGE2/XMYVCIXs9ePBgPProoxg8ePBv1iOEtA8KrBFC2oQgCCgoKIBKpUJubi6ioqLg5+eHqKgo5ObmQqVSobCwUDYDhBBCOhOr1QqDwYCgoCAYDAYkJCSgV69eSEhIkB23Wq3ubmqboWs3IWxx3OHVbrc7/eeqXlfH43XMx8dH9vrIkSNYt24djhw58pv1CCHtgwJrhJA2YTabcfr0aWg0Gnh4yC8tHh4e0Gg0OHXqFMxms5taSAghv01M+p2SkgJPT3m2DE9PTyQnJ0MQBBiNRje1sO3RtZsQtvj5+QFoXf5aV1eHpUuXYurUqVi6dCnq6uqkfGNiPRbweB07c+YMgNYZaZfOSnM8JtYjhLQvyrFGCGkTVVVVAICIiAiX5eJxsR4hhHQ2lZWVAACVSuWyXDwu1mMBXbsJYYsYOBMEAYGBgRg+fDh8fX3R2NiIgwcPoqamRlaPBTxex8QlvXa7/TfHmdWlv4R0NhRYI4S0ieDgYACAxWJBVFSUU7nFYpHVI4SQziY8PBwAYDKZkJCQ4FRuMplk9VjA+7Wbx91fecTTOPfr10/6uaamBrt27frdel0dj9ex8PBwqV+/Nc4sfV4R0pnRUlBCSJuIjo5GaGgo9Hq90w5ENpsNer0eYWFhiI6OdlML25eYm+m1115jLgfT5fDYZ8K2xMREKJVKrFmzBi0tLbKylpYWrF27FkqlEomJiW5qYdvj+dqt0+lw7733Ij8/H1u2bEF+fj7uvfdeJjeo4Blv4yxex3x8fFwui/Tx8aHrGAOeffbZNq1HCPlrKLBGCGkTSqUSaWlpMJlMyMzMRHl5Oerr61FeXo7MzEyYTCbMmzePqaUHIp1Oh/j4eNmX9vj4eGa/tAN89pmwz9vbG2q1GtXV1VCr1SgpKcG5c+dQUlIiO87STBder93i7q+usLr7K494HGdvb2+MGjUKTU1NLoNMTU1NGDVqFF3HurgePXr87gy84OBg9OjRo4NaRAjfaCkoIaTNxMXFIScnBwUFBUhPT5eOh4WFIScnB3FxcW5sXfsQv7QHBQUhJSUFKpUKJpMJa9askb7Mp6amurmVbYvHPhN+iOeuwWDA0qVLpeNKpRJJSUlMntu8XbutVis2bdoEABg5ciRmzpyJiIgIWCwWbNiwASaTCZs2bUJycjJTwQfe8DrOgiDg4MGDv1nn4MGDEASBqUATj9cxMY/a5dTU1MBqtTJ1fhPSWVFgjRDSpuLi4hAbGwuz2YyqqioEBwcjOjqaqS9vInEpZFBQEAwGg7SLYEJCAu69916o1WoYDAamvrTz2GfCn9TUVDzyyCNYsWIFKioq0L9/f8ydOxfdunVzd9PaDU/X7i1btsBms2HgwIHIy8uTlstFRUUhLy8Ps2bNwvHjx7FlyxZMnz7dza0lfxav4/zll1/il19+AQDccsst6NatGy5evIgePXqgoaEB+/fvxy+//IIvv/wSt9xyi5tb27Z4vI4BrbPX/P390djYCF9fX9TV1eHixYuw2WzMnd+EdFa0FJQQ0uaUSiViYmIwduxYxMTEMPmFBgCMRiMEQUBKSooUYBJ5enoiOTkZgiDAaDS6qYVtj8c+E/6Ulpbisccew3vvvYcDBw7gvffew2OPPYbS0lJ3N61d8XLtPnToEABg1qxZLnNQpaSkyOqRronXcf7oo48AAH369MGJEydQWlqKL7/8EqWlpThx4gT69Okjq8caXq5j4qxEHx8f9OjRA5WVlaiqqkJlZSV69OgBHx8fWT1CSPuiGWuEEPInVVZWAgBUKpXLcvG4WI8FPPaZ8KW0tBRarRYqlQpZWVnS0jG9Xg+tVsvkkiLeiDMPT506BUEQnGa3nD59WlaPdE28jrPYr59//hkqlQpJSUnw9fVFY2Mj9u3bJ+1uLNYjXdP58+cBAE1NTYiIiMD06dNl4yyOr1iPENK+KLBGCCF/kriFuclkQkJCglO5+OWVpa3Oeewz4YcgCCgoKIBKpUJubq5s6Vhubi4yMzNRWFiI2NhYZmdB8GD8+PHYvn07Vq5ciU2bNskCDKGhoVLeovHjx7uphaQt8DrOISEh+Prrr+Ht7Y3vv/9e+lwGgL59+8Lb2xtWqxUhISFubCX5q3r16gWgdfbld999JxvnPn36wMPDAzabTapHCGlftBSUEEL+JHFL+zVr1qClpUVW1tLSgrVr1zK3pT2PfSb8MJvNOH36NDQajculYxqNBqdOnYLZbHZTC0lbuOmmm+Dj44PGxkacO3cODz74INavX48HH3wQ586dQ2NjI3x8fHDTTTe5u6nkL+B1nK+99loArTlRm5ub8dRTT+Hdd9/FU089hebmZlitVlk90jWJS3ptNhtqampk53dNTY2Uf02sRwhpXzRjjRBC/iRvb2+o1WoUFRVBrVYjOTlZ2iFz7dq1qK6uRlJSElNJ/HnsM+FHVVUVACAiIsJluXhcrEe6rm7duqGpqQktLS1455138M4778jK/fz83NQy0pZ4HOfg4GDp59raWtnuxo4PDBzrka5nyJAheP/99wEAzc3NLs9vsR4hpP1RYI0QQv6C1NRUAIDBYJB9eVUqlUhKSpLKWcJjnwkfxBtNi8WCqKgop3KLxSKrR7oms9mMmpoazJ49G++//z7OnDkjlYWGhiIhIQGrV6+G2WxGTEyMG1tK/gpex7murk76WZy15Oq1Yz3S9Vy8eLFN6xFC/hoKrLmJqySqrOdrsVqtMBqNqKysRHh4OBITE7mY1dLQ0IAVK1agoqIC/fv3x9y5c5lLlHsp3vqcmpqKBx98EBkZGThz5gxCQkKQl5eHgIAAdzet3aSmpmLmzJl48cUXpff0s88+ix49eri7ae2K1+sYL/2Ojo5GaGgo9Ho9srOzUVJSIvV50qRJ0Ov1CAsLQ3R0tLub2i54uXaLMw4nT56M8ePH4/HHH0dtbS0CAgLw73//G927d8fq1auZnZlI48z2OAcGBgIArrvuOpw7dw7V1dVSWVBQEHr37o1jx45J9UjXJI5fWFgYTp065VQuHqdxJqRjUGDNDUpLS1FQUOCURDUtLY3ZncZ0Oh0MBgMEQZAdU6vVTM9uycjIwO7du6XXBw4cwHvvvYfY2Fjk5eW5sWXth/rcuhNXYmIi032+9D1tsViQmJjI9Hua1+sYT/1WKpVIS0tDdnY27r33XllZfn4+AGDJkiVMPgjj6dotzjhMSkqSzdppbGyEWq2Gv7+/rB5LaJzZH+fevXsDAI4dO+ZUVl1dLQXaxHqkaxLHz1VQzfE4jTMhHYM2L+hgpaWl0Gq1iIyMRH5+PrZu3Yr8/HxERkZCq9WitLTU3U1sczqdDkVFRfD398eiRYtQXFyMRYsWwd/fH0VFRdDpdO5uYrsQv7x6eXlhxowZ2LBhA2bMmAEvLy/s3r0bGRkZ7m5im6M+89FnHt/TPPYZ4LPfhw8fBgCXmxc4lrOEt+tYdHQ0FAqFFGwZOnQoli5diqFDhwJoXSKnUCiYm5lI48zHOF9pf1jrN29onAnpXBR2u93u7ka4W11dHQICAlBbWys9vWoPgiBAo9EgMjISubm5si/tNpsNmZmZsFgs2LBhAzNPw61WK+Lj4+Hv7w+DwQBPz18nSba0tECtVqOurg7btm1jallRQ0MD4uPj4eXlhQ8//FDWN6vViokTJ6K5uRnbtm1jZvkF9ZmPPvP4nuaxzwCf/Xbsc1FREQ4fPiylbBg6dKg084WlPvN4HauqqsIDDzwAALjlllvw6KOPIiIiAhaLBevWrcP+/fsBAJs3b2ZmNhONMx/jDLTOmler1QCAESNG4Pbbb4ePjw+amprw+eef44svvgDQmieVdozsuioqKjBz5kwAwI033og777xTGuddu3bhq6++AgBs2LAB/fv3d2dT283Ro0cxZ84crFy5EoMGDXJ3czoEj30G3NfvPxInohlrHchsNuP06dPQaDQun4RrNBqcOnUKZrPZTS1se0ajEYIgICUlRXZTBgCenp5ITk6GIAgwGo1uamH7WLFiBQBArVY73Xx5e3tj6tSpsnos4L3PSqUSZWVl2LlzJ8rKyqBUKpnss+N7WqFQyPqsUCiYfE/zeh3jsd+Offbx8UFMTAzGjh2LmJgY+Pj4MNlnHq/dCxcuBAD069cPP/30E9LT0zFhwgSkp6ejoqIC/fr1k9VjAY0zH+MMAI8//jgAoE+fPjh58iRee+01vPzyy3jttddQWVkpLQ0U65GuadasWQBad749c+aMbJzPnj0LX19fWT1CSPuiHGsdSEyOGhER4bJcPM5SEtXKykoAgEqlclkuHhfrsaKiogIAMGHCBJflEyZMwDvvvCPVYwHPfe7Tpw80Go1T3sRp06bJ6rFAfK8qFAqXfRafnrL0nub1OsZjv3nsM4/X7vPnzwNoDagMHz7caTOpL774Ak8//bRUjwU0znyMMwDU1tYCABYsWICRI0c69Xv37t3Izs6W6pGuqampCQCQlpaGCRMmOI2z0WjE66+/LtUjhLQvmrHWgcRp5haLxWW5eJyl6ejh4eEAAJPJ5LJcPC7WY4U45Xrr1q0uy8XjLE3NduyzIAiymUyCIDDd59dee81l3sTXX39dVo8F4nv1lVdecdnnV199VVaPBbxex3jsN4995vHzqlevXgCANWvWQKlUymYmKpVKvPnmm7J6LKBx5mOcAUg7kq9cudJl+Zo1a2T1SNfk4+MDAFi1atVvnt9iPUJI+6Ica6Aca+2Jxxw9AJ+5TMQ+K5VK9O7dG2fOnJHKQkJCcO7cOQiCwFSfL168iISEBCgUCmzbtk2adg+07joWHx8Pu92ODz74AD169HBjS9sOj+c2r9cxHvvNY595fE875t669PosXtcBtnJv0TjzMc6APMda7969ce7cOanM8TXlWOvaHHOsvfvuu7LdP8+dOyct76Yca2zhsc8A5Vgjl1AqlUhLS4PJZEJmZibKy8tRX1+P8vJyZGZmwmQyYd68ecwE1YDWvB1qtRrV1dVQq9UoKSnBuXPnUFJSIjvOyg2KqFu3boiNjUVzczMmTpyIFStW4KeffsKKFSukL6+xsbHMfHkFWvs8ePBgCIKAs2fP4u6778aqVatw99134+zZsxAEAYMHD2aqz+JW9na7HZMmTZKN86RJkyA+t3C15X1XdeTIEQBAc3Mzpk+fLntPT58+Hc3NzbJ6LOD1OsZjv3nsM4+fV8HBwVIgJSEhAfPmzcO+ffswb948KdjiWIcFNM58jDPQmp5CfNB37tw5hIaGIiMjA6GhoVJQzdfXl4JqXVz//v2le8apU6di0qRJ2Lx5MyZNmiQF1ZRKJbNBNUI6G5qxho6bsSYqLS1FQUGBLDdRWFgY5s2bh7i4uHb/++6g0+lgMBggCIJ0TKlUQq1WIzU11Y0ta1/i1vaXio2NRV5enhta1H7EGZlNTU2orq52Kg8KCoKvry9TMzJ37tyJ559/HqNGjcKePXucysXjWVlZGDt2rBta2PbEPk+ZMgXvvfee03v6/vvvR3FxMVN9Ful0OmzatAk2m0065uHhgWnTpjF9HePx+s1jn3n6vBI98MADLvPaBgcHY/PmzW5oUfujcf4Vq+Msfh/7+eefZdcwkVKpRN++fZn6PsazsWPHXnacd+7c6YYWdRweZ2/x2Gega8xYo80L3CAuLg6xsbFOSSZZ/nBLTU1FcnIyjEYjKisrER4ejsTERKae+ruSl5eHhoYGrFixAhUVFejfvz/mzp3L1BNhkbjrrZhr69I+Hz9+HOnp6TCbzYiJiXF3c9uE+JT7oYceglarddnnPXv2MPU0XOzLmDFjMHfuXKf39LFjx1BcXMxUn0VDhw5Fnz59ZMuc+/Tpg6FDh7qxVe2Px+s3j33m6fNKtHnzZlRVVWHhwoU4f/48evXqhWXLljF5/RLROLM/zo7fx/r27YvHH38ctbW1CAgIwBtvvIGzZ88y932MZzt37kRFRQVmzZqFpqYm+Pj4YPXq1TRTjZAORoE1NxGTTPJEXGLDm27dumH+/Pnubka7c9z11lWfWdz1Njo6GqGhodDr9cjJycEdd9whBcs9PT2h1+sRFhaG6Ohodze1zVza52uvvVZaSqNQKJjsM9A601ir1UKlUiE7OxsRERGwWCzQ6/XQarXIyclhdsYxwOf1m8c+8/J55SggIABPPvmkdO3mIaE7jTPb4+z4fczHxwfPPPOM1O/g4GB0795dVo90fX379kVKSor0IKhv377ubhIh3KHAGiGkTTjuehsVFeVUzuKut2LexOzsbCQkJMi2NPfx8UFTUxOWLFnC1GxUHvssCAIKCgqgUqlkG89ERUUhNzcXmZmZKCwsRGxsLFP9JoR1rlJzhIaGIi0tjelAOW94G2fxe9aWLVtQUlLi1G/H/HKk69PpdNi4cSMcszsVFBRg+vTpzKYuIKQzos0LCCFtwnEmk2MOKqB111tWZzKJHANMrl6ziJc+i8tqNBqNbDdnoDXHmkajwalTp2A2m93UQkLIHyXOQo2MjER+fj62bt0qpTLQarUoLS11dxNJG+BxnKOjoxEYGIhVq1bJdgQFWjczWL16NYKCgpj9PsYTnU6HoqIiXJoy3W63o6ioCDqdzk0tI4Q/FFgjhLQJHne9FQQBy5YtAwCMHDkSU6ZMwaRJkzBlyhSMHDkSALB8+XKXSWW7Kh777LisxhUWlzkT4OLFi8jIyMBjjz2GjIwMXLx40d1NaneCIKCsrAw7d+5EWVkZU+9jR46zUHNycmC1WmEymWC1WpGTkwOVSoXCwkJm+2+1WmEwGPDaa6/BYDDAarW6u0ntgudxFse0paVFdlx8zeqY88RqtWLjxo0AgO7du8Pf3x8+Pj7w9/eXlvtu3LiRxpqQDkJLQQkhbSYuLg45OTkoKChAenq6dDwsLIzJHFQHDx5ETU0NBgwYgB9//BF79+6VykJDQzFgwACcOHECBw8exIgRI9zY0rbDY595XObMu9TUVBw5ckR6bbFYkJCQgMGDBzM7A4Cn5XLiLNRJkybhoYcecurzpEmT8L///Y/J5O6udrzV6XRM7njL6zgfPHgQ9fX1v1nnl19+YepzmkfFxcXSTLVffvlFOu64esBut6O4uBgPPvhgh7ePEN5QYI0Q0qZ42vX24MGDAICffvoJo0aNwvTp06U8Y/v27cOePXukeqx8eeWxz47LnB1zrAF8LHPmjRhUUygUuPvuuzFt2jRs2rQJ27dvx5EjR5CamspccM1xc46srCzmN+cQZ5euXr3aZZ9Xr14tq8cKcdlYUFAQUlJSoFKpYDKZsGbNGhQVFQEAU8E1Xsf5wIED0s8eHh4YPnw4evXqhfPnz+PgwYNSuo4DBw4w8znNo927d8teh4aGIi4uDqWlpbIg8u7duymwRkgHoMAaIaTN8bLrrfjltH///rBYLDCZTFJZaGgo+vXrh4qKCqecc10Zj30WlzlrtVpkZmZCo9HIbs5MJhNycnKYDB7z5uLFi1JQbdu2bfD19QUALF68GAsXLkR8fDyOHDmCixcvokePHm5ubdvgcXOOwMBAAMANN9zgss9PPvkkDh06JNVjgbj8MygoCAaDAZ6erbcACQkJuPfee6FWq2EwGJCcnAxvb283t7Zt8DjOAPDNN99IP/fp0wdffvml9DokJARnzpxxqke6Hsclnr169cLp06exadMm6fX58+ed6hFC2g/lWCOEkD/J398fQOvsrYiICFli5IiICFRUVMjqsYDHPgO/LnM+fvw40tPTMWHCBKSnp8NisTA3m4dnL774IgDg7rvvloJqIl9fX4wbN05WjwW0OQcfjEYjBEFASkqKFFQTeXp6Ijk5GYIgwGg0uqmFpK04zlZytWmDq3qk66msrJR+vu666/Dkk0/iH//4B5588klcd911LusRQtoPzVgjhJA/yfEpt6sdmVzV6+p47LOIp2XOvBJvQKZNm+ayXK1WY/v27UzdqPC4OUdNTQ0A4NChQy5noR46dEhWjwXiOatSqVyWi8dZOrd5HGcAss+k3/qcps+urs1xY4o9e/ZIqTh+qx4hpP1QYI0QQv6kuro66eeysjLZlxofHx+X9bo6HvvsiJdlzrwKDw+HxWLBpk2bsHjxYqdyg8Eg1WMFj5tziH2ZPXs2SkpKnDbbmTVrFlavXs1Un8Vz1mQyISEhwalcXNbP4rnN0zgDwIABA3Dy5EkAwBdffCH7nPby8pLVI11Xt27d0NjYeEX1CCHtj5aCEkLInyTOyrruuusQEBDgVCZOxWdp9haPfSb8ePbZZwEA27dvd7phaWxsxI4dO2T1WOC4OceluRFZ3ZxD7HN5eTnWr1+P5cuXIysrC8uXL8dbb72Fw4cPM9fnxMREKJVKrFmzxmkGS0tLC9auXQulUonExEQ3tbDt8TjOAGSpCZqbm2Vljq8phUHXNnPmzDatRwj5a2jGGukwgiDQEirClN69ewMAjh07hlGjRmH06NFoamqCj48PTp48KT0lFuuxgMc+O6LrGNt69OiBwYMH48iRI4iPj8e4ceOkpO47duyA3W7H4MGDmdm4AJBvzrF48WL069dP9p7eu3cvc5tzOPZZq9VCo9FApVLBYrFAq9UyuSGJt7c31Go1ioqKMHXqVAwfPhy+vr5obGzEwYMHUVNTg6SkJGY2LgDk45ydnY1bb70VPj4++OGHH7Bp0ybs2bOHuXEGWjcSast6XY3VaoXRaERlZSXCw8ORmJjI1HktuvRBiLe3N3r06IGLFy/KNixgaTMpQjozCqyRDlFaWoqCggJZotTQ0FCkpaXREzPSZYlPwz08PLBv3z7ZlxcPDw+Eh4fDbrcz9TScxz6L6DrGB51Oh9TUVBw5cgTbt2/H9u3bpbLBgwdDp9O5sXXtIy4uDrfddht2797tVBYbG8vk+S1uSFJQUOC0RJDVDUlSU1Nx8OBBHDlyBLt27ZKVDR48GKmpqe5pWDuKi4vD9OnTYTAYZLtYK5VKTJ8+nclxjoqKglKphN1udxlU8fDwgEKhcLn0u6vT6XQwGAwQBEF2TK1WM3d+X7pJlNVqdZkLk7XNpAjprCiwRtpdaWkptFotVCoVsrKyZIljtVots19gCfuUSiXuvPNOFBUVISgoCHfffTfCw8NRWVkpJThPSkpi6mk4j30G6DrGG51Oh4sXL+LFF1+UZj08++yzTM1Uc6TT6bB7926X7+ndu3dLwUbW8LYhiU6nw5EjRxAUFIQbb7xRmrH21Vdf4ciRI0yOc2lpKTZu3IhRo0ZJM9aampqwb98+bNy4EUOHDmXu2l1eXi4FlpRKJUJCQuDh4QGbzYYzZ85IZeXl5UzlDNXpdNJ3k5SUFKhUKphMJqxZswZFRUUAwNT5fWkuWz8/PwiCAKVSifr6+svWI4S0D4X90u1iOFRXV4eAgADU1tZSVL+NCYIAjUaDyMhI5ObmwsPj17R+NpsNmZmZsFgs2LBhA7NfZAm7xPNbvH44zmQKCwuDv78/6urqmDq/ee4zXccIi6xWK+Lj4+Hv7w+DwQBPz1+fuba0tECtVqOurg7btm1jcjkVL3gcZ16v3R999BFefPFF+Pj4oLm52WlmuZeXF5qamvDss8/innvucWNL2w6P5/e2bdvw0ksvwcPDA3369MGZM2ekstDQUJw9exY2mw3/+Mc/EB8f78aWtp+jR49izpw5WLlyJQYNGuTu5nQIHvsMuK/ffyRORJsXkHZlNptx+vRpaDQa2RcaoPXDXaPR4NSpUzCbzW5qISF/nnh+P/HEE3jrrbeQnp6OyZMnIz09Hf/3f/+HJ554grnzm+c+03WMsMhoNEIQBKSkpMhuRgHA09MTycnJEAQBRqPRTS0kbYHHceb12v3NN98AAJqamlyOdVNTk6weC3g8v7/99lsArUHia665BnFxcYiJiUFcXByuvvpqKaAq1iOEtC9aCkralbjWPyIiwmW5eNxVTgBCOjvxvK2srMTzzz8vm71VXFyMlJQUWT0W8Nxnuo4RFlVWVgIAVCqVy3LxuFiPdE08jjOv1+4rXYzE0qIlHs9vUWBgIPbu3et0XJxlQwjpGDRjjbSr4OBgAIDFYnFZLh4X6xHSlYjn7QsvvIDIyEjk5+dj69atyM/PR2RkJF544QVZPRbw3Ge6jhEWhYeHA4Assbsj8bhYj3RNPI4zr9dux4BZ9+7dsWjRIhQXF2PRokXo3r27y3pdHY/nd79+/QAANTU18PLywpgxY5Ceno4xY8bAy8tLCqqJ9Qgh7YsCa6RdiTsI6vV6p52JbDYb9Ho9wsLCmNxBkLBP3HkrMDAQS5YsQVRUFPz8/BAVFYUlS5YgMDAQSqWSqZ23eOwzXccIyxITE6FUKrFmzRq0tLTIylpaWrB27VoolUokJia6qYWkLfA4zrxeu8XgmUKhgFKpxKuvvoopU6bg1VdfhaenJxQKhaweC3g8vx3zpgUFBeGTTz5Bfn4+PvnkE1mwmNX8aoR0NhRYI+1KqVQiLS0NJpMJmZmZKC8vR319PcrLy5GZmQmTyYR58+YxlTSW8EPceau6uhrZ2dmy8zs7OxvV1dUQBAHl5eXubmqb4bHPdB0jLPP29oZarUZ1dTXUajVKSkpw7tw5lJSUyI6zkvCbVzyOM6/X7nPnzgFonZF26TLX8+fPSzPVxHos4PH83rZtm/Tz2bNnZWWOGxk41iOEtB/KsUbaXVxcHHJyclBQUID09HTpeFhYGHJycpjb5pzwQ/zCmpGRgdWrV8vO79DQUGRkZCAvL4+p/C2OfV6zZo3Te5rFPgN0HbNarTAajaisrER4eDgSExOZukFxRRAEmM1mVFVVITg4GNHR0czdgItSU1MBAAaDAUuXLpWOK5VKJCUlSeUs4nGcN23axM0483jt7tu3r/Szq5l6ruqxgLfz+0rzxbGYV46QzogCa6RDxMXFITY2lpsvr4QP4lT7vXv34ueff5aVnT17Vkomy1L+FrEvZ8+edcrPYrPZpKekLPVZxOt1TKfTwWAwQBAE2TG1Ws3cjYqotLQUBQUFss05QkNDkZaWxuSNONB6U5qcnMxVAJXHcR46dCj69Okjm9HSu3dvDB061I2tan+uPq9YNXz4cOj1+iuqxxqezu+QkJA2rUcI+WtoKSjpMEqlEjExMRg7dixiYmKYvxkl7IuOjkb37t2xY8cO+Pv7yxIE+/v7Y8eOHejevTtT+Vuio6MRGBiIVatWudy8YPXq1QgKCmKqz454u47pdDoUFRW5PL+Lioqg0+nc3cQ2V1paCq1W6/L81mq1KC0tdXcT2424nOrJJ59kbtnUpXgcZ7HPAwcOlPV54MCB1GfS5fE21o4PuwICAmSf0QEBAS7rEULaDwXWCCHkTxIEAQ0NDQCAIUOGICIiAt26dUNERASGDBkCAGhoaODuSw1LO43xzGq1wmAwICgoCAaDAQkJCejVqxcSEhJkx61Wq7ub2mYEQUBBQQFUKhVyc3Nlm3Pk5uZCpVKhsLCQu/c0a3gcZ+ozH30GgLKyMulnLy8vWZljsNyxXlfH41h//fXX0s8eHh6w2+3Sfx4eHi7rEULaDwXWCCHkTzIajbDZbLjvvvtgsViQnp6OCRMmID09HT/88APuu+8+2Gw2GI1Gdze1zZjNZtTU1GD27Nku+zx79mzU1NTAbDa7u6nkLzIajRAEASkpKfD0lGeO8PT0RHJyMgRBYO78Pn36NDQajezGBGi9cdFoNDh16hSd310cj+NMfeajzwDw7bffAgBUKhV69eolK+vVqxdUKpWsHgscx9put6OsrAw7d+5EWVkZ7HY7k2N9/vx5AMBVV12Furo6LF26FFOnTsXSpUtRV1eHq666SlaPENK+KMcaIaTN8ZIMWkwIe/3110v51EQ2mw2DBg2S1WOBuCnB5MmTkZSU5DTOTU1NWLVqFXObF/BIPG/Fm7BLicdZPL8jIiJclovHWT2/ebl28zjO1GdnLPYZAHx9fQEANTU1WLlyJV566SUpb+I//vEPPP3007J6LBDHsLKyEkuWLJHlWAsJCcGsWbNk9VjQu3dvHD16FNXV1SguLsYrr7wijfPf//53aDQaqR4hpP1RYI0Q0qZ4SgYdHh4OAHjllVdw2223ITs7GxEREbBYLNDr9Xj11Vdl9VggbkpgsVgQFRWFmJgYWbnFYpHVI12XeN6aTCYkJCQ4lZtMJlk9Flx6fl+K5fObp2s3j+NMfeajz0BrLtTdu3fjm2++wX333Scdt1gsstcs5UIVxzAvLw8+Pj6yspqaGuTl5cnqseDGG2/E//73P1y8eBH333+/dNxisWD37t2yeoSQ9kdLQQkhbYa3ZNBisMHLywtZWVmwWq0wmUywWq3IysqScpu4Ckp0VdHR0QgNDYVer0dzc7NsuUVzczP0ej3CwsKY+sLOq8TERCiVSqxZswYtLS2yspaWFqxduxZKpRKJiYluamHbczy/L9010GazMXt+83bt5nGcqc989BlonVHelvW6gqioKGm570033SS7jt10000AWpf/ugqwdlU8jjMhnRnNWCOEtIlLE8eKX3DExLGZmZkoLCxEbGwsM0uLjhw5AgBobm7GxIkTZV/cPTw8pNdHjhxxmtnVVSmVSqSlpSE7OxsJCQloamqSynx8fNDU1IQlS5YwM8Y8E3eILCoqglqtRnJyMlQqFUwmE9auXYvq6mokJSUxtXOkeH5rtVpkZmZCo9HIZqGaTCbk5OQwdX7zeO12HOeMjAzceuut0vVr37592LNnD3PjzOO5zeM4A1e+CyRLifwPHTrkFDy9lM1mw6FDhzBixIgOalX7UygUv7lhlEKh6MDWEMI3CqwRQtqEmDg2KyvrskmC09PTYTabmQkyOebqcPU03FU9ljgG1Vy9Jl1famoqAMBgMGDp0qXScaVSiaSkJKmcJXFxccjJyUFBQQHS09Ol42FhYcjJyWFuWSSP126gdZynT58Og8EgLWsGWs/t6dOnMzfOAH/nNsDnOK9YseKK682fP799G9NBDh48CAB49NFH8Z///Mfp/H7kkUfwf//3fzh48CAzgTWj0fi7u7Db7XYYjUao1eoOahUh/KLAGiGkTfCYJDgwMFD6eeTIkejfvz+sViu8vb1RUVEhbWjgWK+rEwQBy5YtAwCMGjUKI0eOhK+vLxobG7F3717s2bMHy5cvZ2p2C+9SU1ORnJwMo9EoJUZOTExkaqbapeLi4hAbG0uJ/MHmtRtoXf66ceNGeHl5yWbuKJVKbNy4EUOHDmUy6MLTuQ38Os6jRo3CrbfeKn1e7du3j9lx/umnn6Sfb731Vlx11VXSd5OffvoJ+/btc6rHimHDhuGhhx5yOr/FwBtLKioqZK8DAgLg5+eH+vp61NbWXrYeIaR9UGCNENImeEwSLM5K69mzJ/Ly8uDp+esltaWlBZMnT8aFCxd+d3lCV3Lw4EHU1NRg2LBheOGFF2QzXBITE/Hkk0/i0KFDTD0VJr8uC+WJUqlkaobW5fB47RYfENjtdowYMQIzZ86UlkVu2LABJpOJHhAw4HLLnIHWzysWlzkDv84eDwwMxD//+U9Zv202GyZPnoza2lqmZpkPHz4c69evx7p16/Daa6/Jrt02mw3r1q2T6rHCcaMZDw8P1NbWSgE1x3QkjvUIIe2HNi8ghLQJHpMEm81mAMCFCxeQnZ2N8vJy1NfXo7y8HNnZ2bhw4YKsHgscl1u4Wjb26KOPyuoRQjo3Hq/djg8I8vLyEBUVBT8/P0RFRSEvLw/Dhg1DdXU1k9ex0tJSaDQaLFiwAM8//zwWLFgAjUbD3AYVwK/LnDUazWWXOZ86dYqpz2ig9WEf0PrdxNXGMxcvXpTVY8Hw4cMRGBiIQ4cOISMjQ/Z9LCMjA4cOHUJQUBBTgbVvv/1W+rlnz55YtGgRiouLsWjRItnYOtYjhLQfmrFGCGkTPCZGFv1eTg8WUUJcQtjA47Xb8QFBS0uL0zLnRx99FE899RRzM2/F3V9VKhWysrJk46zVapnLs+a4zFkQBKflgawuc+7RoweA1hl78fHxiI6ORu/evXHu3DmYzWZp6bNYjwVKpRILFy6EVqvFl19+Kcun5+PjA4VCgQULFjB1HbNardLPHh4eOHHiBJqbm3Hq1ClZINmxHiGk/VBgjRDSZnhLjCwuPfjiiy+wfv16fP3119KX9htuuAELFy6U6rFC7PObb76J4cOHOy0xYXG5BSGs4+3aLSopKcHTTz8ty7Gm0+kwevRoN7aqffC4+6u4fHnLli0oKSmRLYkLDQ1FQkKCrB4rxo8fj+3bt0OhUEAQBJSVlcnKxZ0kx48f76YWtg/H65jjWAcHB2PevHnMXcd69OiB+vp6AEB1dTU2bdp02XqEkPZHgTVCSJviKTGy49KD7OxszJw5EyqVChaLBdnZ2Th06BACAwOZCjJdutzi0txELPaZEB7wdu1ev349du3ahcDAQMyaNQsqlQomkwmrV6/Grl27pHqs4HH31+joaAQGBmLVqlVOs/Q2bNiA1atXIygoiKllzgBw0003wdPTU1oG2rt3b3h7e8NqteLcuXOw2+3w9PTETTfd5OaWtj2ermM333wztm7dCqB1xl5ERAR8fHzQ1NQEi8UiPTC4+eab3dlMQrhBgTVCSJvjJem3uPQgOzvb5dIDAFi4cCFTX+h47DMhvODl2j106FDp58GDByMiIgLdunVDREQEBg8ejD179jjV6+p4XRb5e+x2u7ub0OYEQZDlSzx37pxTHZvNBkEQmPys5uU6dvXVV0s/C4KA77777nfrEULaDwXWCCHkL4iLi8OSJUuQn5+PM2fOSMeDgoKQlpbG3NIDgM8+E0LY8cEHH0g/l5WVSYE04NcHBGI9VnbD5XFZpNlsRk1NDWbPno2SkhKnZc6zZ8/GqlWrmJqlBwBGo/F3dyO32WwwGo3MnN88ioyMbNN6hJC/hgJrhBDyF/G09EDEY58JIWyorKwEAPz973/HW2+95fSAYObMmXj11VeleizgcVmkOPtu8uTJSEpKcvq8ampqwqpVq5ibpXfy5Enp51GjRmHkyJHSEsG9e/dKgWTHeqTrqampkX729PREYGAgbDYbPDw8UFNTIy0FdqxHCGk/FFgjhJA2wMvSA0c89pkQ0vWFh4cDaF0G+PbbbzsFXMS8RWI9XrC2LFKcfWexWBAVFeX0eWWxWGT1WCHOVuvXrx9eeOEFWU69xMREzJw5E5WVlb87q410bmJAOCAgABcvXpQt+VUqlQgICEBtbS1zgWNCOiuP369CCCGEEEIIGxITE6FUKrFmzRrY7XbExMRg7NixiImJgd1ux9q1a6FUKpGYmOjuprYZx2WRFosF6enpmDBhAtLT0/HDDz9g9uzZqKmpgdlsdndT20x0dDRCQ0Oh1+udgkg2mw16vR5hYWFMzdIDgO7duwMAamtrXfa7rq5OVo90TeI49uvXDx9++CHS09MxefJkpKen48MPP0S/fv1k9Qgh7YtmrLmJ1WqF0WhEZWUlwsPDkZiYCG9vb3c3q13x2GeAz367SozM+hLBhoYGrFixAhUVFejfvz/mzp2Lbt26ubtZ7aqqqgoLFy7E+fPn0atXLyxbtoy5J/+X4nGcAeDixYt48cUXpevYs88+ix49eri7We2Kx/O7oqICs2bNQlNTE3x8fLB69Wr079/f3c1qc97e3lCr1SgqKsLkyZPRt29fWK1WeHt74+zZs7hw4QKSkpKY+qx2XBaZkJCAjIwMnDlzBiEhIcjLy4OXlxdzyyKVSiXS0tKg1WrxzDPPoLGxEbW1tQgICICvry/279+PnJwc5r6feHq23t5dvHgR999/PxoaGqSNCrp164aLFy/K6rHmxIkTSElJQXNzM7y8vLBmzRoMGDDA3c1qc+JMxMOHD+Ppp5/G119/LS0F/eyzz3D48GFZPUJI+2LzitrJ6XQ6GAwGaRtk8ZharUZqaqobW9Z+eOwzwGe/S0tLUVBQ4JQYmeWk9hkZGdi9e7f0+sCBA3jvvfcQGxuLvLw8N7as/TzwwAOyG7ALFy7ggQceQHBwMDZv3uzGlrUfHscZAFJTU3HkyBHptcViQUJCAgYPHgydTufGlrUfHs/vsWPHyj6rGhsbMXPmTCiVSuzcudONLWsfqamp+Pjjj1FVVYULFy7IyoKDg5n7jBaDwvPmzcOPP/4oHf/555+RmJgo7RzIWvA4Li4O4eHh2Ldvn1NZv379mPxeMnz4cKxfvx4ApCAa0PrQ0/H18OHDO7pp7W7MmDGyWXrNzc14+OGH4eHhgU8++cSNLWt7juPsONPUZrPJXrM4zoR0RhTC7mA6nQ5FRUXw9/fHokWLUFxcjEWLFsHf3x9FRUVM3qTw2GeAz36XlpZCq9UiMjIS+fn52Lp1K/Lz8xEZGQmtVovS0lJ3N7HNicEWLy8vzJgxAxs2bMCMGTPg5eWF3bt3IyMjw91NbHOOQYehQ4di6dKlGDp0KIDWWREPPPCAO5vXLngcZ+DXoJpCocD48eOxevVqjB8/HgqFAkeOHGEu+ADweX47BtX8/f3x1FNPwd/fH0DrzfjYsWPd2bx2kZqaiqqqKigUCgwaNAh33XUXBg0aBIVCgaqqKubO7ejoaHh5eUlBNcf3MwD8+OOP8PLyYm5ZZGpqKk6ePAmFQoGbb74Zs2fPxs033wyFQoGTJ08yN86AcyBFqVRiyJAhTjPzWAu4OAbV/Pz88Le//Q1+fn4AWoNNY8aMcWfz2pyrcR49ejTz40xIZ0Uz1jqQ1WqFwWBAUFAQDAaDNAU7ISEB9957L9RqNQwGA5KTk5lZfsBjnwE++y0IAgoKCqBSqZCbmytNPY+KikJubi4yMzNRWFiI2NhYZpZdNDQ0SMGWDz/8UBrLOXPm4NFHH8XEiROxe/duNDQ0MLNcsKqqSgo6fPDBB9JywBEjRuDixYtISEiQ6rAy84HHcQZaZzqIQbVt27bB19cXALB48WIsXLgQ8fHxOHLkCC5evMjMslAez++KigopqPbuu++id+/eAIBJkybh3LlzmDp1KgRBkJY/s+By5zbQOlOPxXO7oaEBzc3NAICRI0ciMTFRSk9RW1uLvXv3orm5GQ0NDcz0+XLjrNFomB1nwHm3T0EQ8M033wAAFAqFtEnFyZMnmVkieeLECSmotmnTJvTt2xcAMGXKFJw9exbTpk2DzWbDiRMnmOnzTz/9JHstCAI+++wzl/WuueaaDmoVIfyiGWsdyGg0QhAEpKSkOOU18PT0RHJyMgRBgNFodFML2x6PfQb47LfZbMbp06eh0Wic8jl4eHhAo9Hg1KlTTCVGXrFiBQBArVY7BUi9vb0xdepUWT0WLFy4EEDrTJ5Lb0R69OiBIUOGyOqxgMdxBoAXX3wRAHD33XfLAg8A4Ovri3HjxsnqsYDH83vWrFkAWmeqiUE1Ue/evdGzZ09ZPRbweG6Lfbnxxhvx448/yjYvOHHihDRTjcU+8zTOAJCSkgIA8PHxkQJMor59+0qfY2I9Foh98fPzc9lnceYai3328vJCSEiIrCw0NFS6/2Cpz4R0ZhRY60CVlZUAAJVK5bJcPC7WYwGPfQb47Lc4yyMiIsJluXicpcTIFRUVAIAJEya4LBePi/VYcP78eQCX/6L22GOPyeqxgMdxBn69Pk2bNs1luVqtltVjAY/nd1NTEwBg9uzZLsvFPov1WMDjuS325W9/+xv0ej2WL1+OrKwsLF++HBs2bMDjjz8uq8cCHscZgDQzccyYMU4POhUKBe68805ZPRaIfbnctfvhhx+W1WOBONM4OTkZb7/9tuw9rdfrpT475s4khLQfCqx1oPDwcACAyWRyWS4eF+uxgMc+A3z2W1wWZbFYXJaLx1lZPgVAWha1detWl+XicVaWTwFAr169AABr1qxxWf7mm2/K6rGAx3EGfr0+bdq0yWW5wWCQ1WMBj+e3j48PAGDVqlUuy8U+i/VYwOO57dhnpVKJmJgYjB07FjExMVAqlcz32RUW+wy0zmACgG3btrnMefvxxx/L6rFA7Mvlrt1vvfWWrB4LxLQq69atc/me1uv1snqEkPZFgbUOlJiYCKVSiTVr1qClpUVW1tLSgrVr10KpVCIxMdFNLWx7PPYZ4LPf0dHRCA0NhV6vl+3IBLQmjdXr9QgLC2MqMfLcuXMBtH45b2hoQFlZGXbu3ImysjI0NDTg3XffldVjwbJlywC0bu9eW1sr63Ntba2Ux0WsxwLHcbZarbIyq9XK5DgDwLPPPgsA2L59OxobG2VljY2N2LFjh6weCxzPb8fd84DWfE0snt+rV68GANTV1eHcuXOysnPnzkk7Zor1WMDjuU195qPPgDxI/sQTTyAqKgp+fn6IiorCE0884bJeVycG1Orr63H27FlZ2dmzZ1FfXy+rxwKxL01NTTh9+rSs7PTp09IsY5b6TEhnRpsXdCBvb2+o1WoUFRVBrVYjOTkZKpUKJpMJa9euRXV1NZKSkphJZg/w2WeAz34rlUqkpaVBq9UiMzMTGo0GERERsFgs0Ov1MJlMyMnJYerJWbdu3RAbG4vdu3cjPj7eZZ3Y2FimEtoHBwcjODgYVVVVlw0Mi3VY4TjOEydOxNSpUzFhwgRs3boV7777Lpqbm5kbZ6A1p9jgwYNx5MgRxMfHY9y4cdLGKzt27IDdbsfgwYOZSvrteH4nJCRgyJAheOyxx/Dmm29KQTXWzu/+/ftDqVRCEARMnToVPXv2lPosBtWUSiVTMzJ5PLepz3z0GQCqq6uln5OSkuDj44Pbb78dn3/+uWxJd3V1NTNJ7QcMGAAPDw/YbDZMmzYNfn5+ePjhh/HWW29JQTUPDw9mNi4AgGuuuUbajEIcZ41GA71eL42zQqFgZowJ6ewUdnFrGI7V1dUhICAAtbW10vby7Umn08FgMMjWvCuVSqjVaia3/Qb47DPAZ79LS0tRUFAge3oWFhaGefPmIS4uzo0tax+lpaXIzs6+bPmSJUuY6zePfQaAjIwM7N692+l4bGws8vLy3NCijpGamoojR444HR88eDB0Op0bWtT+HnjgAZf5IIODg7F582Y3tKj9jR071mUuHqVSiZ07d7qhRe2Px3Ob+vwrVvu8c+dOPP/8879bLysrC2PHju2AFnWcMWPGOK2aAFqDap988okbWtT+7rrrLri6nVcoFPj000/d0KKOc/ToUcyZMwcrV67EoEGD3N2cDsFjnwH39fuPxIkosIaOD6wBrcuHjEYjKisrpe3OWZq95AqPfQb47LcgCDCbzaiqqkJwcDCio6OZmqkmEgQBU6ZMQU1NDby9vWXLBMXXQUFBePfdd5npv2OfxVkuIvE1a3121NDQgBUrVqCiogL9+/fH3LlzmZup5srFixfx4osvStexZ599lrlZHpeqqqrCwoULcf78efTq1QvLli1jaqaaKxUVFZg1axaamprg4+OD1atXMzVTzRUez23qM9t9Lisrw4IFCwC0pun4+uuvYbPZ4OHhgRtuuEHanX358uWIifl/7N17XFTV/j/+1zBcFbl54ZoGJaIoSuVlpEN9TlmKKGWiJJoe8ILS8YZ1MkACJesc0fJ7QBAwT4qSaIkYng7qMRJHEMVQDDVBTVG8cRcYGOb3B7+9z2xmzEvAOGu/n49Hj2b2fptrtfbeMO9Za709ddnULnH16lUEBwejpaUFRkZGSE1NZWqmmjaXL19GcHAwlEolvxWNGGaqiTHJJMY+A5RY0xu6SKwRQvTfyZMnERYWBqC90uvMmTP55a/bt2/ni1TExcXhxRdf1GVTO416n01MTATLStTfs9RnQgghRF8oFApMmDABpqam6Nmzp2DPsX79+qGhoQFNTU04cOAA81/0EraJMckkxj4D+pFYoz3WCCHkCZ06dQoAMGTIEMTExODs2bOQy+WwsbFBTEwMlixZgnPnzuHUqVPMJJm4PgOAp6cnRo8eDVNTUzQ1NSE/Px/Hjx/n41jpszqxzMYkhBCin0pKSqBUKtHQ0ABjY2NMmzYN9vb2uHHjBnJyctDQ0MDHsThjTYzodxNCdI8Sa4QQ8oS4b4GfffZZzJo1S7CvnJ2dHTw9PXHu3DmNClX6rLKyEkD7t97l5eV8Ig0AbG1t0a9fP9y6dYuPY4m2/QPt7OywaNEiJveUI4QQon+46r729vaorKzErl27+HMGBgZ8kq1jFWCin3JzcxEfHy/4vcvW1hahoaH0uwkh3YgSa4QQ8oT69esHAMjOzsaYMWMwffp0fjlkfn4+Dhw4IIhjya1btzBmzBi+EhXXZ/VEG0tyc3MRFRUFmUyGyMhIQcXbqKgoREdH0y+wjKEZAOJA4ywOYhrn6upqAMCNGzc0tmwwMjLCjRs3BHFEf3HFpIyMjATH7927h1WrVjFbTIqQpxEl1ggh5AmNGDECaWlpANo3C1ZPKpmYmAjiWKGeJPy9PrOUTFQqlUhISIBMJsOaNWtgYGAAAHB3d8eaNWsQERGBTZs2wcvLi9kPamJDsxPFgcZZHMQ2zur7AKkn1Tq+p32l9ZtSqcT69esBAC0tLYJz3Pv169fT7yaEdBMDXTeAEEL0FZdgAX7/l1f1OH1naWnJv/69PqvH6bvi4mLcvHkTgYGBGmNpYGCAwMBA3Lhxg6+0RvQbNzvRxcUF8fHxyM7ORnx8PFxcXBAVFYXc3FxdN5F0AhpncRDjOKvPRJNKpfD09MTrr78OT09PQYKFZqzpt9OnT/NjaG1tjRUrVmDPnj1YsWIFrK2tAbSP8enTp3XXSEJEhJ1Pe4QQ0s3u3bvXqXH6wMrKqlPj9AE3fs7OzlrPc8dZGmex6jg70d3dHT169OBnJ8pkMmzatAlKpVLXTSV/AI2zOIh1nNUTZkqlEkVFRTh48CCKiooEfaXEmn4rLCwEAPTq1Qvp6elwdHTE6dOn4ejoiPT0dJibmwviCCFdixJrhBDyhLhEiqWlJSQSieCcgYEBP2uLpYSL+i/iHff0MDY21hqn72xsbAAA5eXlWs9zx7k4or/UZyc2Nzfjiy++wIoVK/DFF1+gubmZZicygmahioNYx/nixYv8a0NDQ8GMNUNDQ61xRP9cuHABADB06FDMmjULy5Ytw+rVq7Fs2TLMmjULQ4cOFcQRQroW7bFGCCFPqLa2FgBQU1MDY2NjKBQK/pyhoSFqamoEcSzg+tK7d29UVVUJzrW2tsLGxgb37t1jqs8eHh6ws7NDWlqaYI81AGhra0NaWhrs7e3h4eGhw1aSzsAlwbdt2ybYP7CwsBB79+7FmDFjBHFEP9EsVHEQ6zirf+nV2tqKoqIi/r36l4Advxwj+sXU1BQAIJfLNc7dunWLr0jPxRFCuhbNWCOEkCek/gtqjx49EBYWht27dyMsLAw9evTQGqfvuKTS3bt3YWFhgWnTpmHp0qWYNm0aLCws+A8oLO0rJ5VKsWjRIsjlckRERKCkpAT3799HSUkJIiIiIJfLsXDhQtocmAHcrMPjx4/DyMgIM2bMwPbt2zFjxgwYGRnxyTaanajfaBaqOKiPM7ck8tChQ/ySSFbHWf13DisrK0ybNg1LlizBtGnTBPufsvS7iTptY82iYcOG8a+1/bzSFkcI6To0Y40QQp5Qz549AbQvgTQ2NkZcXBx/ztbWlp/FxsWxgJuVZWZmBhMTE+zatYs/Z2dnBzMzMzQ2NjI3e8vb2xvR0dFISEhAaGgof9ze3h7R0dFMVpYTo4EDBwJo/8CZlZXFf9M/f/58vPfee5gwYQJUKhUfR/QTzUIVB26cN27ciOrqalRWVvLnbG1tYWVlxeQ49+7dm399//59wc9p9S0b1ONYIaYKsAMGDOBfK5VK7NixAzt27AAg/HJTPY4Q0nUosUYIIU+ovr4eAKBQKDT2FKuqquKXhnJxLOB+WWtsbMTw4cMREBAAExMTNDc3Iz8/n5/Rw9KMNY63tze8vLxQXFyMe/fuwcbGBh4eHjRTjSEpKSkAAJVKhZiYGAQGBsLZ2Rnl5eVIS0uDSqXi45YuXarDlpI/gpuFGhUVhYiICI1xlsvliI6Opntbz0mlUrz66qtIT0+HtbU1wsLCIJPJIJfLsWXLFpw/fx4BAQHMjbN6f9S3qOj4nrV+cxVgZTIZIiMjBfd0VFQUc1+CHT58mH/d1tYmOKf+/vDhw5DJZN3WLkLEihJrhBDyhNSTR62trYJz6u9ZSjKpJxCLiooE+1CZmJhojWOJVCqFp6enrpvR7ZRKpSgSiteuXQMALFmyBN98843G7MTFixdj48aNfBzRXzQLlX1KpRJHjhzBoEGDUFNTI5hVbm9vj0GDBuHHH3/EvHnzmHqeDR48GHv37n2kOFZ0rADL/d7FVYCNiIjApk2b4OXlxcxYNzY2dmocIeSPocQaIYQ8IW75iKmpKSwtLQXLTPr27Yuamho0NTUxtcyE24tm3rx52Ldvn6DP1tbWmDRpEpKTk5nbs0bMxLS0xsnJCYWFhbh9+za+/vprZGZmoqKiAg4ODvDz88NXX33FxxH9R7NQ2cZVBY2MjISbm5vGOJeWliI0NBTFxcVMfWHSp08f/rWlpSWeffZZqFQqSCQSXL58mS+spB6n79TH+kEVYFkba3d3dxw9ehSGhoYaX+4C4I+7u7vroHWEiA8l1ggh5Alxv7w1NTVh2LBhsLW1RU1NDSwtLWFiYoITJ04I4ljA7VlTUlKCLVu2IDk5GdeuXYOTkxPmzZuH2NhYJvesESuxLa1ZsGAB9u7di2+++Qb/+c9/cOfOHf7cN998w1fCXbBgga6a2KXq6+uxdu1aPpm4cuVKmJub67pZXUqMs1DFMgNVvSqotnFmtSoop1evXqipqcHPP/+scbyurk5Hreoa6mOt7fpmcayff/55AJorJjjccS6OENK1KLFGCCFPSH25I5dEe1icvuP2Jlq1ahUmTpzIHy8sLOSXnsTExDD5IU1sxLi0xszMDG5ubigtLRUk1QDw793c3GBmZqaL5nWpkJAQlJaW8u/Ly8vh6+sLNzc3JCYm6rBlpDOJaQaqelVQbbN2WK0Kyv3O8aDkGXecpd9NuDH87rvvkJWVpXF9T5o0SRDHgkdNErKUTCTkacbONApCCOlmj/oLGku/yAHAuXPnAGjOxOPec+eJfuOW1gQGBj5wac2NGzdQXFysoxZ2PqVSiatXr/5uzNWrV6FUKrupRd2DS6pJJBK88cYbSElJwRtvvAGJRILS0lKEhITouomkE3AzUF1cXBAfH4/s7GzEx8fDxcUFUVFRyM3N1XUTO5V69Vdtm7uzWv3VysqKfy2RSATn1N+rx+k7Dw8PWFlZITk5Gc7OzoLr29nZGcnJybCysmJqrEtKSjo1jhDyx9CMNUIIeUIDBw4E0P6L6v79+3HhwgV+6YGrqyt8fX2hUqn4OBYoFApkZGTA2toa6enpOHfuHN/nIUOGICAgABkZGQgKCoKxsbGum0v+APWlNdqwuLTm1KlTuH//Pnr16oUdO3YgNTWVX+ocHByMGTNmoK6uDqdOncLIkSN13dxOUV9fzyfVDhw4AFNTUwDAxx9/jOXLl2PChAkoLS1FfX0988tCWSbGGahirf7KLQGUSqXIzMzEgQMH+OXdEyZMgJ+fH5RK5QOXELKqY5JR3926dYt/vXv3bmzYsIEf52XLlmHq1KkacYSQrkMz1ggh5AmlpKQAAFQqFWJjY2FsbAyZTAZjY2PExsZCpVIJ4liQmZkJpVKJ4OBgmJiYwNPTE6+99ho8PT1hYmKCoKAgKJVKZGZm6rqp5A9SX0alDYvLqP7zn/8AAP7yl7+gV69eWLp0KdatW4elS5eiV69emDNnjiCOBWvXrgUAjBs3jk+qcUxNTfH6668L4oh+EuMMVOB/1V/LysoQGhoKHx8fhIaGory8nLk9IjkHDx4E0J5MfeeddxAfH4/vvvsO8fHxeOedd/gZt1wcC4qLi1FdXY158+ahvLxcMNaXL1/G3LlzUVVVxdT1rV6deurUqcjLy0N5eTny8vL4pFrHOEJI16EZa4QQ8oS4X1aWLFmCb775BqGhofw5e3t7LF68GBs3bmTql5qKigoAgEwm03qeO87FEf2lvoxKfYYLwO4yqsbGRgDte/Jowx3n4ljA3avTpk3Tet7f3x85OTl0T+s5Mc5A5Yit+qv686m5uVlwTv09S88x7rrt168f/6Ump62tDba2toI4Fqjv9WlgYCBY7qz+nsU9QQl5GlFiTUfEUpGJEJY5OTmhsLAQt2/fRlpamsY9zc1Uc3Jy0nFLO4+DgwMAQC6Xw9fXV+O8XC4XxLFGTM9uMS6jGjZsGI4ePYrU1FQMHz5co+ptamoqH8cKBwcHlJeXY9euXfj44481zmdkZPBxLBLLPS3WjfzFyN3dHUePHgUAjBo1Cs888wwUCgWMjY3x22+/oaCggI9jBXfdxsbGQiaTISAgACYmJmhubkZBQQFiY2MFcSwYNGgQLl68CABa9xBUjyOEdD1KrOmAmCoyEcKyBQsWYO/evcjIyMCcOXPg6enJn1MoFNi9ezcfxwo/Pz8kJiYiNTUV48ePh6Hh/36MtLa2YsuWLZBKpfDz89NhK7uGGJ/d3DKqhIQEjRmZLC6jevvtt5GUlIRLly49sOqtgYEB3n77bR21sPOtXLkSvr6+yMnJwfLlywXLQZuamvjlYitXrtRVE7uMmO5pMc5A5YhpnAHAxcWFf33q1Ck+kQZA8DNbPU7fubu7QyqVwtTUFGVlZfyXfABga2uLnj17oqmpialkor29fafGEUL+GNpjrZuJrSITISwzMzODl5cXWlpaMHHiRCQlJeG3335DUlISJk6ciJaWFnh5eTE1Dd/Y2Bj+/v6oqqrC1KlTkZCQgL179yIhIQFTp05FVVUV/P39mStcIOZnt7e3N9LS0rBhwwZERkZiw4YN2L59O5MfSI2NjR/6IcTe3p6p69vc3Bxubm5QqVSYMGECYmNjceHCBcTGxmLChAlQqVRwc3NjrnCB2O5pbgaqXC5HREQESkpKcP/+fZSUlCAiIgJyuRwLFy5kbrae2MYZAM6ePcu/7ligQP29epy+KykpgVKpRENDAxQKBcLCwrB7926EhYVBoVCgoaEBSqWSqQqZt2/f7tQ4QsgfQzPWupEYKzIRwrrY2FiEh4cjLy8PO3fuxM6dO/lzXl5e/PIDloSEhOC3335DXl4edu3aJTjn5eWFkJAQHbWsa9CzWzwaGxtx/fp1fow77lkDANevX0djYyNTCfPExESEhISgtLQUOTk5yMnJ4c+5ubkhMTFRh63rfGK9p8U2A1Ws48ztMda7d29UVVUJnmNSqRRWVla4e/euxl5k+uzOnTsA2qu119XVIS4ujj9nb2+PgQMH4uLFi3wcSxwdHXH9+vVHPk4I6RqUWOtGXEWmyMjIB1ZkCg0NRXFxsWBJGSHk6RYbG4vGxkYkJSXx+zEtWLCAqQ/e6nJzc5GXl8fvX8IxMTFBXl4ecnNzmfqAJvZnt5iWUSUlJQEAxo4diwsXLuDWrVv8uT59+mDgwIHIy8tDUlISli5dqqNWdo3ExETU19dj7dq1qKiogIODA1auXMncTDVA3Pe0mDbyF+s49+rVCwBgZWWFtLQ0ZGVl8ff0pEmTsGjRIty9e5ePY0F1dTWA9u0qJkyYoHF9Z2dnIy4ujo9jweDBg7F3715UV1ejd+/euHv3Ln+ud+/efF8HDx6soxYSIi6UWOtGYq7IRAjrzMzMmPugrY1SqcT69esBAC+88AJmzpzJb2i/fft2yOVyrF+/nqkZAGJ+dnPLqGQyGSIjIwXFC6Kiopib5cJV8D169CjGjh2LqKgoQZ/z8vIEcawxNzdncpZtR2K+p4H2WUssJZIeRKzjzG3Qf+nSJXzyyScYPXo0Bg4ciObmZnzyyScoKysTxLHAysoKAPDTTz/Bx8dHcH23tbXxxRy4OBb069cPANDQ0IDm5mb8+c9/hpubG0pLS5Gbm8sv++XiCCFdixJr3YgqMhHCLrFUljt9+jSqq6sxbNgwxMTE4OzZs5DL5bCxsUFMTAyWL1+OM2fO4PTp03jxxRd13dxOIdZntxiXUXGVLx0dHbX2eebMmfzMD6K/1O9pNzc3jWc3q/e02Ih1nPv06cO/Pn78OI4fP/7QOH3H9SU/P19rFev8/HxBHAu4gg0SiQStra04fPgwDh8+zJ83NDSESqViqmADIU8zSqx1IzFXZCKEZWJaKnf69GkAwIsvvohZs2Zp9PnNN99kLrEm1me3GJdReXl5Yd++fbh58yZaW1sFRQpaW1tRWVnJxxH9xd3TGzduRHV1NT+uQHsFQSsrKybvabER6zh7eHjAysrqd5c9WllZMdVvbqwtLS1x6dIlwR6CdnZ2GDRoEGpra5nqM1ewAWj/mdxxT1BuxlpJSQkzP6MJeZpRVdBuJNaKTISwTIwVxwBg69atWvv8r3/9S9dN63RifXaLcRlVfX09gPbZetoq/XIfYrg4op+kUileffVVnD9/XmsFwfPnz+OVV15h7p4WGzGPc0tLCwDA0tIS06ZNw9KlSzFt2jRYWloKzrOC+zl94cIFuLi4YMmSJfjwww+xZMkSODs748KFC8z9nFYvxGBoKJwro/6exYINhDyNaMZaNxNbRSZCWCbGpXLct729evVCTEwM/8ubu7s7YmJi8Pbbb6Ouro6pb4UBcT67xbgEluuLh4cHiouLNSr9csdZ6rMYKZVKHDlyBIMGDUJNTY1GBcFBgwbhxx9/xLx585h5douRWMf59OnTaGhoQP/+/dHc3Cyo3s3N6rp69SpTM8sB4c9puVzOH2f15zT3pdZzzz2HxMREnD17ll/qPHToUCxYsABlZWVMfflFyNOMEms64O3tjTFjxiAzM5Pfq8XPz0+w5IRFCoVCdH0GxNlvsew3pr5Urrm5WaMqKItL5bjkYV1dHcLDw+Hk5ITm5maYmJjg2rVrqKurE8SxxNvbG8OHD0d4eDgqKytha2uL2NhYfgYAa8S4BJbrs7m5ObZt24Z58+bx13dycjI2bdrEXJ/VieXnlfqz297eHsuXL8fdu3fRu3dvrF+/Hjdu3GDu2a1OjNVfxTTO3JYNS5YswfPPP6/xM+vXX39FWFgYc4k1QFw/p2trawG0V2S/c+cOYmJiUF9fD3NzcyQkJMDU1FQQRwjpWk99Yu369ev429/+hgMHDuD+/ft4/vnn8dVXX+Gll14CAKhUKkRFRSE5ORnV1dXw8vLCpk2bMHDgQB23/MG07ce0Z88eJvdj4iQmJiIjI4NfRsMd8/f3R0hIiA5b1rXE2G8x7TfGfQu4bds2webAhYWF2Lt3L8aMGSOIY4H6ni35+fn8hsC/F8eKkJAQlJaW8u9v374NPz8/uLm5ITExUYct6xrc0pqoqCitm0HL5XJER0czlTTn+rxq1SocO3aMP97U1IRZs2YBAGJiYpjqM0dMP6+4Z/KaNWtw48YN/nhdXR2mTJkCe3t7QRxLOj7HysvL4evry+RzTMzjDABffPEFfvvtN/499zPrmWee0WGrupaYfk5zX3adO3cO7777Ln+8qqpK8J7FLzoJeRo91XdaVVUVvLy8YGRkhAMHDuDcuXOIi4uDtbU1H/P3v/8dGzduRGJiIvLz89GzZ0+8+eabaGpq0mHLH0yM+zElJiYiPT0dFhYWWLFiBfbs2YMVK1bAwsIC6enpzP2g44ix32K7vrnlYMePH4eRkRFmzJiB7du3Y8aMGTAyMuKTbSwtG1Pvi7YN7bXFsYD7ZV0ikeCNN95ASkoK3njjDUgkEpSWljKXeOBwS2vKysoQGhoKHx8fhIaGory8nMmlNUD77xV/5Lw+EtvPK+75xCVbRo0ahX/+858YNWqU4Dg9x/SbWMd5xIgRAMAn1dTHWv04F8cKsV3fjzp+rI0zIU8riUqlUum6EQ/y0UcfIS8vDz/99JPW8yqVCg4ODggLC8OKFSsAADU1NbC1tcXWrVsREBDwSH9PbW0tLC0tUVNTAwsLi05rf0dKpRKBgYFwcXHRuqwmIiIC5eXl2L59OzPfhisUCkyYMAEWFhbIyMgQbKbZ2toKf39/1NbW4sCBA0wtNxFjv8V4fdfX18PX1xcSiQQHDhzgp90D7TNcJkyYAJVKhf379zOzzKaxsRETJkyAkZER9u3bh9LSUn7Jr5ubGyZPnoyWlhYcOHAAZmZmum5upxDjOHckluXdt2/fhr+/PwBg9+7d+O9//8svl/u///s/TJ06FQCQkZGBvn376rKpnUaMP6/u3buHKVOmAIDGfcvd7wDw7bffMpN0EeNzTIzjDLR/FvLz8wPQnkyUyWQwMTFBc3Mz5HI5CgoKAACZmZnMLJEU4/VdUVGBGTNmAAA8PT3Rq1cv1NXV8f8uKioCAOzYsQMODg66bGqXuXDhAubPn4/NmzfD1dVV183pFmLsM6C7fj9OnuipnrG2b98+vPTSS/D390e/fv3g6emJ5ORk/nx5eTlu3ryJ119/nT9maWmJ0aNHCzat7Ki5uRm1tbWCf7oDt9dDYGCg1pkegYGBuHHjBoqLi7ulPd0hMzMTSqUSwcHBWivWBAUFQalUIjMzU0ct7Bpi7LcYr++UlBQA7Un+mJgYQbXImJgYcN9bcHEs2L9/P4D2imKrV6+GsbExZDIZjI2NsXr1ar7SGBfHgrVr1wIAxo0bJ/hlHQBMTU35n0FcHIukUik8PT3x2muvwdPTk8mkGgC8//77AIC+ffvi/fffR3x8PL777jvEx8fj/fffR58+fQRxLBDjz6tVq1bxrz/99FPBs/vTTz/VGqfvxPgcE+M4A8JZtQUFBfjyyy/x97//HV9++SWfVOsYp+/EeH2rF1IqKipCbm6u4N/a4gghXeepTqyVlZXx+6X98MMPWLhwIRYvXox//etfAMDv4WRrayv4c7a2toL9nTpau3YtLC0t+X+6a68Bbg8HZ2dnree54yzt9VBRUQEAkMlkWs9zx7k4Voix32K8vq9duwagfYNgbUvlFi9eLIhjAXfNfvDBB1r7zM0eZuna5voybdo0ree5GU4s9VmsampqALTPXNO2pP3OnTuCOBaI8edVZWUlAGDu3Llan2NBQUGCOBaI8TkmxnEGHn0MWRprMV7f9fX1nRpHCPljnuriBW1tbXjppZf4b5U8PT1x9uxZJCYmYvbs2U/83125ciWWL1/Ov6+tre2W5Bo3zby8vBzu7u4a58vLywVxLOCmHsvlcn7KvTpuZiFrU5TF2G8xXt9OTk4oLCzE7du3kZaWprFUjpup5uTkpOOWdh7umlWpVFr7nJ2dLYhjgYODA8rLy7Fr1y58/PHHGuczMjL4OKLfLC0t0dTUBDMzM8GSdnd3d6xZswY+Pj5oampiZvkUIM6fV7a2trh9+zaKi4u1Psc++ugjPo4VYnyOiXGcAcDe3p7/nWv06NEa1bu5okNc8QYWiPH6Njc3R1VVFQDwS3056u9ZWfpKyNPuqZ6xZm9vjyFDhgiODR48GFevXgXQXmkQ0PymqbKykj+njYmJCSwsLAT/dAcPDw/Y2dkhLS0NbW1tgnNtbW1IS0uDvb09PDw8uqU93cHPzw9SqRSpqalobW0VnGttbcWWLVsglUr5vSBYIcZ+i/H6XrBgAQDwlfTUl8oplUrs3r1bEMcC9WtbpVIJ+qxSqZi8tleuXAkAyMnJ0SiM09TUhIMHDwriiP5atGgRgPa9BDt+y19fX8+PPxfHAjH+vIqNjQXQvkyuublZ8Bxrbm7GiRMnBHEsEONzTIzjDAATJ07kX5eXl2PPnj3Yv38/9uzZwyfcOsbpOzFe3xMmTOBfDx06VDDDeujQoVrjCCFd56lOrHl5eeH8+fOCYxcuXMCAAQMAtC8ts7Ozw6FDh/jztbW1yM/Pf+CSBl2SSqVYtGgR5HI5IiIiBHs9REREQC6XY+HChUztXWNsbAx/f39UVVXB398fWVlZuHPnDrKysgTHWdkQmSPGfovx+jYzM4OXlxdaWlowceJEJCUl4bfffkNSUhImTpyIlpYWeHl5MbOJPyDOa9vc3Bxubm5QqVSYMGECYmNjceHCBcTGxvIbIru5udG3wgxQTyxNnjwZs2fPRm5uLmbPno3JkydrjdN3YrynLS0t4ejoCADw8fHBBx98gOLiYnzwwQfw8fEBADg6OjI1M1H9OTZ+/HiEhYVh+/btCAsLw/jx45l8jnUc5wULFuCrr77CggULmB1nACgtLeVf37p1S3BO/b16nL4T48/pK1eu8K9PnjyJiIgIJCUlISIiAidPntQaRwjpOk91VdATJ05g7NixiI6OxrRp01BQUIB58+Zh8+bNCAwMBAB8/vnn+Oyzz/Cvf/0Lzs7OiIyMRHFxMc6dO6exeeWDdFdVUE5ubi4SEhIE+8DZ29tj4cKF8Pb27vK/XxcSExP5WT0cqVQKf39/5spfqxNjv8V4fYeHhyMvL0/juJeXF3PfhHPEeG2HhIRo/SDi5uaGxMREHbSIdLaioiIsW7YMZmZmaGxs1DhvamqKpqYmbNiwAZ6enjpoYdcR4z0dGBiI69evaxx3dHREWlqaDlrU9cTY5ylTpmjd39XGxgbffvutDlrUtZKTkx9pLAMDAzFv3rxuaFH3EdPP6bCwMJw8eRISiQTaPs5zx1988UXExcXpoIVdT4wVMsXYZ0A/qoI+1XusjRw5Et999x1WrlyJmJgYODs744svvuCTagDw4YcfoqGhAfPnz0d1dTVefvll/Pvf/37kpJoueHt7w8vLS2OvB5Zm8nQUEhKCoKAgZGZmoqKiAg4ODvDz82PqG3BtxNhvMV7fsbGxqK+vx9q1a/lxXrlyJVPfjHYUEhKC2bNnIykpCdeuXYOTkxMWLFjA1Oy8jhITE0U3zmLDLWl3cXFBaGgoFixYgMbGRpiZmSEpKQnx8fEoLy9nakk7R4z3dFpaGu7du4fly5fj7t276N27N9avX8/UXqDqcnNzUVFRgZEjR+Lu3buora2FhYUFevfujcLCQuTm5jL3BVhubi6qqqrw0ksv4dq1a6ivr4e5uTmcnJxw8uRJJvvcq1cv/rWZmRkkEgkUCgWMjY2hUqn4Lw3U41iRmJiImpoahIeHo7KyEra2toiNjWVuViIADBo0CCdPnoRKpcKwYcPwyy+/oLW1FYaGhhg8eDDOnDnDxxFCut5TPWOtu3T3jDVCCFu0zdKzs7PDokWLmPuFnSPGPhNxyM3NxapVqx54PiYmhslrXIz3tJj6rFQqERgYCEtLS1RXVwv2J7a1tYWVlRVqa2uxfft2Zr4IE2OfASApKQk7d+58aNy7777L1B6wgLju6RMnTuCDDz54aNw//vEPjBw5shta1P3EOHtLjH0G9GPG2lO9xxohhDztcnNzERUVBRcXF8HGsS4uLoiKikJubq6um9jpxNhnsVMqlSgqKsKhQ4dQVFQkWC7ImnPnzgEAXxGUw73nzrNEjPe02PpcXFyMmzdv4vz583juuecEfX7uuedw/vx53LhxA8XFxbpuaqcRY5+B9g+gnRmnL8R2T3f8GfVH4wghfwzdaYQQ8oSUSiUSEhIgk8mwZs0auLu7o0ePHnB3d8eaNWsgk8mwadMmppIQYuyz2OXm5iIwMBDLli3D6tWrsWzZMgQGBjL3IQUAFAoFMjIyYG1tjQMHDmDDhg2IjIzEhg0bcODAAVhbWyMjIwMKhULXTe00YrynxdjnO3fuAABGjx6ttc+jR48WxLFAjH0GACMjI/51x2XNvXv31hqn78R4T6sXojA0FO7upP6+YwELQkjXoMQaIYQ8Ie7b8MDAQLS2tiIjIwNffvklMjIy0NraisDAQOa+DRdjn8VMbDMAMjMzoVQqERwcDBMTE3h6euK1116Dp6cnTExMEBQUBKVSiczMTF03tdOo39MqlUowM1GlUjF5T4uxz9XV1QCAP/3pT1pnY7788suCOBao91nbOLPYZwCCZZD19fWCc3V1dVrj9J36Pa3t+mbxnj569CiA9r1B+/TpIzjXt29ffi9QLo4Q0rWe6uIFhBDyNOOqjB0+fBiLFy8WfBOamJiIt956SxDHAjH2Waw6zgDgPqxwMwAiIiKwadMmeHl5MbM/UUVFBQBAJpNpPc8d5+JYwN2rFRUVWL16tcbeRMHBwYI4Foixz1ZWVgCAn376CT4+PoLkQ1tbG//hm4tjAdeXzMxMbNu2TWOPNW6/HJb63FHH2bUszbZVx92rzs7OWs9zx1m6p5ubmwG0V2/etm0bzp49yxcNGzp0KD788ENBHCGka9GMNUIIeULcEos9e/bAwsICK1aswJ49e7BixQpYWFhgz549gjgWiLHPYiXGGQAODg4AALlcrvU8d5yLYwF3r8bGxmqdmRgbGyuIY4EY+8zNaCkoKEBERARKSkpw//59lJSUICIiAgUFBYI4FnB9uXjxIhQKBcLCwrB7926EhYVBoVDg4sWLgjhWODo6dmqcPuDu1fLycq3nueMs3dNOTk4AgKKiIkRFRcHY2BgymQzGxsaIiopCUVGRII4Q0rVoxhohpNMplUoUFxfz35x5eHgwM6NFnZubG4D2fUp27NiB0tJSnD59Go6OjtixYwcmT56MlpYWPo4F6n3+5ptvYGxsDADw9fXFG2+8gYkTJzLXZ7FSnwGg7Z5mcQaAn58fEhMTkZqaildeeQWpqam4du0anJycEBwcjC1btkAqlcLPz0/XTe007u7ukEqlsLCwQExMDL83j7u7O2JiYuDv74/a2lq4u7vruKWdR73PixcvxpIlS1BTUwNLS0t8+eWX+OWXX5jrs4eHB+zs7GBpaYmysjKEhoby5+zt7eHq6ora2lp++RgLuHE2NTWFoaEh4uLi+HP9+vVDz5490dTUxNQ4A8CECROQl5f3SHGs4K7vtLQ0wQxroH1GZlpaGuzt7Zm6vhcsWIC9e/dCKpXi4sWLgnu6X79+kEqlUCqVzFV+JeRpRYk1QkinElOp8/379wMAWlpa8NZbbwmm25uYmKClpYWP8/f310kbO5t6nz/55BMEBgbC2dkZ5eXlSEtLY7LPYsV9s//dd98hKytL45729fUVxLHA2NgY/v7+SE9Px6RJk/jjhYWF2Lt3LwAgICCATyizoKSkBEqlEtXV1Vi1apXGPV1dXQ2VSoWSkhJ4enrqurmdgutzVVUVAgIC+ONNTU2C9yz1WSqVYtGiRYiKisKYMWMwffp0mJiYoLm5GQUFBTh+/Diio6OZ+hKMG+eGhgY0NDQIzqlv6M7SOAPA+fPnHzmO22dO36lf3xERERrPMblcrnfXd1NTE65evfq7McOHD8fPP/+Me/fuYeTIkRgwYACuXLmCU6dOQalUYvjw4fjtt99+97/Rv39/mJqadmbTCRElSqwRQjoNt9G5TCZDZGSk4JeaqKgoREdHM5Vce9R9lljaj4nrywcffIBt27ZpzHpYsWIF1q1bx1SfxcrDwwNWVlZITk7WuKe3b9+OlJQUWFtbMzUDAMBDP4Q87Ly+4WYcfvzxx0hNTdW4pz/++GPExsYyNTPxUfvCUp8BwNvbG9HR0UhISBAsd7a3t2fu5zMg3nEWK/Xru+NzTB+v76tXr2L+/PmPFKtUKnHixAmcOHFCcPznn39+6H9j8+bNcHV1feJ2EkLaUWKNENIpxLjRuZ2dHQDgueeeQ2JiosbGsQsWLEBZWRkfxwJubymVSoW0tDSN5YHZ2dmCOMI2lUql6yZ0qsbGRuTl5cHIyAjfffcdDhw4gIqKCjg4OGDChAl4++23kZeXh8bGRpiZmem6uZ2Cm3Ho4OCg9Z4uLS0VxLGAW+4KtC+ZUp+9pP5ePY4V3t7e8PLyEsV2DeozSzMzM1FWVsb32cXFhV/SzdIMVACCrRjS09OxZs0aVFZWwtbWFhEREfysTBa3bGDp+u7fvz82b978SLEKhQJbtmzBqVOn8MILLyAoKOiRr+v+/fv/kWYSQv5/7P3GQAjRCW6j88jIyAdudB4aGori4mJmlly4uLgAaF9SIpFIBP1qbW3F7du3BXEsUN+Davz48Rp9ZnEPKrEqLi5GdXU15s2bh6ysLI0ZAPPmzUNycjJT93RSUhIAwN/fH+bm5hrLmadOnYqdO3ciKSkJS5cu1UELO1/HvYnUx5LVvYkSEhL41zU1NYJz6u8TEhLwyiuvdFu7uotUKmXmnv09qampAABzc3P06tVL49ru2bMnGhoakJqaij/96U+6aman+/777/nXs2fP5repuH37NmbPni2I8/Ly6vb2PYlHWRaprmfPnujZsycA4NKlS4/8556mZZGmpqaPNZMsJCQE8+fPR0hICM1AI92usrJS4+dpZ7py5Yrg313B0tIStra2T/znKbFGCOkUYix1XltbCwCoq6uDv78/goKCIJPJIJfLsWXLFtTV1QniWKC+B5W2PnN7FrE2A0CMuHv17bffRkBAgMYMgObmZiQnJzN1T1+7dg0A4OPjo/W8j48Pdu7cycexgMW9iR6murqaf21mZoa//vWv/HMsJSWFT0SoxxH9c/fuXQBAfX291mub23eNi2PFjRs3+Nfcvqfa3qvHPe0eZ1nkH0HLIgl5fJWVlZg56z20KJofHvwHcVW7u4KRsQm2b/v6iZNrlFgjhHQK9VLn2ipssVjqnOvL66+/jsOHDwsqjhkYGOD111/HwYMHmeoz0P6tKADs2rVLo88BAQH8eaLfOt7THWe4sHhPOzk5obCwENnZ2Vo/xHFLnZ2cnLq7aV2Ktb2JHqZHjx5obm6GVCqFiYkJ1q1bx5+zs7Pjq+n16NFDh60kf1Tv3r1RV1cHR0dHrZVQHRwcUFFRgd69e+uwlZ3P3t4e5eXl6NWrF8zMzARLnfv27Yv79++jrq4O9vb2Omzl43mcZZFA+6yW2NhYhIeHY8CAAY/19xBCHk9NTQ1aFM1odHkFbaaWum7OEzFoqgHKfkRNTQ0l1gghuiXGUudcn3/77Tf07dsXlZWV/Lm+ffvit99+Y67PnCFDhmjt85AhQ3TYKtKZxHhPL1iwAHv37kVGRgbmzJkjmHmpUCiwe/duPo5FHffMa2tr01FLutZrr72G3bt3Q6lUIjExEZcvX+ZnYz777LN4++23+Tjy9HrY8sDFixdj+fLluH79OtatW4cbN26gpqYGlpaWfLEdLu7ChQu/+3c9TUsEH2bSpEk4duwY6urqkJ6ejgsXLvDXt6urKyZOnMjH6YvHXRbJGTBgAM1AI6SbtJlaoq1nH103Q2cosUYI6RRiXE4klUrx6quvIj09HdbW1lixYgW/nCg1NRXnz59HQEAAU30GhNVfV61axXz1V7ES4z1tZmYGLy8v5OXlYeLEiZg6dSp8fHyQnZ2N3bt3o6WlBV5eXswULuCI7Z5WH7+3334bAwYMQHBwML744gvB/i2sjTNrHmd5IJdE02b58uUP/fNPyxLBR9lrTH1PsYkTJ2L06NF4/fXXkZ6ejvz8fEHc783W06dkIiGE6JpExVpJrydQW1sLS0tL1NTUwMLCQtfNIUSv5ebmIiEhATdv3uSP2dvbY+HChUx9MAPaK6EGBgbC0tIS1dXVgtlbdnZ2sLS0RG1tLbZv385M8oHrs4uLi9ZZTBERESgvL2eqz2InpnuaEx4ejry8PI3jXl5eXbq/hy6I8Z4+efIkwsLCYGBgoHVWHnc8Li4OL774og5aSB7Fo25ov2LFCq17nVpYWAiWAf+epyXJdOHChW7Zawx4epKJT4L7/6TPfXhc1Gfqs65wbWoYMllvZ6wZNNxBz3P7NP6/Pk6eiGasEUI6lbe3N8aMGYPMzExUVFTAwcEBfn5+TG5mr14J1c3NTWNz99LSUuYqoar3ubW1VWOcWaz+qk6pVGqMMyvJhgfx9vaGl5eXqPodGxuLxsZGJCUl4dq1a3BycsKCBQuYnMEkxnt6xIgRsLKyQnV1NV544QVcvHgRjY2NMDMzw8CBA3Hq1ClYWVlhxIgRum4q+R2Pujxw3759uHfvHt5//33+2v7nP/+pl/tDPspeY21tbQgPD4ejoyOCgoIQHx+PixcvYuDAgQgNDcWWLVtQUVGhkUjX9ncRQgh5NJRYI4R0Km2zW/bs2YNFixYxN7tFvRKqVCrV+NDJYiVUri+HDx/G4sWLoVQq+XOJiYl46623BHEs0XZt29nZMXltd6Tt+madmZkZli5dqutmdDkx3tNSqRTLly/HqlWrcOrUKf54XV0d/3758uVMJ4/FxsbGBp988gnmz5+PTz75RC+TasCjJxOXLFmCqKgo7Nq1C1OmTMHnn3+OKVOmYNeuXThz5gyio6Ph5ubWDS0mhBBxePDXFIQQ8pi4fXpcXFwQHx+P7OxsxMfHw8XFBVFRUcjNzdV1EzuVetVEbVismsj1Zc+ePbCwsMCKFSuwZ88erFixAhYWFtizZ48gjhViu7aJeIj1ngYAiUSiMZva2NgYEolERy0ipHNwlX7Lysrw+eefAwA+//xzlJeXM7dnIiGEPA0osUYI6RRKpRIJCQmQyWRYs2YN3N3d0aNHD7i7u2PNmjWQyWTYtGmTYDaEvlOvmthxnx5WqyZy33AbGRnhm2++ga+vL3r37g1fX1988803MDIyEsSxQIzXNhEPsd/T33//PTZs2IDIyEhs2LAB33//Pd3ThAne3t5IS0tDWFgYACAsLAzbt2+npBohhHQBSqwRQjoFt09PYGAgVCoVioqKcOjQIRQVFUGlUiEwMBA3btxAcXGxrpvaabiqiXK5HBERESgpKcH9+/dRUlKCiIgIyOVyLFy4kKnlRPv37wcAtLS04JNPPhH0+ZNPPkFLS4sgjgXq13bH/WgMDAyYvLaJeIj9njYyMoKnpydee+01eHp6wsjIiO5pwgypVIpBgwYBAAYNGsTU7yOEEPI0oT3WCCGdgtt/p6KiAqtXr9bYhyo4OFgQxwpuuUVCQgJCQ0P54/b29kwut6ioqAAAfPDBB9i2bZtGn1esWIF169bxcSxQ30tPGxb30iPiQfe0JrqnCSGEEPI4KLFGuo0Yq+kB4uk3t/9ObGwsZDIZpk+fDlNTUzQ1NaGgoACxsbGCOJaIqRKqg4MDAEClUuHrr7/W6PMPP/wgiGOB+l562qq/sriXHhEP9Xv6q6++0qiEevDgQUEcC9Tv6YEDB2o8x1i/p8XyewkhhBDSXSixRrqFWKvpianf7u7ukEqlMDU1xaVLlyCXy/lz/fr1Q8+ePdHU1AR3d3cdtrJriKkSqp+fHxITE7Fp0yZ8/fXXuHXrFn8uIyMDDQ0NkEql8PPz02ErOxe3l97GjRtRXV2NyspK/pytrS2srKyY20uPiAd3T/+///f/EBcXB5VKBQAoLCxEZmYmjI2Nmb2nY2NjcfPmTcEemZs2bYKdnR2z97SYfi8hhBBCugvtsUa6nFir6Ymt3yUlJVAqlWhoaEBLSwvCwsKwe/duhIWFoaWlBQ0NDVAqlSgpKdF1UzuV2MbZ2NgYY8aMQUNDA6qqqvDuu+9i27ZtePfdd1FVVYWGhgaMGTOGqdl6UqkUr776Ks6fPw+FQiG4thUKBc6fP49XXnmFZnwQvWRsbIyBAweiubkZADBu3Dhs3rwZ48aNAwA0Nzdj4MCBzN3Tzz33HCoqKiCVSjFjxgxs374dM2bMgFQqRUVFBVxcXJi7p7mfV87OzliyZAn+9re/YcmSJXB2dmby5xUhhBDSXWjGGulSHavpcRt/c9X0IiIisGnTJnh5eTH1C6wY+33nzh0AwMCBA1FXV4e4uDj+nL29PQYOHIiLFy/ycSxQH+fo6GicPXsWcrkcNjY2iI6ORlRUFHPjrFQqcenSJTg4OKCyshI7d+7Ezp07AbR/WHVwcEBZWRmUSiVTfT5y5AgGDRqEmpoajWt70KBB+PHHHzFv3jxm+kzEQ6FQ4OLFizAxMUFLSwtycnKQk5MDoP2eNjQ0xMWLF6FQKJhJrikUChw/fhw9e/aEubk5duzYgR07dgBon71VV1eH48ePM9Vn7ueVq6srysrKBLPKbW1t4erqytzPK0IIIaS7UGKNdCmu8lZkZOQDq+mFhoaiuLgYnp6eOmpl5xNjv6urqwG0LyuaMGGCxv4t2dnZiIuL4+NYwI3zpEmTMGvWLI2lNb6+vjh27BhT48z1ed68ecjMzBQsBe3duzd8fHyQkpLCZJ8jIyO17rFWWlrK3P1MxLMPVWZmJpRKJZYtW4Y33nhD676JcXFxyMzMhL+/v66b2ym4Pr/22mvIz88XnFOpVHjttdewb98+pvrMPcdu3ryJsWPHYtWqVXB2dkZ5eTnS0tJw7NgxPo6eY4QQQsjjocQa6VJirbwlxn5bWVkBAH766Sf4+PgIfjFva2vD0aNHBXEs4MYvOTmZL9hgYmKC5uZmFBQUICUlRRDHAvU+jx07ll9WxH04Y7nPzs7OkEqlGh86WbyfxS43NxdffPGFYExtbGywdOlS5vah4qp9ymQyGBsbaySSZDKZII4FXF/27duH0aNHY9CgQaivr4e5uTmam5uxb98+QRwLuNnio0eP1jqTfuXKlcjPz2dqVjkhhBDSXWiPNdKl1CtvacNq5S0x9rtPnz4AgIKCAkRERKCkpAT3799HSUkJIiIiUFBQIIhjAZck7N+/P8rKyvDll1/i73//O7788kuUlZWhf//+gjgWcH0ZNmwYoqOjoVAoIJfLoVAoEB0djWHDhgniWKB+PyuVShQVFeHQoUMoKiqCUqlk8n4Ws9zcXKxatUojUXrv3j2sWrWKuX2ouGqf6ksD1XHHWaoKamdnBwDo0aMH8vPzkZubi1OnTiE3Nxf5+fno0aOHII4F3GzxP/3pT1pn0r/88suCOEIIIYQ8OpqxRroUV3krLS1N8A0p0D6LKS0tjcnKW2LsN9dnS0tLlJWVITQ0lD9nb28PV1dX1NbWMtVnztWrVzX24amqqoJCodBRi7peTU2N1uWvrOxHpE69KmhNTY1Gny0tLZm7n8VKqVQiKiqKfz9kyBAEBwcjNTUV586dAwBERUXh4MGDzCwL5aqCpqamYvz48TA0/N+vhq2trdiyZQtzVUFdXFwAAPfv34ehoSGmTZsGHx8fZGdnY9euXbh//74gjgUdZ5V3/L2ExVnlhBBCSHehxBrpUlKpFIsWLUJUVBQiIiIQGBgoWDYml8sRHR3NzAcUjhj7rd7nMWPGaCyLPH78OHN9Vp/R0traKjin/p6lJYLcbIarV6/C2toa06ZNg4ODAyoqKpCTk8MnnVia9cBVBU1PT4e1tTVWrFgBmUwGuVyO1NRUnD9/HgEBAUxd22J17NgxqFQqAMD+/fthbm4OAHjxxRdRX18PX19fqFQqHDt2DH/605902dROwy3/TE9Ph7+/P8aNGwd7e3vcuHEDOTk5qKqqQkBAAFNJc/Xljubm5rC3t4epqSns7e1hbm7OP79YWhapPqs8PDwco0aNEvyMZnFWOSGEENJdKLFGupy3tzeio6ORkJCgMYspOjqauf1qOGLst3qf1ZcVsdpn9YRZW1ub4Jz6e5YSa9xshj59+uDevXvYtWsXf87AwAB9+vTBnTt3mJr1oF4VtKqqCuvWrePP2draUlVQhnz55ZcAgEGDBvFJNY65uTlcXV1x4cIFfPnll8wk1gAgJCQEv/32G/Ly8gT3NAB4eXkhJCRERy3rGtzsrAEDBuDatWuCSr9SqRT9+/fH1atXcfToUUyYMEFXzexU3MxbAwMDFBQUCH5GS6VS2NvbQ6VS0cxbQggh5AlQYo10C29vb3h5eYmiwpo6MfZbTH2uqanhX1tYWOCFF16AqakpmpqacOrUKdTW1mrEseLOnTsYM2YMRo8ezc96yM/Px/Hjx3XdtE6nXv01KytLcE4ikcDb2xvJyclUTY8B3BLAN954Q2tV0Ndffx0XLlzg41iRm5uLY8eO8fez+kb+x44dQ25uLlNfjDQ3NwNo3xcxKSkJWVlZfCXUSZMmYeXKlbh69Sofx4KOM2/HjRsnmG1cUVFBM28JIYSQJ0SJNdJttFXTEwOx9lsMKisr+dfNzc04cuQI/97ExERrnL5Tn30nkUjg6urKL3PmlhJ1jNN3XF9SUlL4Zc5cApXV6q9i1a9fP1y+fBmbN2/Grl27BPeura0tv0SwX79+Omph51MqlUhISICrqyuuXLmisYegq6srNm3aBC8vL2aSLk5OTigsLERRURFiYmIQGBiIiRMnory8HDExMSgqKuLjWKE+87a6ulowM9HOzo5m3hJCCCF/ACXWCCGdKjc3FwkJCRofzhYtWsTUjAegvUABh9uX6WFx+o5LLEyePBkFBQUay5y5WV0s7bHGLWt95plnUFZWJlhCZWtri2eeeQZXr15lavmrWK1fvx5TpkxBc3Mzbt26JTh369Yt/j5fv369LprXJbgZmZWVlZDJZIiMjNTYE1SlUjE1I3PBggXYu3cvpFIpfv31V8FzzNbWFlKpFEqlEgsWLNBhKzsXN86RkZFwc3PTmI1ZWlqK0NBQpsaZEEII6S6UWCOEdJrc3FxERUVp/XAWFRXF3D5rZmZm/GtPT0+MGTOGXxZ5/Phx5Ofna8TpOy55VFlZiW3btuHs2bP8h7OhQ4ciIiJCEMeSq1evQiaTYdWqVfy1vX37dkGijeg3S0tL/nXHZLn6e/U4fcdt0D9q1ChBFWt3d3esWbMGK1euRH5+PlMb+ZuZmcHLywt5eXmoqqrCn//8ZwwaNAjnz5/HTz/9BKVSCS8vL6ae3dyMWmdnZ60z6Z2dnQVxhBBCCHl0lFgjhHQKbjmRTCbT+uEsIiKCueVE6tXTioqK+EQaAEEFPZaqrKlXllu1ahVfWe7y5cvYtWsXk5XlHvWDJn0g1X+nT58GABgaGmpU+lU/fvr0abz44ovd3Lquwc0u/dOf/sQ/tzkGBgZ4+eWXkZ+fr1ezUJuamnD16tXfjZk9ezbq6+vx888/4/Dhwzh8+DB/bvjw4Zg9ezYuXLjwu/+N/v37w9TUtFPa3NVsbGwAAOXl5XB3d9c4X15eLogjhBBCyKOjxJqOaNsUmZVkAxESy1irLzPR9uEsMDCQuWUmQ4YMQWZmJgBAoVAIzqm/HzJkSLe2qyupV5bLz88XRWW5hy1/nTx5Mvbt26dXiQeiHZdY+/vf/45nn30Wy5cvx927d9G7d2+sX78e5eXlCAsLYyqxxs0u/emnn+Dj4yN4fre1tfEVNPVpFurVq1cxf/78J/7zP//88yP9+c2bN8PV1fWJ/57uxD2709LSBF9+Ae3jnJaWBnt7e6ae3YQQQkh3ocSaDohpDyqxE9NYqy8z0YbFZSaPuoE5Sxudq1eWs7KywhtvvMFXlvvPf/7DZGU5MS9/FSuVSgUbGxts3bpVcJyb1cMSbnZpfn4+IiIiEBgYKFjGz83E1adZqP3798fmzZsfOf7KlSuIjY1FeHg4BgwY8Fh/j76QSqVYtGgRoqKitI6zXC5HdHQ0U89uQgghpLtQYq2biW0PKjET21iLcZmJu7s7pFIpDAwM0NLSonHeyMgIbW1tWv9/6Cv1ynI1NTWCynL29vawtbVlrrKc+vLXqKgoBAYGQiaToby8HFFRUUwuf+1IoVAgMzMTFRUVcHBwgJ+fn2C5MytGjBiBbdu2YevWrfD09NSY1cMl2kaMGKGbBnYBbiaTpaUlLl26JJiRyVWLrK2t1auZTKampk80k2zAgAF6MwPtSXh7eyM6OhoJCQkaM29Z+52EEEII6U6UWOtGYtyDSqzEONZiXGZSUlICpVIJpVIJa2trDB8+HGZmZmhsbMTPP//MVwMtKSlhZvmr+pLfgQMHaiRbLl68yNySX/XEQ1lZmcYHUldXV71LPDyOxMREZGRkQKlUCo75+/sjJCREhy3rfCNGjICVlRXOnDmD8PBwzJw5U1Co4syZM7C2tmYqsaY+k2nMmDEICAjgi7AUFBTg+PHjNJOJMR0Lc7S1temoJYQQQggbKLHWjcS4B5VYiXGsxbjMhKuSN3DgQNTV1eHIkSP8OXt7ewwcOBAXL15kqpoet5S3oqICq1evFixz3rNnD4KDgwVxLOiYeJg+fbpoEg+JiYlIT0+HtbU1goODIZPJIJfLkZqaivT0dABgKrkmlUqxfPlyREVF4dSpU4I9BE1MTCCRSLBs2TLmxlp9JpN6n2kmE1vUZ9KrVzdmdSY9IYQQ0l0osdaNxLgHlViJdazFtsyE26zez88PEyZM0ChSkZ2djbi4OKY2teeW8n766adak0yffvqpII4VYkw8KBQKZGRkwNraGhkZGTA0bP+VwdfXF+PHj4e/vz8yMjIQFBTE1LJQ9bFWTxzb2Nhg4cKFTI41h2YysUt9Jn10dDTOnj0LuVwOGxsbREdHIyoqirmZ9IQQQkh3ocRaNxLjHlRiJeax9vb2hpeXlygqoXaspqc++1Bfq+k9DLevnKmpKcrLywVJJjs7O/To0QNNTU1M7SvHEdO1DQCZmZlQKpUIDg7mk2ocQ0NDBAUFIS4uDpmZmfD399dRK7uG2MaaZjKxj5tJP2nSJMyaNUujqJKvry+OHTvG1Ex6QgghpLtQYq0biXEPKnVKpVI0H1LEPtZSqVQUv5izWE3vYbh95RoaGmBsbIwVK1YIlgc2NDTwcSxeA2K5toH25b4AIJPJtJ7njnNxrBHLWItxT1Ax4mbIJycnY+zYsRpFlVJSUgRxhBBCCHl0Bg8PeXSnTp2Cr69vZ/4nmcLt0yOXyxEREYGSkhLcv38fJSUliIiIgFwux8KFC5n8xTU3NxeBgYFYtmwZVq9ejWXLliEwMBC5ubm6blqXEPNYiwmXQB00aBBfTc/HxwehoaEoKyvDoEGDmEugqu8rZ2xsjHXr1uGdd97BunXrYGJigoEDBwriiP5ycHAAAMGsRHXccS6O6CduJlNgYOAD9wS9ceMGiouLddRC0hm4mdPDhg3DmjVr4O7ujh49evAJ1GHDhgniCCGEEPLoHnvG2g8//ICcnBwYGxtj7ty5cHFxQWlpKT766CNkZWXhzTff7Ip2MkNse1ABwiUmHb8hZXmJiRjHWmzEWE1PjPvKiZWfnx8SExORmpqK8ePHC5aDtra2YsuWLZBKpfDz89NhK8kfJdY9QQkhhBBCOstjJdZSU1Mxb9482NjYoKqqCikpKVi/fj3++te/Yvr06Th79iwGDx7cVW1lhpj2bhH7EhMxjbVYiW1TezHuKydWxsbG8Pf3R3p6Ovz9/REUFMQv+92yZQuqqqoQEBDAVOECMRLznqBiwn3ZcfbsWa1bF5w9e1YQRwghhJBH91iJtS+//BKff/45PvjgA+zZswf+/v5ISEjAmTNn4OTk1FVtZJJY9m7hlphERkY+cIlJaGgo05vlimWsxUxMCVQx7isnZiEhIQCAjIwMxMXF8celUikCAgL480R/iX1PULHgEqNz585FVlaWxkz6uXPnIjk5mRKohBBCyBN4rMTapUuX+MpfU6ZMgaGhIf7xj39QUo08EC0xIWIhlgQq9yHc0tKS31eOw+03V1tbSx/CGRISEoKgoCBkZmaioqICDg4O8PPzo5lqjFBf0q4tWS6Xy5lb0i5G3LO7pKQE27Ztw9mzZ/kvgoYOHYqoqChKoBJCCCFP6LESa42NjejRowcAQCKRwMTEBPb29l3SMNadOnUKy5cv59+vX78eL7zwgg5b1DXUl5iYmJhg3rx5UKlUkEgkSE5ORnNzsyCORRUVFZg/fz4aGxthZmaGzZs3M7/Z96+//qox1s8//7yum9WlxNJn9Q/hw4YNQ2VlJX+uX79+OHPmDNMfwktLSwWztBITE+Hm5qbDFnWPU6dOIT4+nn//zDPPYMyYMTpsUdc7fvw4PvroI/79Z599xmyfuSXtn332GY4dO8Yf79GjB5NL2sVI/dnt7+8vWPJpZWWFmpoapp/dhBBCSFd67OIFKSkpMDc3B9C+efHWrVs1lvwsXry4c1rHqFdffVXjGJdkO3LkSPc2potx35Cqz2oBAJVKhblz5wIA09+Qjhs3Di0tLfz7+vp6zJgxA0ZGRsjJydFhy7pOx+tbfaxZu745Yuuzt7c3VCqVRpVA7j2rH8K1Pbu5JBuL48zR1m8u4cRqv8XY51WrVmkcu3//PlatWsVsn8WGe3Z33EeNe8/qs5sQQgjpagYPD/mf/v37Izk5GRs2bMCGDRtgZ2eHbdu28e83bNiAL774oouayoaOv6y/8sorv3te30mlUty8eZN/b2BggICAAMEeLjdu3GDyG1L1pJqNjQ1WrlzJz8xraWnBuHHjdNm8LqF+/UqlUsyaNUswtqxd3wD12cDAAC+//LLgnma9zxKJBO+88w4kEonW8yzp2K9Ro0b97nkWUJ8BFxeX3z1P9FPHcTQxMfnd84QQQgh5NI81Y+3y5ctd1AxxOHXqFP86ISEBQ4YM4d+fO3cOixYt4uNYWRb666+/8q/79u2L27dvIz09XfCei2Np2VxFRQWfVPv222/5hNqbb76Je/fuYcqUKWhpaeH3K2KB+lhv376d33sxODgY165dw8yZM/k4Vsaa+rxdsMcmq30uLS3lX2/duhXPPvssAOCvf/0rLl++jDlz5vBxLC0LPX78OP/6iy++wIgRI/j3p0+fxtKlS/k4VpZIirHP//73v/nXn3zyiSC5cuTIEXzyySd83Pjx47u5daSzbN26lX8dFhaGSZMm8e+zsrL44iRbt27ln2mEEEIIeTSPNWON/DHqe6qpJ9U6vleP03fz5s0D0D6TJz09HRs2bEBkZCQ2bNiA9PR0fmYPF8eK+fPnA2ifqdZx/zj1Y1wcC9THumNBEycnJybHmvosjj5zyz0lEgmfVOM8++yz/Mw11ipkqu8vpp5g6vhePU7fibHPn332Gf+644wl9ffqcUT/qCfW1JNqHd+rxxFCCCHk0TxWYs3Hxwc1NTX8+88++0ywT8Pdu3c1EkZEU8fln5yxY8d2c0u6nkqlAgDMmDGDr5r42muvwdPTE1KplK8yy8WxorGxEQCwYMECreeDgoIEcSxQH2ttWBxr6rMmFvvMmTJlitbjHT+ksqbjUkgOy1Vwxdjnjss/Oc8880w3t4R0JUtLS63Huf2TCSGEEPL4Hiux9sMPP/BVHAHg008/xb179/j3ra2tOH/+fOe1jlE//vij1uPqlbhYwc3k2LFjh9bzGRkZgjhWmJmZAQCSkpK0nt+yZYsgjgViHGvqsyYW+8z59ttvtR7Pysrq5pZ0r4KCAq3Hi4qKurkl3UeMfS4rK9N6/LfffuvmlpCupP4Fubr6+vpubgkhhBDCjsdKrHWcgcDijISutH79ev71uXPnBOfU36vH6bvk5GQAgFKpxLVr1wTnrl27BqVSKYhjxebNmwEA9+7dEySfOx7j4lggxrGmPoujz4mJiQDaf+Z13Gv08uXL/M9CLo4V6kv/Tp48iaKiIhw6dAhFRUU4efKk1jh9p96X06dPC86pv2epz+rLWjtW/1R/z9LyVzFS3zet45cB6u9pfzVCCCHk8T1W8QLyx6gXJOAKFYwdO1ZjphorhQsACDYvnzlzJr/8MyMjg/8A3jGOBQ4ODjAyMkJLSwumTJkCGxsbBAUFYcuWLXxSzcjIiJnCBYDmWBsYGGD06NHIz89HW1ub1jh9p63PI0eOxIkTJ0TTZzHc0+oFCebMmQOJRIJJkyYhKytL8AUTS4ULAAg25w8LC3ukOH2n3heuUIGnp6fGTDWW+jx+/Hg+UcgVKnjmmWc0ZqpR4QL9NmfOHH7/tLi4OMTFxcHc3Fxjphol1gghhJDH91gz1iQSicbyHhaX+3Sljt8Gd0yqdTzPAvU+KZVKpKenCz6As9hnAMjJyYGRkRGA9llq69atEyTVcnJydNm8LqE+lm1tbZDL5YIEE4tj3bHPHROJrPdZLPe0ep9UKhX27dsnSKqx2GcAiImJ+UPn9VHHseyYVGNxrDv2qWNSjcU+i1HHceyYVKNxJoQQQp7MYy8FnTNnDqZMmYIpU6agqakJISEh/HtuQ3by+44cOaKx3HP9+vVM/0Jz5MgRpKSk8IlYiUSClJQUpvsMtCfXduzYAXNzc0ilUpibm2PHjh1MJtUAIDc3FxKJBMOHDxccHz58OCQSCXJzc3XUsq7D9Xno0KGC40OHDmW2z4A47+kjR45oLPdMTExkts9KpRIJCQkYO3Ys1q5dKzi3du1ajB07Fps2bRIkVVlx5MgRjeWen332GbNjDbT3ueNyz48++ojpPovRkSNHNGalzZkzh8aZEEII+QMeaynoe++9J5ihNnPmTK0x5OFeeOEF0f0S8/zzz+O///2vrpvR7RwcHLB//35dN6PLcR/CZTIZ1qxZAwOD/+Xt29raEBERgU2bNsHLywtSqVSHLe08YuyzOjHe025ubqJ5dhcXF+PmzZuIjIyEu7u7Rr8tLCwQGhqK4uJiJqtljhkzRjRjzRk/fjwt+RSBOXPm0JJPQgghpBM9VmKN25uBEEI6Uv8Qrp5gAgADAwMEBgYy9yFcjH0m4sEtXXd2dtZ6njvesUALIYQQQgghYvJYibVHWeopkUiQmpr6xA0ihOgnMX4IF2OfiXjY2NgAAMrLy+Hu7q5xvry8XBDHGqVSieLiYty7dw82Njbw8PBgcuapOjH2mRBCCCHkj3rsGWsDBgyAp6enYNNmQsiDieWDihg/hIuxz2InlvsZADw8PGBnZ4e0tDStS53T0tJgb28PDw8PHbaya+Tm5iIhIQE3b97kj9nZ2WHRokXw9vbWYcu6jhj7TAghhBDSGR4rsbZw4ULs3LkT5eXl+Mtf/oKZM2fSB0ZCfoeYPqiI8UO4ep+jo6Nx9uxZPuEydOhQJvssZmK6nwFAKpVi0aJFiIqKQkREBAIDA+Hs7Izy8nKkpaVBLpcjOjqaucRibm4uoqKiMGbMGEyfPh0mJiZobm5GQUEBoqKiEB0dzdx4c32WyWSIjIwUjDOrfSaEEEII6SyPlViLj4/H+vXr8e2332LLli1YuXIlJk6ciODgYLzxxhuCwgaEiJ3YPqiI8UM41+dVq1bB19cXzc3N/Dnuw3hMTAxTfVYnptlbYrufOd7e3oiOjkZCQgJCQ0P54/b29kz2mStI4urqivLycsjlcv6cnZ0dXF1dmStI8qAiLO7u7lizZg3zRVgIIYQQQv6ox0qsAe0fFt999128++67uHLlCrZu3YpFixahtbUVJSUlMDc374p2EqJXxPpBRWwfwjkP+lKB5S8bxDR7S6z3M8fb2xteXl6iSKJyBUkqKyu1JlHlcjlUKhVTBUmoCAshhBBCyB9j8PCQ3/nDBgaQSCRQqVRQKpWd1SZRUCqVKCoqwqFDh1BUVET//xjDfVAJDAx84AeVGzduoLi4WEct7Fod92Bsa2vTUUu6lnrCZf/+/diwYQMiIyOxYcMG7N+/HzKZDJs2bWLu/uZmb7m4uCA+Ph7Z2dmIj4+Hi4sLoqKikJubq+smdiqx389A++xMT09PvPbaa/D09GQyqQYAd+7cAQCMGjUKa9asgbu7O3r06MEnUUeNGiWIYwEVYSGEEEII+WMeO7HW3NyMnTt3Yty4cXB1dcWZM2fwz3/+E1evXqXZao8oNzcXgYGBWLZsGVavXo1ly5YhMDCQuQ+jYibWDypcwuW5554TJFyee+45SrgwouPsrY6JBxaTiWK9n9WJ5cug6upqAMCf/vQnqFQqQZ9VKhVefvllQRwL1IuwaENFWAghhBBCft9jLQVdtGgR0tPT8cwzzyAoKAg7d+5Enz59uqptTBLrPj1iI8ZqkWJcLsclUioqKrB69WqNZZHBwcGCOBaoLxvjEg/qywNZXDYmxvtZnZiW/VpZWQEAMjMzsX37do0+9+rVSxDHAjEWniGEEEII6UyPlVhLTExE//794eLigh9//BE//vij1rhvv/22UxrHGjEmHsRKjNUixbhPD5dIiY2NhUwmw/Tp02FqaoqmpiYUFBQgNjZWEMcCMSYTxZx4EFuFTO7LwosXL8La2horVqyATCaDXC5Hamoqf72z9KWieuGZlStXwsTEBHV1dejVqxc/1qwVniGEEEII6UyPlVh77733mN6Mu6uJMfEgVuofVLRVi1QoFMx9UBHjcjl3d3dIpVKYmpri0qVLggqC/fr1Q8+ePdHU1KR1lpO+Uk8mmpiYCM5VVVUxmUwUY8VbQJwVMtXvaSMjI6xbt44/Z2try+Q9DbQXqBg0aBDy8/M1zrm5uTGVPCWEEEII6WyPlVjbunVrFzVDHMSYeBC7jpv4P+y4PhPjcrmSkhIolUo0NDTA2NgYYWFh/OyWLVu2oKGhgY9jJVnu7u4OAwMDtLW1wdPTE7NmzeKTTNu2bcPx48dhYGDAZOJBbBVvxVghk7un79+/Dw8PD7z77ruCWXrHjx+HSqVi6p4GgPDwcJSWlmo9V1paivDwcD5pTgghhBBChB4rsUb+GDEmHtQplUoUFxcL9mNiZZZDR9xMj7Fjx2LVqlXIyspCRUUFHBwcMGnSJMTExDA300OMy+W4yoADBw5EXV0d4uLi+HN2dnYYOHAgLl68yFQFwTNnzgiqvF64cAFXrlwRzMpsa2vDmTNn8OKLL+qiiV3G29sbY8aMQWZmJn8/+/n5wdjYWNdN6xLqFTK559jBgwfh4OCAVatWISoqCvn5+Uxd39wXWx9//DGSk5MFs/RsbW3x8ccfIzY2lqkvwBobG5GXlwcAGDlyJPr37w+FQgFjY2NcvXoVJ06cQF5eHhobG2FmZqbj1hJCCCGEPH0osdaNxJh44Ihp82vgfzM9Jk2ahDlz5gj6vWfPHkyaNAnHjh1jaqaHGJfLcZUBBw8erLGESqVSYfDgwbh48SJTFQRPnz4NAHj11Vfx008/4fjx4/w5qVSKV155BT/++CNOnz7NXGJN23Nsz549zD7HuOu2ra0NEydOFFQCTUxM5J9dLF3f3Bdb27dvx61btwTnKisrsX37dkEcCzZt2gQA6NmzJ06ePIkTJ07w5wwMDNCzZ080NDRg06ZNWL58ua6aSQghhBDy1KLEWjcSY+IBEGclVG42Q0pKitZ+p6SkCOJYIbblclxlwH379mHMmDEICAjgixfk5+dj3759gjiWHDlyBGPGjIGjoyM/u+X69esPLGqj78T4HOOu2xMnTsDKygpz587llzqnpKSgsLBQEMcCDw8PGBoa4sqVK5BIJBg3bhymTZuGXbt2IScnB1euXIGhoSFTX4CdP38eANDQ0AArKys8++yzUKlUkEgkuHz5Mp845eIIIYQQQogQJda6mdgSD2KthMp90Bw6dKjWfi9ZsgRnzpxh6gOpuo57yKkvHWSJ+qyVU6dOCWZvqS8PZGl2C5dQMDMzQ1lZmaDP/fr1g5mZGRobG5lKPIj9OQa0b2Df0tKC/Px8tLS0wM3NjR97lp5jjY2NaG1tBdC+BNbPz49f8ltTU4P8/Hy0traisbER5ubmOm5t5+jRowcAQCKRoLq6mp+VypFIJFCpVHwcIYQQQggRosSaDnh7e8PLy0sU+41RJVRxUZ/Vs2rVKlHM6uF0rJjMagVl7j5ubGyEqampRsGGxsZGQRwLxPocKysrAwBYWlryG/dzDAwMYGlpiZqaGpSVlWHkyJG6amanWrt2LYD2BPKVK1c0vgDz8PBAcXEx1q5dy8xm/o6OjigqKoJKpYJUKsX06dPh4+OD7OxsfPPNN/wSYEdHRx23lBBCCCHk6USJNdKlxFoJlVs6c+bMGa3Lfs+cOSOIY4H6rJ7o6GicPXsWcrkcNjY2iI6ORlRUFHOzetSvW09PT4wePZqvIJifn88nIli6vtX7cv/+fUHBBhMTE61x+k79OaatCAurzzFuL7mamhpYW1tj3LhxsLe3x40bN5CTk4OqqipBHAsqKioAAIsXL4alpSXef/991NTUwNLSEhs3bkRVVRXmz5/Px7GooKAAxcXFaGpq0nVTCCGEEEL0AiXWdEBMG/mLtRIq15958+YhKytLY9bD3LlzkZKSwlS/1Qs2zJo1S+P6ZrFgA5cYnTx5siCRBvyvz1lZWUwlUNX7fPz4ccEG71ZWVhg1ahRzfebu0++++w5ZWVka17avr68gjhV2dnYA2qthSiQS7Nq1iz9nb28PW1tbVFZW8nEscHBwQHl5ORYtWgSFQsEfb2pqgr+/P4yMjPg4Vly+fJl/rVQq8euvvz40jhBCCCGE/A8l1rqZ2DbAFmslVK7fJSUl2LZtG86ePcvPcBk6dCiioqKY67cYCzZwe0v98ssvWpd+lpaWCuJYoN7njssiJRIJk3328PCAlZUVkpOTNa7t7du3IyUlBdbW1kzdzwDg4uICoH1m4u7du3Hu3Dn+OTZkyBBMnTpVEMeClStXwtfXl0+qDRkyBMHBwUhNTcW5c+fQ0tLCx7FCfaZpZ8QRQgghhIgNO5vg6IGOG2C7u7ujR48e/AbYMpkMmzZt4vczYQFXCVUulyMiIgIlJSW4f/8+SkpKEBERAblcjoULFzKzNJCj3u+oqCgYGxtDJpPB2NgYUVFRTPa7Y8GGjtf30KFDBXEs6NOnDwDg4sWLaG5uxooVK7Bnzx6sWLECzc3NuHjxoiCOBWLs86PoWLCDBbW1tQCAuro6BAQE4Nq1axg+fDiuXbuGgIAA1NXVCeJYoD5LDWjfV6xXr14a+4t1jNNn9vb2/GtLS0tMmzYNS5YswbRp02Bpaak1jhBCCCGE/A/NWOtG6htgq1QqFBUVCfbpYXUDbLFVQuWItd9i4u7uDqlUClNTUxgbG2PdunX8OTs7O/Ts2RNNTU1al0HrKzH2ubi4GNXV1Q9c2j1v3jwkJycz9+zmlra+/vrr+O9//yvYT08qleK1117DoUOHmFoCu3z5cgDg90rMyclBTk4Of547vnz5cmzdulVHrew6dXV1giW/LH35w7qmpiZcvXq1W/6u/v37w9TUtFv+LkIIIUQfUGKtG3FL4CoqKrB69WqNfXqCg4MFcSwRUyVUdWLqtxgLNpSUlECpVKKhoQEeHh4ICAjgP3gXFBRALpfzcawkXMTYZ+6Z/PbbbyMgIEDjfm5ubkZycjJzz25uSfv9+/fx/fffIysrCxUVFXBwcMCkSZMQExPD3JL2u3fvAgA+/fRTDBo0CGvXruX7vHLlSpw7dw4ffvghH8cC9d9FDAwMMHz4cPTu3Rt3797ln9sd48jT5+rVq5g/f363/F2bN2+Gq6trt/xdhBBCiD6gxFo34r7Vj42NhUwmw/Tp02FqaoqmpiYUFBQgNjZWEEfYIJVKmUkw/B71gg2ZmZmCWT22trZMFmzgEinh4eFISUnhk0pAe7I8PDwcsbGxTCVcxNhn9SIsbm5uGudZLcLCLWmPiorCJ598AkdHR7S0tODmzZv45JNPkJ+fj+joaKa+KOjduzfq6uqQmpqKuLg49O3bF83Nzejbty+kUim++uorPo4VTk5OKCwshKOjI65fv46ioiLBeQcHB1RUVMDJyUlHLSSPon///ti8efMjx1+5cgWxsbEIDw/HgAEDHvvvIoQQQsj/UGKtG6kvobp06ZLgA2m/fv2YXELFEVMlVLHiZrd8//33uHPnjuDc7du3kZ2dzdzsFi6Rkp+fj9u3bwvO3bp1C/n5+YI4Foixz9y1vXHjRtTU1Gg8xywtLZm7tjne3t4YO3Ys8vLyNM55eXkx9/xev349pkyZgnPnzmHChAn88cLCQuzdu1cQx4oFCxZg7969uH79utbzFRUVfBx5epmamj7RLLIBAwbQ7DNCCCHkD6LiBd1IfQlVS0sLwsLCsHv3boSFhaGlpQUNDQ1QKpUoKSnRdVM7FVcJ1cXFBfHx8cjOzkZ8fDxcXFwQFRWF3NxcXTeRdAKpVIrnnnsOFRUVkEqlmDFjBrZv344ZM2ZAKpWioqICLi4uTM1u8fDwQM+ePXHw4EFYWFgINvK3sLDAwYMH0bNnT6YSLmLss1Qqxauvvorz589rLdhw/vx5vPLKK0xd25zExETk5eXBysoK06ZNw9KlSzFt2jRYWVkhLy8PiYmJum5ip7KxsYGRkZHg/QcffCBIFBsZGTGVODYzM4O5uTn/fsCAAVizZo1gFpO5uTnMzMx00TxCCCGEkKcezVjrRtwsnoEDB6Kurk6wEbS9vT0GDhyIixcvasz20WcdK6EaGLTncrlKkREREdi0aRO8vLyY/FAqJgqFAsePH0fPnj3Rq1cv7NixAzt27ADQPqunrq4Ox48fh0KhgLGxsY5b2zmUSiUaGxsBAIMHD4azszPMzMzg7OyMwYMHQy6Xo7GxEUqlkpnrW6x9PnLkCAYNGoTq6mqNgg2DBg3Cjz/+iHnz5jHTZ6D9ns7IyIC1tTUyMjJgaPi/Xxnmz58Pf39/ZGRkICgoiJl7urGxES0tLfz7e/fu4R//+IcgpqWlBY2Njcwkmurr61FfX8+/v3LlCiIiIrTGqCfgCCGEEEJIO5qx1o24Tdv9/PyQlpaGDRs2IDIyEhs2bMD27dsxefJkQRwLuEqogYGBfCXUQ4cOoaioCCqVCoGBgbhx4waKi4t13VTyB2VmZkKpVGLhwoX4+uuvERoairfffhuhoaH4+uuvERISAqVSiczMTF03tdNkZmaira0NkydPRnl5OUJDQ+Hj44PQ0FBcvnwZkydPRltbG/VZz3HPscWLF2Pbtm0a1/bixYuZfI5x93RwcDAkEong+S2RSBAUFMTcPZ2UlAQAmDFjBjIyMmBrawtTU1PY2toiIyMD7777riCOBWvXrgUAvPHGGzhw4ADeeustvPTSS3jrrbdw4MABjBs3ThBHCCGEEEKEaMZaN7KysgIA/PTTT/Dx8RFsaN/W1oajR48K4lgg5kqoYsPtwyORSPDee+8JxnrPnj2YOXOmII4FXF9mz56NJUuWaFSLrKqqwr59+6jPeu73nmN79uxh9jmmfk8HBgZqPL9ZvKevXbsGAOjbty/ef/99VFZWAgCamprw/vvvY/r06YI4FnDjN23aNJiZmWHp0qWC8/7+/sjJyWFqnAkhhBBCOhPNWOtGffr0AQAUFBQgIiICJSUluH//PkpKShAREYGCggJBHAu4fWg+/fRTrXusffrpp4I4or8cHBwAAP/4xz+0jjW3fI6LYwHXF/VCJOq446z2mat4+9prr8HT0xNSqZTJPov1OaZ+Tzs7O2PJkiX48MMPsWTJEjg7OzN5T3OVL7/88kuN2ePV1dXYuHGjII4F3Pjt2rVL6/mMjAxBHCGEEEIIEaIZa92IqyxnaWmJsrIyhIaG8ufs7e3h6uqK2tpapjb95iqhWlhYICYmht+jx93dHTExMfD390dtbS2TlVDFxtfXF/Hx8TAyMsInn3zC77nk7u6OTz75BBMnTkRLSwt8fX113NLO4+fnh8TERGzatAlff/01bt26xZ/r168fGhoaIJVK4efnp8NWdi6uz6mpqRg/frxg363W1lZs2bKFuT6L9TnG3dNSqRRlZWWCBLKtrS2kUimUSiVT9/TcuXP56p/Dhw/H7Nmz4ezsjPLycvzrX//ivwCbO3euDlvZuVauXAlfX1/k5ORg+fLlMDU15c81NTXh4MGDfBwhhBBCCNFEM9a6kVQqxaJFi3DhwgWNb/+fffZZXLhwAQsXLmRq82uuEmpVVRVWrVolmKW3atUqVFVVMVkJVYxKS0sBtG/sPX36dGRlZeHOnTvIysrC9OnT+Q3BuTgWGBsbY8yYMWhoaEBVVRXeffddbNu2De+++y6qqqrQ0NCAMWPGMLOxO9DeZ39/f1RVVcHf318wzurHWeqzWJ9j3L2qVCr5JZGcyspKKJVKQRwLzp8/z78uKirC0aNHcffuXRw9ehRFRUVa4/Sdubk53NzcoFKpMGHCBMTGxuLChQuIjY3FhAkToFKp4ObmRoULCCGEEEIegGasdTNvb29ER0fjn//8p8a3/9HR0fD29tZh6zoft+dQeHg4Nm/eLJil169fP4SHhyM2Npa5vYnUNTY2IikpCdeuXYOTkxMWLFjATDU5ddwYvvPOO/juu+8EVW+lUineeecd7Nmzh6mxViqVuHTpEhwcHHDjxg3s3LkTO3fuBAAYGBjAwcEBZWVlTFXIBICQkBAAwDfffCMYZwMDAwQEBPDnWaH+HEtMTBQ8x/r06cPsc+xRK1SzVMn69OnTAIChQ4fi7NmzgnsaaJ+lWFJSgtOnT+PFF1/UUSs7X2JiIkJCQlBaWoqcnBzk5OTw59zc3JCYmKjD1hFCCCGEPN0osaYDP/zwg2DJGND+7f8PP/zAXGKN23MoKysLt2/fFpy7desW9u3bJ4hjTXh4OPLy8vj3hYWF2Lt3L7y8vBAbG6vDlnU+bgxzcnLQ1tYmOKdUKvGf//xHEMcCrlrk66+/jps3b0KlUgnODxkyBAcPHkRxcbGgWAkrJBKJRp9ZxF2z69evR2Njo+DcnTt3sH79ekEcK7hEobGxMRQKhcZ57jhrCUWgPWHa8fqWSCTo27evDlv1ZJqamnD16tWHxi1fvhxNTU1ITU3FnTt30KdPHwQHB8PU1BQXLlx46J/v37+/YBkpIYQQQohYUGKtm3GJFiMjI/j7+8PHxwfZ2dnIyMhAXl4eP/OBFR4eHjAxMUFxcTEMDQ0xbdo0vs+7du3CmTNnYGJiwtS+chwxjrWBgQFqa2sBtCeVgoODkZqainPnzqGurg4GBgZMjTWXUDh48CCsra0RHBwMmUwGuVyO1NRUfm8i1hIPiYmJSE9P19rn9PR0AGBq1pqHhwckEgmfVLOzs4O3tzdyc3Nx8+ZNNDY2QiKRMHVtA+DvZYVCAYlEgnHjxmHatGnYtWsXcnJy+GQbF8eCESNGYNu2bThy5IjW6/vIkSN8nL64evUq5s+f/9h/7vr161i8ePEjx2/evBmurq6P/fcQQgghhOg7Sqx1o8bGRj7R8v333/N7EM2fPx9z5szBxIkTkZeXh8bGRmaWCioUCjQ3NwMAXnrpJXh5ecHGxgZeXl4oKyvD8ePH0dzcDIVCwUyfAXGOdU1NDT9TbdSoUfym36Ghofym321tbaipqWFmZo+FhQUAoFevXsjIyOA3tff19cX48ePx9ttvo66ujo9jgUKhQEZGBqytrbX22d/fHxkZGQgKCmJmn7V79+7xM5eMjIxw8+ZNvoKikZERWlpaoFKpcO/ePb2c0fQgra2t/OtRo0bBz88PDg4O8PPzQ01NDfLz8zXi9N2QIUP4166urnB2doaZmRmcnZ3h6urK91k97mnXv39/bN68+ZHjr1y5gtjYWISHh2PAgAGP9fcQQgghhIgRJda6UVJSEgBo3djb2NgYU6dOxc6dO5GUlISlS5fqoIWdj+vzn/70J1y8eFGjEurLL7+Mo0ePMtVnQJxjvXz5cgCAk5MTrl69qjHWjo6OuH79OpYvX46tW7fqqJWdq6ysDED7foEGBsJaMAYGBujbty/q6upQVlaGkSNH6qKJnS4zMxNKpRLBwcGCiqAAYGhoiKCgIMTFxSEzMxP+/v46amXnev/99/nX2sZZPe6bb77ptnZ1tbNnzwIAevTogcuXLwvuaTs7O/To0QP379/n41iwf/9+/vXp06f5RBoAmJiYCOL05fo2NTV9oplkAwYMoBlohBBCCCGPgBJr3ejatWsAAB8fH63nfXx8sHPnTj6OBVxfFixYAHt7exQXF+PevXuwsbGBh4cHKioqcPToUab6DIhzrO/evQsAWLZsGUaMGKEx1idPnsSHH37Ix7Hg5s2bAIBLly4hIiICgYGBcHZ2Rnl5OdLS0vjEGxfHgoqKCgCATCbTep47zsWxoKamBkD7DKaNGzciKysLFRUVcHBwwKRJk/DXv/4VFy9e5ONYcf/+ff7f7u7usLW1RU1NDSwtLWFiYoITJ04I4ljAXbcffPABtm3bJrh3bWxsEBgYiHXr1jF1fRNCCCGEkD+GEmvdyMnJCYWFhcjOzta630l2djYfx4qOfe64gTuLfQbEOda9e/dGXV0dUlNTkZCQoDHWX331FR/HCgcHBwDA5MmTUVBQoDFLb9KkScjKyuLjWMD1RS6Xw9fXV+M8V+2YpT6bmZmhqakJt27dwpw5cwTJlj179qCpqYmPY4mDgwPKy8sBgE+iPSiOFVxfVCoV0tLSNL4g4J7dLPWZEEIIIYT8MQYPDyGdZcGCBQCAjIwMjQprCoUCu3fvFsSxQIx9BsTZb64y4rlz51BfXy84V19fj19++UUQxwI/Pz9IpVL89NNP+Ne//oUNGzYgMjISGzZswNatW3H06FFIpVL4+fnpuqmdhutzamqqxt5ara2t2LJlC3N9fu+99wAA1dXV6N+/P+Lj45GdnY34+Hj0798f1dXVgjhWrFy5slPj9IH69a1SqeDp6YnXXnsNnp6eUKlUTF7fhBBCCCHkj6EZa93IzMwMXl5eyMvLg4+PD7y9veHm5obS0lLk5uaitbUVXl5eTM16UO/zxIkTMXToUPTu3Rt3797F2bNn0dLSwlyfAc2xHjZsGN/vM2fOMDnWNjY2sLGxwb179+Dr64v+/fvz/w+uXr0qiGGFsbEx/P39kZ6ejunTp2PAgAFQqVSQSCS4cuUKqqurERAQwMwm/oCwz1OnThVFn9U3ZS8oKEBxcTHMzc1RX1/Pz1brGMcCqVQqeP/iiy9ixIgROH36NE6ePPnAOH2mfn37+/sjKCiIrwq6ZcsWVFVVMXd9E0IIIYSQP4YSa90sNjYWISEhKC0txeHDh3H48GH+nJubG2JjY3XYuq4RGxuLwMBAXL9+HUVFRYJzjo6OTPYZEGe/v/32W/j6+qK+vh5Xr17lE2oAYG5ujm+//VaHresaISEh+Omnn3D9+nV+5hLH0dERISEhumlYFxJjn9U1NTUJEmqs4oqwcAnzkydPChJq1tbWqKqqYqoICwD++s3IyEBcXBx/XCqVIiAggPnrmxBCCCGEPB5KrHWz3NxcnD9/HqNHj4aJiQnq6urQq1cvNDc3o6CgALm5ufD29tZ1MztVYmIirl+/DgsLCzg7O/OzW8rLy3H9+nUkJiYy+UGF67eVlZXGrB5W+52bm4uGhga89NJLuH79Ourr62Fubg5HR0ecPHmSyes7PDwc169fh6GhocbMxOvXryM8PJy5JKrY+twxeWhkZASJRAKVSoWWlpYHxuk7rrjKxo0bYWVlhbVr1/JFG1auXImqqirMmjWLqSIsnJCQEAQFBSEzM5Pvs5+fH81UI4QQQgghGiix1o2USiUSEhIgk8mwZs0aGBj8b4u7trY2REREYNOmTfDy8mJmaY1CoUBGRgasra2RkZEBQ8P/XXKtra3w9/dHRkYGgoKCmPrAIsZ+i/H6bmxsRF5eHoyMjPD9998LxlKhUGDixInIy8tDY2MjM8t+xdhn9X7069cPt27d0vqelf5yOhZh6ZgsTUtL4+NYxC0LJYQQQgh5VJWVlV1WKf7KlSuCf3cVS0tL2NradunfwRpKrHWj4uJi3Lx5E5GRkYKkAwAYGBggMDAQoaGhKC4u1qioqK8yMzOhVCoRHBwsSC4BgKGhIYKCghAXF4fMzEymPsCIsd/q17dKpUJRUZGgmh6L1ze3VM7f318jQWpsbIypU6di586dTC2VU++zVCrVGGcW+7x//34AQN++ffH1118jKyuLn8U0adIkzJw5E3fu3MH+/fsxduxYHbf20TQ1NQmWamvz+uuvY+/evfjmm28wduxYjSTqrl27+LgLFy488L/Tv39/mJqadk7D/4BH6XNneVr6TAghhJDuU1lZiZmz3kOLorlL/56uXhliZGyC7du+puTaY6DEWje6d+8eAMDZ2Vnree44F8eCiooKAIBMJtN6njvOxbFCjP3mrtuKigqsXr0aN2/e5M/Z2dkhODhYEMcCbgmcj4+P1vM+Pj7YahXIoQABAABJREFUuXMnU0vluL707dsXgYGBGuM8bdo0QRwLbty4AQC4ffs2/Pz80Nz8v1+WUlJS+PdcnD64evUq5s+f/0ixSqUS77///gPP/945ANi8eTNcXV0fq31d4XH6/Ec9LX0mhBBCSPepqalBi6IZjS6voM3UUtfNeSIGTTVA2Y+oqamhxNpjoMRaN+KqIZaXl8Pd3V3jfHl5uSCOBQ4ODgAAuVwOX19fjfNyuVwQxwox9pu7bmNjYyGTyTB9+nSYmJjw+wdy36ywdH13XCrXUXZ2Nh/HCq7PX375pdZx3rhxIx/HCgcHB/75/LA4fdG/f39s3rz5kWLj4+Px888/axwfPnw4QkNDH+nveho8Tp85V65cQWxsLMLDwzFgwIDH+rsIIYQQIk5tppZo69lH180g3YgSa93Iw8MDdnZ2SEtL07oHVVpaGuzt7eHh4aHDVnYuPz8/JCYmIjU1FePHj9fYa2zLli2QSqXw8/PTYSs7nxj77e7uDqlUClNTU5SVlfHJQwCwtbVFz5490dTUpDWprK8WLFiAvXv3IiMjA3PmzNFYKrd7924+jhVz587F3r17AQCXLl0SjHO/fv0Ecaz48MMP+Xt19+7d+PXXX/nlr88//zwmTZrEx+kLU1PTR55R9eWXX6KxsRGff/45jhw5gldffRV/+9vf9G5Pucfpc0cDBgygGWiEEEIIIUQrg4eHkM4ilUqxaNEiyOVyREREoKSkBPfv30dJSQkiIiIgl8uxcOFCZjZ2B/63+XNVVRX8/f2RlZWFO3fuICsrS3CclQ38OWLsd0lJCZRKJRoaGqBQKBAWFobdu3cjLCwMCoUCDQ0NUCqVKCkp0XVTO42ZmRm8vLzQ0tKCiRMnIikpCb/99huSkpIwceJEtLS0wMvLS+8SEL/n4sWL/Ovbt29j3Lhx2Lx5M8aNG4fbt29rjdN3ZWVl/OvJkycjOzsbzzzzDLKzszF58mStcawxMzPDjBkzAAAzZsxg6pomhBBCCCF/jEFjNQwa7ujnP43Vf7j/NGOtm3l7eyM6OhoJCQmCJTT29vaIjo6Gt7e3DlvXNUJCQgAAGRkZiIuL449LpVIEBATw51kjtn7fuXMHADBw4EDU1dUJ+mxvb4+BAwfi4sWLfBwruGVieXl52LlzJ3bu3Mmf8/Ly6vLNRbsbN35WVlaorq5GTk4OcnJy+PPccZbGmdsX0NXVFRcuXNDoM3dts7R/ICGEEEIIIY/KrDxX103QKUqs6YC3tzfGjBmDzMxMvrKcn58fU7OXOgoJCcG0adOwfPly3L17F71798b69euZ2m9Lm5CQEMycORNr167lx3rlypUwNzfXddM6XXV1NYD2ZbAvvfQSFi5ciPr6epibm2PDhg04ceIE4uLi+DiWxMbGorGxEUlJSbh27RqcnJywYMECJmf1cOM3d+5cjXHetGkTk+PMPaeWLFkCa2trzJ8/H42NjTAzM8PmzZtRVVWF0NBQ5p9nhBBCCCGEaNPo7I02MytdN+OJGDRW/+HEoF4l1j777DOsXLkSS5YswRdffAEAaGpqQlhYGNLT09Hc3Iw333wTCQkJT3UFi9zcXCQkJAiq6e3ZsweLFi1icsYa0J5gKi0t5d/X1dVhypQpcHNzQ2Jiog5b1rUSExORkZEBpVIJoL1AhZ+fH/z9/ZmbsWZlZQUAWL9+Pdra2vjjVVVVCAgI4PcU5OJYY2ZmhqVLl+q6GV2OG7+NGzdCoVDwx7lx5r4gYGmcuf0xw8LC0NTUxB+vr6/HjBkzYGpqytz+mIQQQgghhDyqNjMrURds0Js91k6cOIGkpCSNDy7Lli1DVlYWMjIy8OOPP6KiogJTpkzRUSsfLjc3F1FRUXBxcUF8fDyys7MRHx8PFxcXREVFITeXvSmUXFJNIpHgjTfeQEpKCt544w1IJBKUlpYyl2DiJCYmIj09HRYWFlixYgX27NmDFStWwMLCAunp6cwlFPv0aX+Qckk1Ozs7REVFwc7OTnCciyP6iRs/Lqk2ZMgQxMXFYciQIYLjLI2zVCqFQqHgk2qDBw/GunXrMHjwYADtX/A0NzcztT8mIYQQQggh5NHoRWKtvr4egYGBSE5OhrW1NX+8pqYGqampWL9+Pf785z/jxRdfxFdffYVjx47h+PHjOmyxdkqlEgkJCZDJZIiOjoZCoYBcLodCoUB0dDRkMhk2bdrEz25iQX19PZ9UO3DgAD7++GM8//zz+Pjjj3HgwAE+uVZfX6/rpnYqhUKBjIwMWFtbIyMjA76+vujduzd8fX0Fx9Vn/Og7e3t7/rWVlRVu3ryJ6Oho3Lx5U3DfqscR/TNgwAD+tY2NDc6dO4ewsDCcO3cOvXv31hqn72pqavj902xtbfHLL79gxYoV+OWXX/jE8b1791BTU6PLZhJCCCGEEEJ0QC8Sa6GhoZg4cSJef/11wfGTJ0+ipaVFcNzNzQ39+/eHXC5/4H+vubkZtbW1gn+6Q3FxMW7evAl3d3fMmjULy5Ytw+rVq7Fs2TLMmjULQ4YMwY0bN1BcXNwt7ekOa9euBQCMGzcOpqamgnOmpqb82HFxrMjMzIRSqURwcDAMDYUrrg0NDREUFASlUonMzEwdtbDzLVmyhH89ePBgLFmyBB9++CGWLFkCNzc3rXFE/6xatYp/PWjQIME4u7q6ao3Td+Hh4QCAUaNGYceOHdiwYQMiIyOxYcMGpKWlYeTIkYI4QgghhBBCiHg89Xuspaen49SpUzhx4oTGuZs3b8LY2FhjLx9bW1vB/mUdrV27FtHR0Z3d1IfiZjwkJydj7NixiIyMhLOzM8rLy5GWloaUlBRBHAsqKioAANOmTYNSqURxcTHu3bsHGxsbeHh4wN/fHzk5OXwcK7j+yGQyree54yz1m5utM2PGDBw+fFiQ3La3t0dAQADS09NpVo+eq6ysBNBevGD//v0a4xwcHIzU1FQ+jgVcX9577z1IpVJ4enoKzs+aNQsnTpxgqs+EEEIIIYSQR/NUJ9Z+++03LFmyBDk5ORqznf6IlStXYvny5fz72tpaPPPMM532338QLgE4bNgwrFmzht/M3d3dHWvWrMGSJUtw5swZpjb9dnBwQHl5OTZu3Ihbt24JEp52dnbo27cvH8cSrj9yuRy+vr4a57lkBEv9trS0RFNTE44dO4avv/5ao+rtvHnz+Diiv2xtbXH79m0cOXIEKpVKcK6trQ1Hjhzh41jB9fnrr7/G3//+d43z27Zt4+MIIYQQQggh4vJULwU9efIkbt26hRdeeAGGhoYwNDTEjz/+iI0bN8LQ0BC2trZQKBSorq4W/LnKykp+3xttTExMYGFhIfinuymVShQVFeHQoUMoKipial81dStXrgTQvgy2f//+goIN/fv3x5kzZwRxrPDz84NUKkVqaipaW1sF51pbW7FlyxZIpVL4+fnpqIWd75///CcA4PLly3j33XcRHx+P7777DvHx8Xj33Xdx5coVQRzRT7GxsQCAX3/9Fc8++6zgnn722Wdx6dIlQRwLuL4UFBTg/v37gnP379/nZ1Sz1GdCCCGEEELIo3mqZ6y99tprfOKF85e//AVubm7429/+hmeeeQZGRkY4dOgQ3nnnHQDA+fPncfXq1QcuwdMlLgF45swZ+Pr6orm5mT9nYmLCv++YKNRnZmZmMDQ0RGtrK06cOAFLS0v4+/tj7969/IdRQ0NDmJmZ6bilncvY2Bj+/v5IT0+Hv78/goKCIJPJIJfLsWXLFlRVVSEgIADGxsa6bmqn6du3L0xNTdHU1IS7d+/Czs6OXxbIzVQ0NTXlZykS/WRubg6pVAqlUon8/Hy0tbVh1qxZ2LZtG39PS6VSmJub67ilncfS0hKOjo64fv06fHx8MHLkSI0+Ozo60mxMQgghhBBCROipTqz16tULQ4cOFRzr2bMnevfuzR8PDg7G8uXLYWNjAwsLC/z1r3+FTCbDmDFjdNHk32VjY9OpcfqguLgYra2tGDBgAK5cuYKcnBzk5OTw57njxcXFGvsW6buQkBAAQEZGBuLi4vjjUqkUAQEB/HlWKJVKWFlZ4datW2hra8PNmzcFM3gMDAxgbW0NpVIJqVSqw5aSP6K4uBhKpRJ9+/bF7du3ceLECcEemH369MGdO3eYu6fT0tIQGBiI69eva/TZ0dERaWlpOmwdIYQQQgghRFee6sTao9iwYQMMDAzwzjvvoLm5GW+++SYSEhJ03Syt3N3dIZVKYWFhgfT0dJw7d47fyH/IkCEICAhAbW0t3N3ddd3UTsMVYti0aRNaWloQHh6OyspK2NraIjY2FkZGRvDx8WGqYIO6kJAQzJ49G0lJSbh27RqcnJywYMEC5mboAf+rehsfHw9ra2vMnz8fjY2NMDMzw+bNm1FVVYXQ0FDmEi4cbcU5WEwgcvfqv/71LzQ1NWH58uW4e/cuevfujfXr18PU1JTZezotLQ01NTUazzGaqUYIIYQQQoh46V1ijdsYm2Nqaor4+HjEx8frpkGPoaSkBEqlElVVVYiOjkZgYCBkMhnKy8sRHR2NqqoqPo6VxAM3++67775DVlYWvyTw9u3bWLBgASZNmiSIY01ubi4SEhL4fhcWFuL48eNYtGgRvL29ddy6zsUlUg4fPoy9e/fy+wbW19dj1qxZeOuttwRxLOk4zkB7cQ4Wx/lB93RdXR0WLVrEF+tg9Z62tLSkfQIJIYQQQgghvKe6eAFruIRCeHg4ysrKEBoaCh8fH4SGhqK8vBzh4eGCOBZ4eHjAysoKycnJcHZ2Fmx07uzsjOTkZFhZWcHDw0PXTe10ubm5iIqKgouLi6DfLi4uiIqKQm5urq6b2Km4RMqePXtgYWGBFStWYM+ePVixYgUsLCywZ88eQRwrxDbOD7unU1JSYG1tzeQ9TQghhBBCCCEd6d2MNX3GJRQcHByQlpamsWystLRUECcWEolE103odEqlEgkJCZDJZFizZg0MDNpz2O7u7lizZg0iIiKwadMmeHl5MbNc0M3NDQBgZGSEHTt2oLS0FKdPn4ajoyN27NiByZMno6WlhY9jgRjH+VGoVCpdN4EQQgghhBBCugUl1rqRh4cH7OzskJaWhjVr1giWe7a1tSEtLQ329vZMzfQoLi5GdXU15s2bh6ysLISGhvLn7O3tMXfuXKSkpDC37xa331hkZCSfbOEYGBggMDCQuf3G9u/fDwBoaWnBW2+9pVH1tqWlhY/z9/fXSRs7mxjH+WH39Lx585CcnMxUnwkhhBBCCCHkQSix1o2kUikWLVqEqKgorFy5EiYmJqirq0OvXr3Q3NyMgoICREdHMzWzhVvW+vbbb2PKlCkam/irVCqkpKQwtfwV+F+/nZ2dtW5q7+zsLIhjQUVFBf+644wl9ffqcfpOfZwbGxs1rm8Wx/lR7unk5GSm+qxOoVAgMzMTFRUVcHBwgJ+fH4yNjXXdLEIIIYQQQoiOUGKtm3l7e2PQoEHIz8/XOOfm5sbsRufr16/Hf//7X35D+8LCQmRlZeH//u//BHGseNAG70D7pvYsFm2ws7MDANja2kIikQj6bGNjA5VKhcrKSj6OBdz4ffTRRyguLuaPFxYWYu/evRg2bJggjgUPu6dfffVVQRxLEhMTkZGRwfeZO+bv74+QkBAdtowQQgghhBCiK5RY62bh4eEoLS2FoaEhXnnlFQwaNAjnz5/Hjz/+iNLSUoSHhyM2NlbXzew0Hh4e6NGjBw4ePAhra2sEBwdDJpNBLpcjNTUVBw8eRI8ePZha/goIN3iXyWSIjIyEs7MzysvLsX37diaLNri4uAAAKisrtfZZLpcL4ljg4eEBY2NjFBcXw8jICP7+/vDx8UF2djYyMjJw5swZmJiYMDXOD7unDx06hJ49ezLVZ6A9gZaeng5ra2uMGzcOjo6OuH79OnJycpCeng4AlFwjhBBCCCFEhCix1o0aGxuRl5cHIyMjfP/994LlQ3/7298wceJE5OXlobGxEWZmZjpsaedRKpVoamoCAAwaNAjOzs4wMzODs7MzBg0ahOPHj6OpqQlKpZKpJbCPgrWiDdXV1fzrX375BWVlZbC1tUVZWRl++eUXrXH6TqFQQKFQAAA8PT3Rt29fFBcXo2/fvvD09ERBQQGam5uhUCiYvKddXV3R0tKC/Px8tLS0wNXVFfn5+WhsbGTqnlYoFMjIyEDPnj1hZGSEXbt28ef69euHnj17IiMjA0FBQbQslBBCCCGEEJGhxFo3SkpKAgD4+/trfPgyNjbG1KlTsXPnTiQlJWHp0qU6aGHny8zMRFtbGyZPnoyCggKNjc4nTZqErKwsZGZmMrOhPSDOog1cwmzkyJE4deoU4uLi+HNSqRQvvfQSCgsLmUqscff04MGDcfLkSRQUFPDnpFIp3NzcUFpayuQ9PXLkSBQWFgqWtauPM0v3dGZmJpRKJRoaGtDa2io4V1NTwxfqYKnPhBBCCCGEkEdDibVudO3aNQCAj4+P1vM+Pj7YuXMnH8cCbqP62bNnY8mSJRqb+FdVVSErK4upDe0B4QbvAQEBGv1ubm5mrmiDlZUVgPZqmN9//z0/rg4ODpg0aRKioqIEcSzg7tVffvkFMpkMo0aNgomJCV+MhFv+yuI9feLECYwZMwaOjo5obm6GiYkJrl+/juPHjwviWHD9+nX+9QsvvICZM2dqXeasHkcIIYQQQggRB0qsdSMnJycUFhYiOzsb8+fP1zifnZ3Nx7HCwcEBACCXy+Hr66sxO4v7QMrFsYLbuL28vBzu7u4a/S4vLxfEsaBPnz4AgPz8fMTExCAwMBATJ05EeXk5YmJi+JlNXBwLuOvW0dERsbGxMDAw4M/5+flh5syZfHKRFepFKi5fvswn0rhztra2zBWpaGtrA6A5zu7u7oiNjeXHmYsjhBBCCCGEiAcl1rrRggULsHfvXmRkZGDWrFkoLS3lZzG5ublh9+7dfBwr/Pz8kJiYiNTUVIwfPx6Ghv+75FpbW7FlyxZIpVL4+fnpsJWdz8PDA3Z2dkhLS8OqVas0Zm+lpaXB3t6eqQ3euT5bWlri119/FSx/tbW1xaBBg1BbW8tUn728vLBv3z7cvHkT9+/fx4EDB/hxnjBhAiorK/k4VqgXqRg5ciRcXV1RV1eHXr16obGxESdOnBDEsaBnz54A2pd9NjU14fvvv+fHeeLEiaitrRXEEUIIIYQQQsSDEmvdyMzMDF5eXsjLy8OECRO0xnh5eTGzyTnQvnecv78/0tPT4e/vj6CgIL6C4JYtW1BVVYWAgADmNvyWSqVYtGgRVq1ahfHjxwvOxcfHAwBiYmKY2dwdEPbZxMREcK66uhqVlZXM9bm+vh5A+4b+vr6+gnPcOKvHsUB9jzwuifawOH3HfSFQX1+vsZRffZzVvzgghBBCCCGEiAN9Cuhmb775JvLy8n73PGtCQkIAABkZGRob2gcEBPDnWXPu3DkA7XuOqS8R496fO3cO3t7eumpel3lQtVPWqqACj76Ul6Ulv4+aMGMpsTZixAhs27btkeIIIYQQQggh4kKJtW6kVCqRkJCAsWPH4qOPPsLnn3/OLyf629/+hs8++wybNm2Cl5cXU7N6gPbk2uzZs5GUlIRr167ByckJCxYsYGp2njqFQoGMjAxYW1sjPT0d586d45f9DhkyBAEBAcjIyEBQUBAzs/W461smk2ld/hoTE8Pc9e3m5gYAMDIywo4dOxAdHY3KykrY2toiKioKM2bMQEtLCx/Hgh49egBoT5RmZmbihx9+4Mf5zTffhJ+fH1QqFR/HgiFDhvCvR40ahWeeeYYv2PDbb7/x1WDV4wghhBBCCCHiYPDwENJZiouLcfPmTbi7u2P+/PnIy8tDeXk58vLyMH/+fAwZMgQ3btxAcXGxrpva6XJzc/Hee+9h7969KCwsxN69e/Hee+8hNzdX103rEpmZmVAqlQgODoZEIsGvv/6Ks2fP4tdff4VEIkFQUBCUSiUyMzN13dROo359z549G/Hx8fjuu+8QHx+P2bNnM3l979+/HwDQ0tICf39/nD17Frdv38bZs2fh7++PlpYWQRwLjh07BgBQqVRYu3YtDA0NMXDgQBgaGmLt2rVQqVSCOBaoj9/PP/+MPXv2YP/+/dizZw9+/vlnrXGEEEIIIYQQcaAZa93o3r17AIDk5GSMHTsWkZGRcHZ2Rnl5OdLS0pCSkiKIY0Vubi5WrVqlcfz27dtYtWoVYmJimFsSWVFRAQC4ePEiNmzYAKVSyZ9LTEzExIkTBXEsUL++O6qsrGTy+n7U8WNpnJubmwEA/fr1Q35+Pl/ZF2hf3t2vXz/cunWLj2MBN34ffPABvv76a74oBQBYW1tj5syZWLduHVPjTAghhBBCCHk0lFjrRlZWVgCAYcOGYc2aNTAwaJ8w6O7ujjVr1mDJkiU4c+YMH8cCpVKJNWvWAGhfLufv7w8fHx9kZ2cjIyMDLS0tWLNmDQ4cOMDM8kAAcHBwANA+c83a2hrBwcF80YbU1FTs27dPEMcC9evWysoKc+fO5fuckpLC77nF0vVta2vLv7ayssKzzz6LtrY2GBgY4PLly3yf1eP0nZOTEwoLC3Hr1i2tfb516xYfxwruPlWpVNixYweKi4v5pd0eHh7Izs4WxBFCCCGEEELEg5aC6ohSqURRUREOHTqEoqIiwYwmlhQWFkKhUEAqlWLfvn0YOXIkzp8/j5EjR2Lfvn2QSqVQKBQoLCzUdVM7FVf1VSKRYPv27XB0dMTp06fh6OiI7du38xv5P6g6rD5qbW0F0D5rafv27WhsbBT8m0uccnEs4JZ6Au2b9Z8+fRrFxcU4ffq0YPN+9Th9N3fuXP717/VZPU7f+fn5QSqVIjU1VeP6bW1txZYtWyCVSuHn56ejFhJCCCGEEEJ0hWasdSPuQ+eZM2fg6+srWCplYmLCv2epmt6uXbsAtG/4/Ze//AU3b97kz9nZ2WHUqFGQy+XYtWsXRo8eratmdroDBw4AaJ/hMmnSJI2qoNw+VAcOHIC/v79O2tjZDh48CKA9aezr6ys4Fx8fL4hjZazz8/MfOW7WrFld3JrucfHixUeO8/T07OLWdA9jY2P4+/sjPT0dEyZM0FrlNyAggJlCJIQQQgghhJBHR4m1bmRjY8O/7rj/kPp79Th9V19fDwCQy+Va95XjNjjn4lihvteS+ofwju9Z2pOpsbGRf80lG7S9V4/Td1yCtLPi9AG31LOz4vQFV/HzQfczVQQlhBBCCCFEnCix1o3c3d35BMPo0aMxZswYmJqaoqmpCcePH0d+fj4MDAzg7u6u66Z2GldXV5w/fx6mpqaIiYmBoWH7Jefu7o6YmBhMnDgRzc3NcHV11XFLO5ednR0A4LnnnkN8fDyysrJQUVEBBwcHTJo0CYsWLUJZWRkfx4LBgwfj6NGjkEql2L9/P0pLS/l9qNzc3ODr6wulUonBgwfruqmdplevXvxrbtN+be/V4/RdSUkJgPZN+42NjQUb+dva2kKhUKCqqgolJSV48803ddXMTqVUKpGQkAAHBwetyXAHBwds2rQJXl5eTO0VSQghhBBCCHk4Sqx1ozNnzvCzGwwMDODq6srP3iooKADQPvvhzJkzePHFF3XZ1E7z8ssvIysrC01NTQgPD8d7773H9/nrr7/mZ+q9/PLLOm5p53JxcQHQPmvH0NBQsNyztbUVt2/fFsSxgEsoKJVKxMTEYObMmZDJZCgvL0dMTAy/jyBLiYe6ujr+9d27d+Hp6YnevXvj7t27KC4u1hqn7+7evQsAqKqqwujRo/Hyyy9DoVDA2NgY165d45fHcnEsKC4u5pexaytGwiXbiouLmVn+SgghhBBCCHk0lFjrRqdPnwYAzJkzB//+978RGhrKn7O3t8d7772Hr7/+GqdPn2Ymsaa+xDM/P/+Be1KxthS0trYWQHtCxd/fH0FBQfwH8S1btvCJFi6OBeozl/Lz8yGXy/n3XAXcjnH6jitCAfyvIMnD4vSdmZkZ//r37mn1OH3HzTy0srJCRkYGP/PW19cX48ePx9SpU1FdXc3c8ldCCCGEEELIw1FVUB3w8PBAWloaNmzYgMjISGzYsAHbt2/H8OHDdd20TsftF+fh4aH1/LBhwwRxrOD68/rrr6O2thZxcXGYOnUq4uLiUFtbi9dff10QxwIHBwcAwMiRIzX2FFOpVHjppZcEcSxwdnbu1Dh98Pzzz/Ov1ROmHd+rx+m7X375BQDg4+MDiUQiqOgskUj46r5cHCGEEEIIIUQ8aMZaNxoxYgS2bduGr776Cl9++aVgyVBbWxu2bt3Kx7HCw8MDdnZ2MDc3x/fff4/k5GRcu3YNTk5OmDdvHmJjY2Fvb//AxJu+4vp9//597Nu3TxT99vPzQ2JiIs6dO4e+ffsKZu/07dsXv/zyC6RSKfz8/HTYys7l5uaGrKwsAIC5uTleeuklft/EwsJCfiamm5ubLpvZqSwtLfnX5ubmGD9+PL/32L///W9+FqZ6HCvy8/Nx6NAhjX3lzM3NddgqQgghhBBCiC5RYq0bjRgxAlZWVjhz5gzCw8Mxc+ZMfr+x7du348yZM7CysmIqsSaVSrFo0SJERUUhNjYWgYGBfJ9jY2Mhl8sRHR3N1L5bgLDfU6ZM4feSKywsxIEDB6BQKJjrt7GxMcaMGYO8vDwoFArMmDEDPj4+yM7ORkZGBlpaWuDl5QVjY2NdN7XTXLx4kX9dX1+PI0eOPDRO350/f55/XVtbi127dj0wjpvJpe8cHR0BAJcuXdKYpXf79m0+0cbFEUIIIYQQQsSDEmvdSCqVYvny5Vi1ahVOnTol2IPKxMQEALB8+XKmki0A4O3tjejoaCQkJGjsKxcdHQ1vb28dtq5rdVwS+bDj+kypVOLSpUtwcHDAzZs3sWPHDuzYsQNA+7Xv4OCAsrIyKJVK5q5xW1tb3L59my9OArQvi+zbty9Te8qpe+6551BbW8sX4gDaK6H26tULly5d0mHLOp+vry/i4+MBAEZGRnyivON7X19fnbSPEEIIIYQQojuUWOtm3t7eiImJQXx8vOADt7W1NRYtWsRsksnb2xteXl4oLi7GvXv3YGNjAw8PD+YSLBylUomEhASMHTsW0dHROHv2LN/voUOHIioqCps2bYKXlxcz/w+4yonx8fEYOHAgMjMzUVFRAQcHB/j5+eHixYsIDQ1lqnIiN0OpsrISY8aMgaOjI5qbm2FiYoLr16/j+PHjgjgWqM/ekslkmDFjBkxMTNDc3IyCggL+CwOW+nzu3Dn+tZmZGfz8/Pjlr//5z3/4xNq5c+eYKTxDCCGEEEIIeTSUWNMBsSWZOFKplJmEysNwSabIyEgYGRlp9DswMJC5JNO9e/cAtG/Ub2xsDH9/f8F5bgN/Lo4F3L5ypqamuHz5Mp9IAwA7Ozv07NkTTU1NTO0rp97n8vJywcxbVvvMVXT+v//7P+Tm5gqWv0qlUrz66qs4cuQIUxWdCSGEEEIIIY+GEms6cv36dXz44YdoaWmBkZERUlNT0b9/f103q0sVFxdj8eLF/PuNGzcytXm/OvUkU2lpKUJCQvhziYmJTCaZuAqn5eXlaGxsxIoVK/hz69atg5mZmSCOBVwCMT09HUqlUnCuuroaTU1NCAgIYGpfOfU+A4BEIoFKpYJEIkFdXR0aGhqY6zNn0qRJGDduHD7++GP+2OrVq2FiYvLA/fUIIYQQQgghbKPEmg78+c9/FuzF1NLSgvfeew8GBgY4fPiwDlvWdV599VWNY1ySjcUPpFzyyMfHR+OcepKNpSQTVwlVfR89DpdkY60SKtA+nunp6WhqahIc596rjzcruD43NDTwx1QqFf+etT5zFZ2XL1+ucU49ycZS4RlCCCGEEELIozF4eAjpTOpJtR49euCvf/0revToAQBoa2vDn//8Z102r0t0TKq9+eabv3ueBR2TRxKJBO+88w4kEsnvxukzqVSKmzdvCo7JZDLB+xs3bjC35Lnj9cvNRnzQeRaoP6eMjIwwdOhQGBkZaT3PAm0Js1GjRj1SHCGEEEIIIYRtNGOtG129epVPqu3atQv9+vUDALzzzju4desWpk2bhra2Nly9+v+xd99hUVzv28DvBendhpVmwSCgKLZobNj92qOx95JEjb0ritFEk2CvxK5RY0vsir0XLIBREQUEK3YUEQR23j94d36soBLC7rAz9+e6vNydOcF7MsuWZ888J042l4WGh4eLt4OCglC+fHkAwIQJExAZGYmBAweK4+RUZLp9+7Z428PDA4MHD4arqysaNmyIxYsXi83Qb9++jQoVKkgVM09dunRJvG1jY4M3b96I/bc09zXjfH19JcmY1yIiIsTba9asgYuLi3j/7t276N27tzhOLuf5Y89jAGT7PHb58uUs2y5evJjtuOwKbkREREREJF+csaZH/fr1A5AxU61QoUK4evUqjhw5gqtXr6JQoULizDXNODnI3FNNU1TL7n7mcXKQ+VK4Fy9eYPDgwWjRogUGDx6Mly9fZjvO0GXuqfb3339j7ty5mDJlCubOnYu///4723GGTnP+VCqVVlENAFxcXMQZinI6z5mfxzIX1QCgaNGisnweGzt2rHjb0dFRa1+xYsWyHUdERERERMrAGWt6lJqaCgCoV68eunXrpnXZXLFixVCnTh0EBweL4+SkadOmSE9Pz7ISasOGDWXbVw7ImI34/fffZznu+fPnY9euXVLH04k6depkuwJsjRo1cOHCBYlS6Vb79u2z3d6qVSvZnWfN89PHCmc9e/bEsmXLZPk8VqtWLcyYMSPL7/O4ceO0ZmwSEREREZFysLCmRyYmJkhNTcX+/fthZmamte/ly5cIDg4Wx8nNwYMHERYWlqWY+GFPLrnZsWMHhg4dmqXItHv3bokS6d7p06ez3S7Xohrwf+f5Q3I8z5rnsZUrV6JDhw5Z9q9bt04cJzfnzp3LtmjMohoRERERkXLxUlA9+v3338Xb7u7uWLx4Mfbt24fFixfD3d0923GGbsGCBeJtOzs7rWO2s7PLdpwcLFu2DEDGSonR0dFal/1GR0dDEAStcXLw22+/ibf/+ecfrX2Z72ceZ+gyn+e7d+9q7bt7964sz/PKlSsBAElJSXjy5InWvidPniApKUlrnBz88ssv4u3MfSM/vJ95HBERERERKQNnrOnR8+fPxdvh4eEYM2YMevbsiXXr1okfRjXjPuzXZKgqVqwo3r516xYGDx6c7eWfmcfJQeZG9X379s3ROEOXeUGCIUOGAMj+8k+5LFwAaJ+/3r17Q6VSoVWrVti9e7dYVPtwnKFzcnKCkZER1Go1OnXqBEtLyyzPY0ZGRrJZuADQXgFU0w/S19c3y0w1LlxARERERKQ8nLGmR6GhoQAgNjRPSkrCsmXLxA+jmu2acXLw4ewOANn2VMtunKGbPn36f9pviI4fP651/8Oi2of75SDzMQmCgF27dmkV1eR4zEePHoWRUcbLx4fPY0ZGRrLsm/jhefywqCbH80xERERERJ/HGWsS6NWrF7Zv3443b96I22xsbNC+fXusXbtWwmR578WLFwCASZMm4ZdfftFqaG5iYoKxY8di5syZ4ji5SE9Px5IlS+Du7o67d+8iJSVF3GdmZgYXFxcsXboUtWvXhrGxsYRJ897x48dx6dIlrdU/f/vtN1nNVPvQ8ePHERERobX657Jly2Q1U+1DR48eRVxcHPr164fU1FSYmJhg5cqVBjlTLTk5GXFxcZ8dFxQUhPDwcCxatEjcNmTIEHh7eyMyMjJH/5aTkxPMzc1znZWIiIiIiPIXFtb0qHLlyli/fj3WrFmDWrVqoXv37nB1dUVMTAw2bNggFtUqV64sbdA8VLBgQQDAzJkzUatWLVSvXh1mZmZISUnBxYsXMXPmTK1xchEeHo7Hjx/j8ePH+PLLL9GtWzfxXP/xxx84e/asOO7DRuhy4OPjg7lz52qtnCh3FSpUUNysJScnJxw6dEjqGP9ZXFwcBg4cmKv/NnORLSeCgoJQvnz5XP1bRERERESU/7CwpkdeXl5ib6KPMTIygpeXlx5T6VbFihVhbGwMc3NzxMTE4Ny5c+K+YsWKwcrKCsnJybLrsfbs2TMAGT3GZsyYIV42V7FiRcyYMQMTJkzAhQsXxHFycvLkSSxZsiTLCrDff/896tatK2Eyouw5OTkhKCgox+NjY2Mxc+ZMTJo0Cc7Ozv/63yIiIiJSgvj4eCQkJOjkZ8fGxmr9rSt2dnZwdHTU6b9Bho+FNT26fv26WFS7dOmSVpHJxMQEAKBWq3H9+nXZzGK6fv060tPT8fbtW5iamqJ+/fowNzdHcnIywsLC8PbtW3GcXI4ZAF69egUA+OqrryAIAq5evao1e6tOnTq4cOGCOE4uTp48ialTp6J69eooX7483rx5AxsbG6SkpGDq1KkICAhgcY3yHXNz81zNInN2dubsMyIiIqJsxMfHo3uPnkh9n/L5wf+B5gooXTExNcOG9etYXKNPYmFNjzR9xMqXL5+lH09qaqq4XU79xjQzshwcHPDy5cssl8pptstt5pa9vT0AYOfOnVi/fj3i4+PFfY6OjrC1tdUaJweavnL29vZZFi0AMs61ofWVy2nvrf+KfbeIiIiISE4SEhKQ+j4F79zqQW1uJ3WcXDFKTgCiTyAhIYGFNfokFtb0SNNHLDIyEiYmJqhbty4qVKiAiIgInDx5Uiy2yanfmGZG1suXL+Hg4IDGjRujZMmSePDgAQ4dOoSXL19qjZOLwoULAwBu374NBwcHjBo1CrVq1cK5c+ewatUq3L59W2ucHGj6ygHI9vGtOdeG1Ffuv/Te+jfyU98tFhOJiIiIKK+oze2gtpLPZx6i7LCwpkflypUDAKhUKmzZsgVr167FhQsXUKpUKWzZsgXt27eHIAjiODmwtrYGABQoUABr1qzB6tWrcerUKZQqVQpr1qxBhw4dkJaWJo6Ti8y95UxMTBAYGCjuc3R0lGVvOU1RzdjYGFZWVjhy5AiOHDkCIGNm3ps3b5Cenq7Vey2/01fvrfzUd0uJxUQiIiIiIqLcYmFNj1asWAEAEAQB7dq1E7dfunQJf//9t9a44cOH6zmdbty6dQsAkJaWhjZt2ojbPzzmW7duoXnz5vqOpzOZe8tp+shpZL4sVE695U6fPg0g45LQD2cgZr5/+vRpgznXSuy9pcRiIhERERERUW6xsKZH9+/fz9NxlH/ltE+enPrpvXv3Tuu+s7Mz6tSpg9OnT2ut1vPhOMpflFhMJCIiIiIiyi0W1vSoWLFi4m1HR8csDe019zOPM3RFixYVb9eoUQM1a9aEmZkZUlJScP78ebHJfeZxcqC5tNXY2Bh79uxBRESEuCpohQoV8L///Q/p6emyugS2QIH/ezpRqVSIjY0VC2oqlQqCIGQZR0RERERERGTI+AlXj1QqlXjbxcUF/v7+cHV1RUxMDNatWycW1jKPM3SZm9nHxsZqrRZZrFgxmJiYIDU11aD6buXE2bNnAWQco5mZmdblnmq1GsWKFcODBw9w9uxZ1KhRQ6qYeUqzIAOQUVBMS0vL9n7mcURERERERESGjIU1PXr48KF4+8qVK3Bzc4OtrS1Onz6NK1euZDvO0GmOJTU1FcnJyahUqRIEQRBnNKWmpmqNk4sHDx4AyDiuSZMmoXr16uJMvYsXL4rHqxknB8nJyVr3bW1tkZaWhgIFCiApKemj44iIiIiIiIgMFQtremRubg4AKFKkCJ4+fYpNmzZh06ZN4n7Nds04OShVqhQuXbqEggUL4sWLF1ma2mu2lypVSpqAOqI5bnd3d1y8eBHnzp0T9xkbG8Pd3R0RERGyOm5bW1uxf1paWhpev3790XFEREREREREcmAkdQAlqVOnDgDg+fPnKFKkiNa+IkWK4Pnz51rj5GDQoEEAMpr029nZoX79+mjWrBnq168POzs7sXm/ZpxcaI4nIiICVatWxbBhwzB27FgMGzYMVatWRUREhNY4OejatavWfXt7e5QvXx729vafHEdERERERERkqFhY0yPNogRqtRpPnz5F1apV0b9/f1StWhVPnz6FWq3WGicHxsbG4u3ExEQYGRnBzc0NRkZGSExMzHacHJiamsLU1BQAcPXqVTx58gReXl548uQJrl69mmWMHBQuXFjr/qtXrxAZGZllluKH44iIiIiIiIgMFQtrelSxYkUYGxuLRaTLly9jxYoVuHz5MgCI+ypWrChlzDy1c+dOABmrnqanp+Po0aNYsmQJjh49ivT0dDg6OmqNk4vw8HC8f/8e3t7eSE1NxaZNm9CjRw9s2rQJqamp8Pb2xvv37xEeHi511DyzcePGPB1HRERERERElN+xx5oeXb9+Henp6QAyLpNzcXGBWq2GkZER7t69K87suX79utYqkoZM06T/yZMnqF69OpKTk5GQkAA7OzuYm5sjJCREa5xcaC5xnTVrFlQqFZYvX4779++jVKlSGDRoEARBQIsWLcRxcvDkyRPxtq+vLx48eIDExERYW1ujZMmSuHTpUpZxRERERERERIaMhTU9evbsGQCgXLlySEhIQGhoqLjP0dER5cqVw+3bt8VxcqC5rLVo0aKIjY1FfHy8uM/R0RFFixZFfHy8rC5/BTIWZQCAmJgYVKxYEcOHD9faf/36da1xcuDo6IinT5+iTJkyuH//Ph4/fgwAePPmDQCgTJkyiIqKEmcpEhERERERERk6Ftb0SDMj7YsvvsDFixe19qlUKlSoUAG3b9/O0pPKkLm5uQEA4uPjUatWLfj7+8PV1RUxMTHYsGGDuFqmZpxceHt7o1ixYvjjjz8QEBCAf/75By9evEDBggXh6emJP/74A8WLF4e3t7fUUfPMzJkz0aZNG0RFRWH37t24c+eOeMxly5ZFq1atxHFEREREREREcsDCmh5pVkfctWsXqlatCpVKJV4qV6JECezevVtrnBxkLhJevXoVFy9eRHp6OoyNjWFiYpLtODkwNjbG999/D39/fzRu3DjbMdOnTzeoRRuSk5MRFxf3yTFFihTB06dP0apVK3h4eKBFixb4/fffcePGDXF/fHy81szFDzk5OcHc3DxPsxMRERERERHpAgtrepT5sj/NggVAxqVyjx49ynacoctcMEtOThZvp6eni/3mPhxH+VNcXBwGDhyY4/E3btwQC2oaT58+/ezPCAoKQvny5XOVkYiIiIiIiEifWFgjnfpw9p2JiQnKly+PyMhIpKamfnScoUtPT4e/v79439LSEvXq1cOJEyeQlJQEAPD398eRI0cMZtaak5MTgoKCcjQ2KSkJv/76Kx48eICSJUtizJgxsLS0zPG/Q0RERERERGQIWFjTo/v374u3q1Wrhi+//BJmZmZISUnB2bNnxRUy79+/j6pVq0oVM09lnpVWtWpV9O3bV+yxtmrVKnHmXuZxcnDkyBHx9p9//omHDx/ixYsXaNKkCUqUKIFvvvlGHNekSROpYv4r5ubm/2om2dSpUzFw4EBMnTqVM9CIiIiIiIhIllhY06ONGzcCyOgzde/ePcyfP1/cV7x4cbE/1caNG9GmTRupYuapwMBAABmLMzx48ACDBw8W9xUvXhwqlQqCICAwMBDNmjWTKmae+/XXXwFkFKOGDRsmrpAJZKyUqimo/vrrrwZTWCMiIiIiIiIibSys6ZHmEsBChQph3rx52L17Nx4+fIgSJUqgVatWGD58OJ4+fSqOkwPN5Z6CIMDZ2Rnly5fHmzdvYGNjg5SUFLG3XObLQuVAczzJyclwc3PDlClTxJl6f/zxB86ePas1joiIiIiIiIgMDwtrelSoUCG8efMGERERaNOmDVJSUsR9K1asEO8XKlRIqoh5zsTEBKmpqTAyMsKFCxey7DcyMoJardZaIVQOzM3NxcUapk+fjgIFMn7VKlasiOnTp6NRo0biOCIiIiIiIiIyTEZSB1CSOXPmiLfT0tK09mW+n3mcoVu5ciUAQK1Ww9TUFJ06dcLw4cPRqVMnmJqaQq1Wa42Ti5EjR4q3x4wZg+vXryMpKQnXr1/HmDFjsh1HRERERERERIaFM9b0yM7OTuwplp6eDhMTE3HGluaSQJVKBTs7O4mT5p1ixYqJt9+/f48tW7Z8dpwcZF7p8+rVq1q95T42joiIiIiIiIgMC2es6VF4eDgEQYBKpQKQ0V8rJSVFq6gmCALCw8OljJmndu7cmafjDEXBggXzdBwRERERERER5T+csaZHL168AJDRyB/I6K+lmbGWnJwsbteMk4OHDx/m6ThD4e3tDWNjY6Snp390jLGxMby9vfWYioiIiIiIiIjyEgtrepS5Uf2+fftgaWkp3k9KSkKLFi2yjDN0tra24u2iRYviyZMn2d7PPE4OEhMTP1lUA4D09HQkJibK6tJfIiIiIiIiIiXhpaB6tHHjRgCAvb09jIyMsHXrVsyfPx9bt26FkZGRWGDRjJODAwcOiLfd3NwwbNgwjB07FsOGDYObm1u24+Rg0qRJ4m0jI+1fs8z3M48jIiIiIiIiIsPCGWt6pJmd9erVKzRr1kxr3+LFi7OMk4NXr16Jty9evIjz58+L9zMXmDKPk4PHjx8DAGxsbLBt2zbcuHEDL168QMGCBeHh4YEOHTogMTFRHEdEREREREREhoeFNT1ydHTE06dPAUDsraaR+b6jo6Mk+XTB0tISKSkpAKB1vB/ez3xZrBxoVvssVKgQzMzM4OPjo7W/UKFCSExM5KqgRERERERERAaMhTU9mjp1Kjp27AgA2L59O+7evSvOYnJxcUG7du3EcXLRvXt3LFy4EACwZcsWnDhxAg8fPkSJEiVQr149dOrUSRwnJ76+vti7dy/u3r2LpKSkLP30YmNjxXFEREREREREZJhYWNOj48ePi7fbtWuHatWqoUePHli/fj1CQkK0xmkKcIYu86y0Tp06wdHREXXq1MG2bdu0Ln/9cDaboXNxcRFvt2jR4qPnOvM4IiIiIiIiIkNjlJwgdYRcy4vsLKzp0cOHDwFkXOoZHx+PkJAQrSKLZrtmnBzY29sDAFQqFQRBQHx8PLZv3y7u12zXjJOLNm3aYNmyZRAEAWq1Osu5NjIygkqlQps2bSRMSURERERERJQ7dnZ2MDE1A6JPSB3lPzExNRMXk8wNFtb0qESJEgCAGjVq4OzZs3j27Jm4r3DhwqhRowZ27doljpODwoULAwAEQch2v2a7ZpxcmJqaomPHjti8eXO2+9VqNTp37gxTU1M9JyMiIiIiIiL67xwdHbFh/TokJOhuxlpsbCxmzpyJSZMmwdnZWSf/hp2d3X/qdc/Cmh61adMGS5cuxa5du1CzZk0EBATA1dUVMTExWL9+PXbt2gUjIyNZzWKqWLGiOCtN87dG5u0VK1aUMCURERERERER/VuOjo56WYDR2dkZ5cuX1/m/kxssrOmRsbExzM3NkZSUhFu3biE6OhqOjo6Ijo7GrVu3AAAWFhayWikyLCxMLKbVqFEDNWrUgJmZGVJSUnDhwgWcP38egiAgLCwM1apVkzht3nn//j22bt0KBwcH/PHHH9i7d6+4aEPLli3RrVs3bN26FX379uWsNSIiIiIiIiIDxcKaHoWHhyMpKQmNGjXCsWPHEBgYKO4zNjaGn58fjhw5gvDwcPj4+EiYNO8EBwcDyGjgf+XKFZw/f17cV7x4cTRv3hz79+9HcHCwrAprO3fuRHp6Ovr16wdLS8ssi1H07dsXgYGB2Llzp2wWqiAiIiIiIiJSGhbW9OjFixcAgJEjR6J+/fqYPHmyuC8gIABVqlTBkSNHxHFy8O7dOwBAnTp1UL58ecybN0/c980336BIkSLYv3+/OE4uNAtQ1KpVC4cPH8aMGTPEfZMnT0atWrW0xhEREREREZHhM3r3SuoIuWbI2aXEwpoeFSxYEEDG7K0PZS6yacbJgZeXF06fPo2JEydm2Ze5yObl5aXHVLqnWYCiQ4cOWfZlLrLJaaEKIiIiIiIipbOIOSl1BNIzFtb0yNvbO8u26tWr4+LFi58dZ6jatWuHpUuXam0rXrw4Hj16lGWcnLRp0waLFy/W2la+fHlERkZmGUdERERERETy8M61LtQW9lLHyBWjd69YGMwFFtb0KCQkRLzt5uaGUaNGiauCBgYGIjo6WhxXs2ZNqWLmqQMHDmTZ9mFRTTOudevW+oikFydP/t+TkYWFBb7//nvUqlUL586dw5IlS8RLX0+ePIlGjRpJFZOIiIiIiIjykNrCHmqrwlLHID1iYU2Pxo8fL95OSkrC4MGDxfvFixfXGnf8+HF9RtOZOXPmiLeNjY2Rnp6e7f05c+bIqrCW+XLP9+/fZ1moIvM4FtaIiIiIiIiIDJOR1AGUqHr16li3bh0GDx6Mdu3aYfDgwVi7dq1sVgLNTqlSpbBz507Url0brq6uqF27Nnbu3AlHR0epo+lU+fLlsWfPHrRt2xa+vr5o27Yt9uzZA1dXV6mjEREREREREdF/xBlrErh48SJ69OiB+Ph4cdu2bdu07svN/fv30aZNG3GGWkxMjNZ9uYqMjESfPn3w+PFjAMClS5dw/vx58T4RERERERERGS7OWNOjWbNmibefPXumtS/z/czjDN3IkSPF2+np6ahUqZL4J3NRLfM4Oci8yquFhQU6dOiAVq1aoUOHDrCwsMh2HBEREREREREZFs5Y06Nq1aqJtz+cqZX5fuZxhq5Zs2ZafdbCwsI+Ok5OGjRoIPZZi4mJQUxMzEfHEREREREREZFh4ow1PQoNDc3TcYZg586deTrOUISHh+fpOCIiIiIiIiLKf1hY06PLly/n6ThDEBcXBwAoUKAAvv32W6193377LQoUKKA1Ti6ePHki3s684uuH9zOPIyIiIiIiIiLDwsKaHkVERAAAjI2Ns6yG6ejoCGNjY61xcqC5BNLa2hrLli3T2rds2TJYW1trjZOL69evAwAcHBygVqu19qnVajg4OGiNIyIiIiIiIiLDwx5revTixQsAGf3Uslu8QNNnTTNODszMzAAAr169yna/ZrtmnFw8f/4cAPDy5css+zKv/qoZR0RERERERESGhzPW9MjKykq8/anFCzKPM3SZL3ssUKAAunTpgvXr16NLly7iZaAfjpODzCt/5sU4IiIiIiIiIsp/OGNNj1xdXXN06Z+rq6se0uiHIAji7fT0dGzatAmbNm0CABgZGWU7Tg5yeg7ldK6JiIiIiIiIlIaFNdKpO3fuiLeNjY3h5eWFQoUK4fnz57h27ZrYfyzzODl4+PBhno4jIiIiIiIiovyHhTU92rdvX47HjR49Wsdp8kZycvInV/TUzEorUqQInj59iqtXr2rt12w3MjJCZGTkJ/8tJycnmJub//fQerB3794cjxszZoyO0xARERER5Q/x8fFISEjQ2c+PjY3V+lsX7OzssixG9zm6PO78esxESsHCmh5pZmcZGRllWSky8/bs9uVXcXFxGDhw4GfHPX369JPbb968+dmfExQUhPLly//7kBIrXLiw1mIVmmIiEREREZGSxMfHo3uPnkh9n6Lzf2vmzJk6+9kmpmbYsH5djgtN+jru/HTMRErCwpoeGRsbIz09HWq1Gra2tnj79i3S09NhbGwMKysrvH79WhxnKJycnBAUFPTR/Wq1GkOHDkVqaiqMjY1RrVo1nD9/HjVr1kRISAjS09NhYmKChQsXavVc+9i/ZYjKli2Lbt26wczMDCkpKbhw4QILa0REREQfMPQZPQBn9XxOQkICUt+n4J1bPajN7aSOkytGyQlA9AkkJCTk+Fwb+nHn5piJlISFNT3q378/li9fDgBiEQ3IaOqf+X7//v31ni23zM3NPzuLbMqUKfD390d6ejrOnz8PAOLfmv0VKlTQaU59q1+/Po4fPw4g41gzH++H44iIiIiUTg4zeoDczWRS4mWRanM7qK0K6yhR/qXU4yaSOxbW9KhAgZz9787pOENRt25dTJ8+HYsWLcKTJ0/E7Y6Ojhg8eDDq1q0rYTrdqFixolhY+9w4IiIiIqUz9Bk9wL+f1aPUyyKJiORGXhWcfE4QhDwdZ0jq1q2L2rVrY9++fQgMDMSoUaPQokULg7rs9d9o06YNli1bhvT09I+OMTY2Rps2bfSYioiIiCh/U9KMHiUWE4mI5IiFNT1atWqVeFvTby27+6tWrUKnTp30nk/XjI2N4e7uDgBwd3c32KLa51ZC1fDz80NwcDAsLCzw7t07cbvmvp+fH+7evfvJn2FIK6ESERER0b+npGIiEZEcsbCmR+/fvxdvfziTKfP9zOMo/8npSqgamYtqme8HBwcjODj4k/+toa6ESkRERERERKQELKzpkaWlJRITE8X7xYoVQ926dXHy5Ek8fvxYaxzlX59bCfVDaWlp2LFjBw4fPoxGjRqhffv2Oe6jZ6groRIREREREREpAQtretS/f3/MmzcPAFCwYEE8fvwYW7ZsAQAUKlQIz58/F8dR/pWTlVA/VKBAARw+fBidOnXiDDQiIiIiIiIimWBhTY82bNgg3n7x4oXWPk1RTTOubdu2+opFRERElK/Fx8cjISFBJz87NjZW629dsbOzY3N3IiIiGWJhTY/evn2bp+OIiIiI5C4+Ph7de/RE6vsUnf47M2fO1OnPNzE1w4b161hcIyIikhkW1vSocOHCuHfvHgDA29sbkZGReP/+PUxNTVG+fHmEh4eL44iIiIgISEhIQOr7FLxzqwe1uZ3UcXLFKDkBiD6BhIQEFtaIiIhkhoU1PXJ0dBQLa6ampggMDISrqytiYmKwevVqrXFERERE9H/U5nZQW/HLRyIiIspfWFjTo/v374u3L126hEuXLn12HBERERERERER5U8srOWh5ORkxMXFfXS/qakpgIwVItPS0rLs12w3NTVFZGTkR3+Ok5MTzM3N/3tgIiIiIiIiIiLKNRbW8lBcXBwGDhz42XHZFdUyb//czwkKCkL58uVzF5KIiIiIiIiIiPJEvi6s/fzzz9ixYwciIiJgYWGBL7/8ErNnz4a7u7s4Jjk5GaNGjcLmzZuRkpKCpk2bYsmSJZL0KXNyckJQUNBH96vVagwZMkQsoFWsWBHXr18X/wYyZq0tWrQIRkZGn/x3iIiIiIiIiIhIWvm6sHbixAkMHjwY1apVQ1paGiZOnIgmTZrgxo0bsLKyAgCMGDECe/fuxdatW2FnZ4chQ4agffv2OHPmjN7zmpubf3Ymmb+/P/z9/QFALKZp/tbsr1Chgu5CEhERERERERFRnsjXhbUDBw5o3V+zZg2KFi2Ky5cvo27dukhISMDKlSuxceNGNGzYEACwevVqfPHFFzh//jxq1qyZ7c9NSUlBSkqKeP/169e6O4gP1K1bF9OnT8eiRYvw5MkTcbujoyMGDx6MunXr6i0LERERERERERHl3sevN8yHEhISAAAFCxYEAFy+fBmpqalo1KiROKZChQpwcnLCuXPnPvpzfv75Z9jZ2Yl/SpcurdvgH6hbty42bdqEUaNGAQBGjRqFjRs3sqhGRERERERERGRADKawplarMXz4cNSuXRuenp4AgMePH8PU1BT29vZaYx0dHfH48eOP/qwJEyYgISFB/HPv3j1dRs+WsbGx2CvO3d0dxsbGes9ARERERERERES5l68vBc1s8ODB+Oeff3D69On//LPMzMxgZmaWB6mIiIiIiIiIiEipDGLG2pAhQ7Bnzx4cO3YMpUqVErcXK1YM79+/x6tXr7TGx8fHo1ixYnpOSURERERERERESpKvZ6wJgoChQ4fir7/+wvHjx+Hq6qq1v2rVqjAxMcGRI0fQoUMHAMCtW7cQFxeHWrVqSRGZiIiIiOg/i4+PF/sL57XY2Fitv3XFzs4Ojo6OOv03iIiIpJavC2uDBw/Gxo0bsXPnTtjY2Ih90+zs7GBhYQE7Ozv069cPI0eORMGCBWFra4uhQ4eiVq1aH10RlIiIiIgoP4uPj0f3Hj2R+j7l84P/g5kzZ+r055uYmmHD+nUsrhERkazl68La0qVLAQD169fX2r569Wr07t0bADB37lwYGRmhQ4cOSElJQdOmTbFkyRI9JyUiIiIiyhsJCQlIfZ+Cd271oDa3kzpOrhglJwDRJ5CQkMDCGhERyVq+LqwJgvDZMebm5li8eDEWL16sh0RERERERPqhNreD2qqw1DGIiIjoEwxi8QIiIiIiIiIiIqL8hoU1IiIiIiIiIiKiXGBhjYiIiIiIiIiIKBdYWCMiIiIiIiIiIsoFFtaIiIiIiIiIiIhygYU1IiIiIiIiIiKiXCggdQAiIiIiypn4+HgkJCTo7OfHxsZq/a0LdnZ2cHR01NnPJyIiItInFtaIiIiIDEB8fDy69+iJ1PcpOv+3Zs6cqbOfbWJqhg3r17G4RkRERLLAwhoRERGRAUhISEDq+xS8c6sHtbmd1HFyxSg5AYg+gYSEBBbWiIiISBZYWCMiIiIyIGpzO6itCksdg4iIiIjAxQuIiIiIiIiIiIhyhTPWiIiIyCCxkT8RERERSY2FNSIiIhlQWpGJjfyJiIjyP6N3r6SOkGuGnJ30i4U1IiIiA6fEIhMb+RMREeV/FjEnpY5ApHMsrBERERk4JReZ2MifiIgo/3rnWhdqC3upY+SK0btXLAxSjrCwRkREJBMsMhEREVF+oraw53sTkj2uCkpERERERERERJQLLKwRERERERERERHlAgtrREREREREREREucDCGhERERERERERUS6wsEZERERERERERJQLLKwRERERERERERHlAgtrREREREREREREucDCGhERERERERERUS6wsEZERERERERERJQLLKwRERERERERERHlAgtrREREREREREREucDCGhERERERERERUS6wsEZERERERERERJQLBaQOQEREREREREQkB0bJCVJHyDVDzi4lFtaIiIiIiIiIiP4DOzs7mJiaAdEnpI7yn5iYmsHOzk7qGAaFhTUiIiIiIiIiov/A0dERG9avQ0KCbmZ9xcbGYubMmZg0aRKcnZ118m8AGQVCR0dHnf18OWJhjYhI5uLj43X6Ap/5b135ty/wSjxmIiIiIpKWo6Ojzt+/OTs7o3z58jr9N+jfYWGNiEjG4uPj0b1HT6S+T9HpvzNz5kyd/nwTUzNsWL8uR29UlHjMREREREQkDRbWiEhRDH0m07+dxZSQkIDU9yl451YPanPD7JVglJwARJ9AQkJCjo5dicdMRERERETSYGGNiBRDDjOZcjuLSW1uB7VVYR2lyp+UeMxERERERKRfLKwRkWIY+kwmzmIiIiIiIiLKX1hYIyLF4UwmIiIiIiIiygtGUgcgIiIiIiIiIiIyRCysERERERERERER5QILa0RERERERERERLnAwhoREREREREREVEucPECIoWKj49HQkKCzn5+bGys1t+6YGdnx9UxiYiIZMTo3SupI+SaIWcnIqLcY2GNSIHi4+PRvUdPpL5P0fm/NXPmTJ39bBNTM2xYv47FNSIiIpmwiDkpdQQiIqJ/hYU1IgVKSEhA6vsUvHOrB7W5ndRxcsUoOQGIPoGEhAQW1oiIiGTinWtdqC3spY6RK0bvXrEwSESkQCysESmY2twOaqvCUscgIiIiAgCoLez53oSIiAwKC2tERERERESkN4bcj86QsxORbrCwRkRERERERHrDS2aJSE5YWCMiIiIiIiK9YS89IpITFtaIiIiIiIhIb9hLj4jkxEjqAERERERERERERIaIM9aIiIiIKN8z5IbhhpydiIiIPo2FNSIiIiLK99jTiIiIiPIjFtaIiIiIKN9js3MiIiLKj1hYIyIiIqJ8j83OiYiIKD/i4gVERERERERERES5wMIaERERERERERFRLvBSUMoiPj4eCQkJOvnZsbGxWn/rip2dHRwdHXX6bxARERERERGRsrGwRlri4+PRvUdPpL5P0em/M3PmTJ3+fBNTM2xYvy7HxTVdFhMB/RQUWUwkIiIiIiIi0i8W1khLQkICUt+n4J1bPajN7aSOkytGyQlA9AkkJCTkqNCkr2IioNuC4r8tJhIRERERERHRf8PCGmVLbW6nmJW3lFhMJCIiovzP6N0rqSPkmiFnJyIi+jdYWCP6/5RUTCQiIqL8zyLmpNQRiIiI6DNYWCMiIiIiyofeudaF2sJe6hi5YvTuFQuDRESkCCysfQZXyCQiIiIiKagt7DmbnkhGDPUSaUPNTaQvLKx9glJXyCQiIiIiIv0w5KKFIWeXAmdxEskTC2ufwKb2RERERESkSyy2KIehXt7NS7uJPo2FtRxgU3siIiIiItIFQy22ACy4/Fu8vJtInlhYIyIiIiIikgiLLUREhs1I6gBERERERERERESGiDPWiIiIZMKQm0gbcnYiIiIiUi4W1oiIiGSCfW6IiIiIiPSLhTUiIiKZYANsIiIiIiL9YmGNiIhIJpTYANuQLyE15OxERERElIGFNSIiIjJYSpzlZsgFOUPOTkRERJQdFtaIiIjIYCnx8lclFhOJiIiI8isW1oiIiMhgKfHyVyUWE4mIiIjyKxbWiIiIiAyIEouJRERERPmVkdQBiIiIiIiIiIiIDBELa0RERERERERERLnAwhoREREREREREVEusLBGRERERERERESUCyysERERERERERER5QILa0RERERERERERLnAwhoREREREREREVEusLBGRERERERERESUCyysERERERERERER5QILa0RERERERERERLnAwhoREREREREREVEusLBGRERERERERESUCyysERERERERERER5QILa0RERERERERERLnAwhoREREREREREVEuFJA6ABER6Z7Ru1dSR8i13GZX4jETEREREZF+sbBGRKQAFjEnpY6gd0o8ZiIiIiIi0i8W1ohIcQx1NtB/yf3OtS7UFvZ5lkWfjN69ylWRTInHTERERERE+sXCGhEpjhILFmoLe6itCksdQ6+UeMxERERERKRfLKwRkeIY6kwmzmIiIiIiIiLKX1hYIyLF4UwmIiIiIiIiygtGUgcgIiIiIiIiIiIyRCysERERERERERER5QIvBSVSMENdHRMw7OxEREREREQkDyysESkYG+ETERERERER5R4La0QKZqirYwJcIZOIiIiIiIikx8IakYJxdUwiIiIiIiKi3OPiBURERERERERERLnAwhoREREREREREVEusLBGRERERERERESUCyysERERERERERER5QILa0RERERERERERLnAwhoREREREREREVEusLBGRERERERERESUCyysERERERERERER5YJsCmuLFy+Gi4sLzM3NUaNGDVy8eFHqSEREREREREREJGOyKKz9+eefGDlyJKZOnYorV66gUqVKaNq0KZ48eSJ1NCIiIiIiIiIikqkCUgfIC3PmzMGAAQPQp08fAMCyZcuwd+9erFq1CuPHj88yPiUlBSkpKeL9hIQEAMDr16+1xiUmJiItLQ3CsyioEuI/H0RIB1KT/sOR5JCJJaAyztFQITXjGBITE7McX3by7TEDOT5uHvO/OObXTyC8T85ZFnUajFLe5mzsf6A2swKMPv/UJCS//lfHDOTiuHnMOpPTYwb+/XHn12MGdHeuecw85o+HyV+/03we4+P7Y3jMPOaPh8lfv9NKfB5T4jEDuTvufyM5ORn379/P8fi4uDikpaXhxo0bSExM/Ff/VqlSpWBubv5vI+a5f3vMQO6P+78es+acC4Lw2bEqISej8rH379/D0tIS27ZtQ9u2bcXtvXr1wqtXr7Bz584s/820adMQEBCgx5RERERERERERGRI7t27h1KlSn1yjMHPWHv27BnS09Ph6Oiotd3R0RERERHZ/jcTJkzAyJEjxftqtRovXrxAoUKFoFKpdJo3s9evX6N06dK4d+8ebG1t9fbvSkmJxwwo87h5zDxmuVLiMQPKPG4eM49ZrnjMyjhmQJnHzWPmMcuVEo8ZkO64BUHAmzdvUKJEic+ONfjCWm6YmZnBzMxMa5u9vb00YQDY2toq6hcDUOYxA8o8bh6zMvCYlUOJx81jVgYeszIo8ZgBZR43j1kZeMzKIcVx29nZ5WicwS9eULhwYRgbGyM+Xrs3Vnx8PIoVKyZRKiIiIiIiIiIikjuDL6yZmpqiatWqOHLkiLhNrVbjyJEjqFWrloTJiIiIiIiIiIhIzmRxKejIkSPRq1cv+Pr6onr16pg3bx7evn0rrhKaX5mZmWHq1KlZLkuVMyUeM6DM4+YxKwOPWTmUeNw8ZmXgMSuDEo8ZUOZx85iVgcesHIZw3Aa/KqjGokWL8Ouvv+Lx48eoXLkyFixYgBo1akgdi4iIiIiIiIiIZEo2hTUiIiIiIiIiIiJ9Mvgea0RERERERERERFJgYY2IiIiIiIiIiCgXWFgjIiIiIiIiIiLKBRbWiIiIiIiIiIiIcoGFNSIiIiIiIiIiolxgYU0CaWlpOHz4MJYvX443b94AAB4+fIjExESJkxERESnb9OnTkZSUlGX7u3fvMH36dAkSEVFuubm54fnz51m2v3r1Cm5ubhIk0g8+jynDunXrkJKSkmX7+/fvsW7dOgkSkS69f/8et27dQlpamtRRdG7q1KmIjY2VOsa/ohIEQZA6hJLExsaiWbNmiIuLQ0pKCiIjI+Hm5oZhw4YhJSUFy5Ytkzpinrt//z7s7e1hbW2ttT01NRXnzp1D3bp1JUqmf1FRURgwYACOHj0qdRS9iY+Px/Lly+Hv7y91FJ1wcHCASqXKsl2lUsHc3Bxly5ZF79690adPHwnS6YaPj0+OjrlBgwYSpNOdkJAQHDt2DE+ePIFardbaN2fOHIlS6dbt27c/esxy/Z02NjbGo0ePULRoUa3tz58/R9GiRZGeni5RMt0JCQmBWq1GjRo1tLZfuHABxsbG8PX1lSiZ7qSnp2PNmjU4cuRIto9vJb1Oy5mRkREeP36c5fc5Pj4eTk5O2RYl5EAJz2MLFizI8dgffvhBh0mko4TznJ0jR4589Ll71apVEqXSnaSkJAwdOhRr164FALF+MHToUJQsWRLjx4+XOGHeq1y5Mv755x/Uq1cP/fr1Q4cOHWBmZiZ1rE8qIHUApRk2bBh8fX0RFhaGQoUKidvbtWuHAQMGSJgs7z169Aht2rTB5cuXoVKp0LVrVyxZskQssL148QINGjSQ7ZN+dhITE3HixAmpY+jV48ePERAQINsP4f7+/pg5cyaaN2+O6tWrAwAuXryIAwcOYPDgwYiJicF3332HtLQ02fyON2vWDEuXLoWXl5d4zCEhIQgPD0fv3r1x48YNNGrUCDt27ECbNm0kTps3fvrpJ0yePBnu7u5wdHTUKixmV2SUg99//x3fffcdChcujGLFimU5Zrn+TguCkO05DQsLQ8GCBSVIpHuDBw/G2LFjsxTWHjx4gNmzZ+PChQsSJdOdYcOGYc2aNWjZsiU8PT1l+3sMfPzLkOxcuXJFx2n0Y9euXeLtgwcPws7OTryfnp6OI0eOwMXFRYJk+qGE57G5c+fmaJxKpZJtYe1j5/n+/ftaj3k5CQgIwPTp0+Hr64vixYvL+rlbY8KECQgLC8Px48fRrFkzcXujRo0wbdo0WRbWQkNDcfXqVaxevRrDhg3D4MGD0blzZ/Tt2xfVqlWTOl62WFjTs1OnTuHs2bMwNTXV2u7i4oIHDx5IlEo3xo8fDyMjI1y4cAGvXr3C+PHj0aBBAwQHB8PBwQFAxguCnHzu2zO5nWMACA8P/+T+W7du6SmJNE6fPo0ZM2bg22+/1dq+fPlyBAcHY/v27fD29saCBQtkU1h79uwZRo0ahSlTpmhtnzFjBmJjYxEcHIypU6fixx9/lE1hbf78+Vi1ahV69+4tdRS9mTFjBmbOnIlx48ZJHUUvNLNPVSoVypcvr/VmPT09HYmJiVl+z+Xixo0bqFKlSpbtPj4+uHHjhgSJdG/z5s3YsmULWrRoIXUUnWvbtq3UEfROc8wqlQq9evXS2mdiYgIXFxcEBgZKkEy3lPQ8FhMTI3UEyWiK5SqVCn5+fihQ4P8+0qenpyMmJkarACMny5Ytw5o1a9CjRw+po+jN33//jT///BM1a9bU+p2uWLEioqKiJEymWz4+PvDx8UFgYCB2796N1atXo3bt2qhQoQL69euH3r1756sCMgtreqZWq7OdoXX//n3Y2NhIkEh3Dh8+jL/++ku8hOTMmTPo2LEjGjZsiCNHjgCQ30yP4cOHo3jx4lkKpxrv37/XcyLdq1y5MlQqVbZFUs12uZ3nzA4ePIjZs2dn2e7n54dRo0YBAFq0aCGrb5O2bNmCy5cvZ9neuXNnVK1aFb///ju6dOkiq8sjjYyMULt2balj6NXLly/RsWNHqWPozbx58yAIAvr27YuAgACtN2umpqZwcXFBrVq1JEyoO2ZmZoiPj8/Sc+rRo0daH9jkxNTUFGXLlpU6hl5MnTpV6gh6p7k8zNXVFSEhIShcuLDEifRDyc9jSqIpHIeGhqJp06Za7XY057lDhw4SpdOt9+/f48svv5Q6hl49ffo0y+W+APD27VtZf8bSEAQBqampeP/+PQRBgIODAxYtWoQpU6bg999/xzfffCN1RAAsrOldkyZNMG/ePAQFBQHIKDwkJiZi6tSpsvvWNCEhQZyZBmS8cd+xYwc6duyIBg0aYMOGDRKm0w1nZ2fMnj0bnTp1ynZ/aGgoqlatqudUulWwYEH88ssv8PPzy3b/9evX0apVKz2n0p+CBQti9+7dGDFihNb23bt3i5dbvH37VlaFc3Nzc5w9ezbLh9KzZ8/C3NwcQMaHGs1tORgxYgQWL16MefPmSR1Fbzp27Ijg4GDZzG74nF69eiEtLQ0qlQoNGzZE6dKlpY6kN02aNMGECROwc+dO8YP4q1evMHHiRDRu3FjidLoxatQozJ8/H4sWLVLEBxOlUtqsJs3sPFdXV9SuXVu2hXEAGDlyZI7HyumLPiCjWJ6eng4XFxc0adIExYsXlzqS3vTv3x8bN27MctWEnPn6+mLv3r0YOnQogP+bmLJixQpZF8ovX76M1atXY9OmTTAzM0PPnj2xePFi8fPHwoUL8cMPP7CwplSBgYFo2rQpPDw8kJycjK5du+L27dsoXLgwNm3aJHW8POXm5obw8HCUK1dO3FagQAFs3boVHTt2xP/+9z8J0+lG1apVcfny5Y8W1j42s8uQVa1aFQ8fPoSzs3O2+1+9eiW7Y85sypQp+O6773Ds2DGtfmP79u0TFyM5dOgQ6tWrJ2XMPDV06FB8++23uHz5stjnICQkBCtWrMDEiRMBZMzkq1y5soQp89bo0aPRsmVLlClTBh4eHjAxMdHav2PHDomS5a3Ml7OXLVsWU6ZMwfnz5+Hl5ZXlmOXYs6ZAgQL47rvvcPPmTamj6NVvv/2GunXrwtnZGT4+PgAyvghydHTE+vXrJU6Xd9q3b691/+jRo9i/fz8qVqwo299p4OOL7GTnxYsXOk6je2xqD9jY2ODmzZvw8vICAOzcuROrV6+Gh4cHpk2b9tErKwzJ1atXczROroVzY2NjDBo0SBGvV5mLqGq1GkFBQTh8+DC8vb2zPHfLrYgKZPT5bd68OW7cuIG0tDTMnz8fN27cwNmzZ2Xbu9vLywsRERFo0qQJVq5ciVatWsHY2FhrTJcuXTBs2DCJEmbFVUElkJaWhs2bNyM8PByJiYmoUqUKunXrBgsLC6mj5alx48YhNDQUBw8ezLIvLS0NHTp0wJ49e2S1eMGNGzeQlJT00RXUUlNTP1mEMkR//fUX3r59i+7du2e7/+XLl9i1a1eWHidycubMGSxatEjsJ+fu7o6hQ4fKeqr6H3/8ke0xd+3aFQDw7t07cZVQORgyZAhWrFiBBg0aZFm8AABWr14tUbK85erqmqNxKpUK0dHROk4jjfr162P48OGK60v19u1b/PHHHwgLC4OFhQW8vb3RpUuXLB9aDNm/WZ1ZLr/TAMSV5HJCDq/VfB4DqlWrhvHjx6NDhw6Ijo6Gh4cH2rdvj5CQELRs2VJRs6/lzNfXF7Nnz/7oVSNykdNV5lUqlWxXdI6KisKsWbMQFhYm1g/GjRsnFs/l5scff0Tfvn1RsmRJqaPkGAtrpDNpaWlISkqCra3tR/c/ePBAVkUmIpInGxsbbN68GS1btpQ6CunYli1bMGHCBIwYMQJVq1aFlZWV1n5vb2+JkhER5YydnR2uXLmCMmXKYPbs2Th69CgOHjyIM2fOoHPnzrh3757UESkPHDhwABMmTMCPP/6Y7evVxz6DEVHeY2FNzzIv/52ZZmZH2bJlc/xNm6E4ffo06tSpI3UMycyaNQvffvst7O3tpY6iU0o+z2q1Gnfu3MGTJ0/EhskadevWlSiV7r1//z7bY3ZycpIoke44Ozvj4MGDqFChgtRRJJOeno5r167B2dlZq3+m3BgZGWXZlnkhFjnNss7s1q1bWLhwoXhZ0RdffIEhQ4bI9jEfExODtLQ0rXYVAHD79m1x1Ui5S05OzrKoEj+Iy4OtrS0uX76McuXKoXHjxvjf//6HYcOGIS4uDu7u7nj37p3UEfPcpUuXsGXLFsTFxWV5XMvp0u7MMr9eZZ5JL/fXq8xev36No0ePokKFCrJ9vbpy5QpMTExkfWn3h9LT07FmzRocOXIk288a+XFmIgtremZkZJRtn63Mb9rr1KmDv//+WzYfXExNTVGyZEl06dIF3bt3h4eHh9SR9MrW1hahoaFZVluTG6We5/Pnz6Nr166IjY3N9vdajm9qbt++jb59++Ls2bNa2+X8Rm716tU4cOAAVq9eDUtLS6nj6MXw4cPh5eWFfv36IT09HXXr1sW5c+dgaWmJPXv2oH79+lJH1InY2NhP7pfjLOvt27ejc+fO8PX1FRshnz9/HiEhIdi8ebMsV5erV68e+vbtm+XSxw0bNmDFihU4fvy4NMF07O3btxg3bhy2bNmC58+fZ9kvt+fvvn37fnL/qlWr9JREvzQLsDRq1Aj9+vXDjRs3ULZsWZw4cQK9evXC3bt3pY6YpzZv3oyePXuiadOmCA4ORpMmTRAZGYn4+Hi0a9dOVpd2Z/a5/lpy6u+r0alTJ9StWxdDhgzBu3fvUKlSJdy9exeCIMj29UqJl3YPGTIEa9asQcuWLVG8ePEsLVjmzp0rUbJPEEivDh8+LNSoUUM4fPiw8Pr1a+H169fC4cOHhVq1agl79+4VTp8+LVSsWFHo27ev1FHzzNOnT4WFCxcKX375paBSqYRKlSoJv/zyi3Dv3j2po+mFtbW1EBUVJXUMnVPqea5UqZLQsWNH4caNG8LLly+FV69eaf2Roy+//FKoW7eusG/fPuHq1atCaGio1h85qly5smBjYyNYW1sLnp6ego+Pj9YfOSpZsqQQEhIiCIIg/PXXX0KJEiWEW7duCZMnTxa+/PJLidNRXnJzcxOmTJmSZbu/v7/g5uYmQSLds7GxEW7fvp1l++3btwU7Ozv9B9KT77//Xvjiiy+Ebdu2CRYWFsKqVauEH3/8UShVqpSwYcMGqePlubZt22r9admypeDs7CzY2dkJ7dq1kzqezoSFhQmenp6Cra2tMG3aNHH7kCFDhC5dukiYTDe8vLyERYsWCYLwf++71Wq1MGDAAMHf31/idJSXHB0dxfeaf/zxh1C2bFnh7du3wpIlS4TKlStLnE43bG1thTt37giCIAizZs0SmjRpIgiCIJw+fVooVaqUlNF0plChQsLevXuljvGvcMaannl6eiIoKChLU/MzZ85g4MCBuH79Og4fPoy+ffsiLi5OopS6ExMTg40bN2LTpk2IiIhA3bp18+VUzv9CEATcu3cPRYsWhbm5OWxsbBAWFib7GWuZKeE8a1hZWSEsLExc+lkJrKyscPnyZdlOuc9OQEDAJ/dPnTpVT0n0x9zcHHfu3EGpUqUwcOBAWFpaYt68eYiJiUGlSpXw+vVrqSPqTFRUFObNmydeFunh4YFhw4ahTJkyEifTDUtLS4SHh2d5Hrt9+zYqVaqEpKQkiZLpjp2dHY4fPy6ugqpx+fJl1K9fH2/evJEomW45OTlh3bp1qF+/PmxtbXHlyhWULVsW69evx6ZNm7Bv3z6pI+qcWq3Gd999hzJlymDs2LFSx9Gr5ORkGBsby2pREiDjfcn169fh4uKCQoUK4fjx4/Dy8sLNmzfRsGFDPHr0SOqIOvPq1SusXLlSfL2qWLEi+vbtCzs7O4mT6YaFhQUiIyNRunRp9OzZEyVKlMCsWbMQFxcHDw8PJCYmSh0xzynx0u4SJUrg+PHjKF++vNRRcqyA1AGUJioqKtv+Fba2tuLKROXKlcOzZ8/0HU0vXF1dMX78eFSqVAlTpkyR5RLBgiCgbNmyuH79OsqVK4cbN26gRIkSUsfSKyWcZ40aNWrgzp07iiqseXh4yPY56mPkWDj7HEdHR9y4cQPFixfHgQMHsHTpUgBAUlJSliXP5eTgwYNo3bo1KleujNq1awPI+PKrYsWK2L17Nxo3bixxwrxXv359nDp1Ksvz2OnTp/HVV19JlEq36tati59//hmbNm0SH8/p6en4+eefZd0v9MWLF+IXfba2tnjx4gUAoE6dOvjuu++kjKY3RkZGGDlyJOrXry/rwtqrV6+wbds2REVFYcyYMShYsCBu3LgBR0dHg1ppLyccHBzEYnjJkiXxzz//wMvLC69evZLlFwMaly5dQtOmTWFhYYHq1asDAObMmYOZM2ciODgYVapUkThh3itdujTOnTuHggUL4sCBA9i8eTMA4OXLl7JZif5Dvr6+mDFjBho1aoQTJ06I78diYmLg6OgocTrdGDVqFObPn49FixZluQw0v2JhTc+qVq2KMWPGYN26dShSpAgA4OnTpxg7diyqVasGIOMb4tKlS0sZUyfOnDmDP/74A9u2bUNycjLatGmDn3/+WepYec7IyAjlypXD8+fPUa5cOVmey09RynnWGDp0KEaNGoXHjx/Dy8sry7fAclxBcPbs2Rg7dix++umnbI+Zza/loU+fPujUqZPY26JRo0YAgAsXLsh6tuL48eMxYsQIzJo1K8v2cePGybKw1rp1a4wbNw6XL19GzZo1AWT0WNu6dSsCAgK0Fl5q3bq1VDHz1KxZs1CvXj24u7uLxcNTp06JjbDlys3NDTExMXByckKFChWwZcsWVK9eHbt375b9IkuZRUVFIS0tTeoYOhMeHg4/Pz/Y29vj7t27GDBgAAoWLIgdO3YgLi4O69atkzpinqpbty4OHToELy8vdOzYEcOGDcPRo0dx6NAh+Pn5SR1PZ0aMGIHWrVvj999/R4ECGR/r09LS0L9/fwwfPhwnT56UOGHeGz58OLp16wZra2s4OzuL/V5PnjwpNveXm3nz5qFbt274+++/MWnSJPFLsG3btmW5Ck4uTp8+jWPHjmH//v2oWLFils8a+XFBEl4KqmcRERFo27YtYmJixILLvXv34Obmhp07d6J8+fL4+++/8ebNG/To0UPitHljwoQJ2Lx5Mx4+fIjGjRujW7duaNOmjawbgO/evRu//PILli5dCk9PT6nj6IUSzzOgzBUENcf84TdIcj/mT31jJsdjBjLetN27dw8dO3ZEqVKlAABr166Fvb092rRpI3E63TA3N8e1a9eyrBYZGRkJb29vJCcnS5RMd7J7HsuO3H6/Hz58iEWLFiEsLAwWFhbw9vbGkCFDULBgQamj6czcuXNhbGyMH374AYcPH0arVq0gCAJSU1MxZ84cDBs2TOqIeWrkyJFa9wVBwKNHj7B371706tULixYtkiiZbjVq1AhVqlTBL7/8otWS5OzZs+jatavsFi948eIFkpOTUaJECajVavzyyy84e/YsypUrh8mTJ8tmQbgPWVhY4OrVq1m+7Lpx4wZ8fX1lO1vv0qVLuHfvHho3bgxra2sAwN69e2Fvby/ONFcCuV7aDWR8ufsp+XFBEhbWJKBWqxEcHIzIyEgAgLu7Oxo3bpzjN7aGpnbt2ujWrRs6deqEwoULSx1HLxwcHJCUlIS0tDSYmprCwsJCa7/m0gs5UeJ5BpS5gqASV6HauXOn1v3U1FRcvXoVa9euRUBAAPr16ydRMsprpUuXxpw5c9CxY0et7Vu2bMHo0aNl2f9UaVJTU9GsWTMsW7YsSwFVaWJjY3H58mWULVtWljOsGzRooHXfyMgIRYoUQcOGDdG3b19xlo/c2NnZ4cqVKyhTpoxWYS02Nhbu7u6y/IJAiRwdHbF+/Xo0adJEa/vBgwfRs2dPxMfHS5SMSHnk+WqST6WmpsLCwgKhoaFo1qwZmjVrJnUkvThz5ox4e9OmTWjdujWsrKwkTKR7clz2+HOUeJ4BeRbOPkeOhbPPyW521tdff42KFSvizz//lE1hbcGCBRg4cCDMzc2xYMGCT4794Ycf9JRKvwYMGICBAwciOjpavMTizJkzmD17dpbZL0rj5eWFffv2GXyLAxMTE4SHh0sdQ3L3799H6dKlZf06duzYMakjSMLMzCzbBWYiIyPFVjRy9OTJEzx58gRqtVpruxyLxgDwzTffoF+/fvjtt9+0Xq/GjBmDLl26SJwu74wcORI//vgjrKysPvs6PGfOHD2l0p/09HTMnTsXW7ZsQVxcHN6/f6+1X44TNgwRZ6zpmZubG/766y9UqlRJ6iiSsLW1RWhoqKJWyFQipZ1npa0gCChvFaqPiY6Ohre3t2xWoXJ1dcWlS5dQqFAhuLq6fnScSqUSF9yRG0EQMG/ePAQGBuLhw4cAMlanGjNmDH744QeDaaKrC3Ja5XrEiBEwMzPL0ktPSZT2Wq0k/fv3x/Pnz7FlyxYULFgQ4eHhMDY2Rtu2bVG3bl3ZfQF8+fJl9OrVCzdv3sSHH23ldgl7Zu/fv8eYMWOwbNkysWegiYkJvvvuO8yaNQtmZmYSJ8wbDRo0wF9//QV7e/sss1AzU6lUsuyR6e/vjxUrVmDUqFGYPHkyJk2ahLt37+Lvv/+Gv7+/bL7orFKlCo4cOQIHBwf4+Ph88v3WlStX9JgsZ1hY07OVK1dix44dWL9+vax7eHyMnN6Uf05UVBRWr16NqKgozJ8/H0WLFsX+/fvh5OSEihUrSh1Pp5R0nj+2gmBYWJhsVxDMbhWqkJAQvHv3TrarUGXn3bt3mDBhAvbv349bt25JHYd0QLPKnI2NjcRJ8gc5PbcPHToU69atQ7ly5VC1atUsM6zlOOvhQ3I6n5+ybdu2j870yI8fzvJCQkICvv76a1y6dAlv3rxBiRIl8PjxY9SqVQv79u2T3RUFlSpVQpkyZTBu3Dg4Ojpm+UAu51mZQMZq3VFRUQCAMmXKyL6/sdKUKVMGCxYsQMuWLWFjY4PQ0FBx2/nz57Fx40apI+aJgIAAjBkzBpaWlpg2bdonC2tTp07VY7KcYWFNz3x8fHDnzh2kpqbC2dk5ywubXF/gNZTyJu7EiRNo3rw5ateujZMnT+LmzZtwc3PDrFmzcOnSJWzbtk3qiDqllPMMZPxON23aNNsVBIODg2X5O/3VV1+hbNmy2a5CFR0dLctVqBwcHLRe4AVBwJs3b2BpaYkNGzbIZqVEok+R03O7Emc9fEhO5/NjFixYgEmTJqF3794ICgpCnz59EBUVhZCQEAwePBgzZ86UOqJOab7oS0xMRJUqVcTVneXGxsYGV69eFVdLJJITKysr3Lx5E05OTihevDj27t2LKlWqIDo6Gj4+PkhISJA6IoE91vSubdu2UkeQ1P79+1GyZEmpY+jc+PHjMWPGDIwcOVJrpkPDhg1luwJVZko5zwBw8+ZNbNmyJcv2vn37yu5SC41Lly5pFdUAoECBAhg7dix8fX0lTKY7c+fO1SqsaRpg16hRQ1arjf2bHmJyndETHx+P0aNH48iRI3jy5EmWy4rkekmR0ii191ZmEydOlP3VE0uWLEFQUBC6dOmCNWvWYOzYsXBzc4O/v7+s+xKtW7cO33zzDWrXrq21SuL79++xefNm9OzZU8J0ec/Pzw9hYWGKK6y9ffsWs2bNEl+vPuwtJ5eWDe3bt8/x2B07dugwiTRKlSqFR48ewcnJCWXKlBGvDgkJCZHN5b4fcnNzQ0hICAoVKqS1/dWrV2JRMb9hYU3P8uO0RX1IS0vD8ePHERUVhUqVKsHMzAwPHz6Era2tuEyynFy7di3bablFixbFs2fPJEikH0o7zwBQpEgRhIaGZllZLjQ0FEWLFpUolW7Z2toiLi4uy/Lu9+7dk+0lc71795Y6gl5cvXo1R+Pk3Gesd+/eiIuLw5QpU1C8eHFZHysp2/jx46WOoHNxcXFiU3cLCwvx8u4ePXqgZs2asv2ys0+fPmjWrFmW9yFv3rxBnz59ZFdYW7FiBXr16oV//vkHnp6eMDEx0dov11nl/fv3x4kTJ9CjRw9Zv14prX/vh9q1a4cjR46gRo0aGDp0KLp3746VK1ciLi4OI0aMkDqeTty9ezfbLzJTUlJw//59CRJ9HgtrpHOxsbFo1qwZ4uLikJKSgsaNG8PGxgazZ89GSkoKli1bJnXEPGdvb49Hjx5laf599epV2c7kUuJ5BpS5gqBSVqEKDw+Hp6cnjIyMPruCoFxWHOMsHuD06dM4deoUKleuLHUU0rFLly59tPeWHGc9aKxcuRJz587F7du3AQDlypXD8OHD0b9/f4mT5b1ixYrhxYsXcHZ2hpOTE86fP49KlSohJiYmy2xUOREEIdsiy/3792VZpDh37hzOnDmD/fv3Z9kn58UL9u/fj71792rNSpSj1atXSx1BUpnbzXzzzTdwcnLCuXPnUK5cObRq1UrCZHlv165d4u2DBw9qPV+lp6fjyJEjn1xcS0osrOmZEpfLHTZsGHx9fREWFqY1nbNdu3YYMGCAhMl0p3Pnzhg3bhy2bt0KlUoFtVqNM2fOYPTo0bL7llBDiecZAKZMmQIbGxsEBgZiwoQJADJWEJw2bZpsVun50G+//QaVSoWePXtmuwqVXFSuXBmPHz9G0aJFUblyZahUqmw/iMn5TbuG5tvBUqVKSZxE90qXLi3rD9yfk5ycDHNz82z3LV++HI6OjnpOpBuay+GaNm2K4OBgNGnSBJGRkYiPj0e7du2kjqcz/v7+mDNnDoYOHYpatWoByChKjBgxAnFxcZg+fbrECfNWw4YNsWvXLvj4+KBPnz4YMWIEtm3bhkuXLv2ry8sMhWYlPZVKBT8/P62WDenp6YiJiUGzZs0kTKgbmlk8U6ZMkc1zVE44ODjI/nLuj3n69Km4cJS7uzuKFCkicSL9qVWrlvj8LTeatlkqlQq9evXS2mdiYgIXFxcEBgZKkOzzuHiBnilludzMChUqhLNnz8Ld3V2rUe7du3fh4eGBpKQkqSPmuffv32Pw4MFYs2YN0tPTUaBAAaSnp6Nr165Ys2YNjI2NpY6Y55R4nj+ktBUE5b4KVWxsLJycnKBSqRAbG/vJsXJccUytVmPGjBkIDAxEYmIigIzH9qhRozBp0iQYGRlJnFA3goODERgYiOXLl8PFxUXqOHqhVqsxc+ZMLFu2DPHx8YiMjISbmxumTJkCFxcX9OvXT+qIec7b2xuDBg3C4MGDxdcsV1dXDBo0CMWLF0dAQIDUEXWiSJEiWLBgQZbZxZs2bcLQoUNl165CrVZDrVaLBabNmzfj7NmzKFeuHAYNGgRTU1OJE+YtzeM2ICAAo0aN0mrDYWpqChcXF3To0EF2x515pUQl2bBhA3bu3Im1a9fK7j3Yx7x9+1Zc1VnTU87Y2Bg9e/bEwoULZfv/4datW1i4cCFu3rwJAPjiiy8wdOhQuLu7S5xMN1xdXRESEoLChQtLHSXnBNIrNzc3Yc+ePYIgCIK1tbVw584dQRAEYf78+UKXLl2kjKYz9vb2wvXr1wVByDjmqKgoQRAE4dSpU0LRokWljKZzsbGxwt69e4U///xTiIyMlDqOTin5PBPJ0fjx44UiRYoIS5YsEcLCwoSwsDBh8eLFQpEiRYSJEydKHS9P2dvbCw4ODuIfU1NTwcjISLC2ttba7uDgIHVUnQgICBDc3NyEDRs2CBYWFuLz9+bNm4WaNWtKnE43LC0thZiYGEEQBKFgwYJCeHi4IAiCcOPGDaFYsWISJtMtOzu7bN+P3Lp1S7Czs9N/IB1o166dkJCQIAiCIKxdu1ZITk6WOJH+rVmzRnj37p3UMfSmZ8+ewu+//y51DL2oXLmy4OPjI/6xsbERrK2tBU9PT63tPj4+UkfViYEDBwpubm7Cvn37hISEBCEhIUHYu3evUKZMGeHbb7+VOp5ObNu2TShQoIBQs2ZNYcSIEcKIESOEWrVqCQUKFBC2bdsmdTxJeXp6CnFxcVLHEARBEDhjTc+UuFzuN998Azs7OwQFBcHGxgbh4eEoUqQI2rRpAycnJ9lfN6/5FZNrQ1ENJZ1nzaUWOXHlyhUdp9EPJa7IlLnPw+fIsTFyiRIlsGzZsizHtnPnTnz//fd48OCBRMny3tq1a3M89sNLE+SgbNmyWL58Ofz8/LRmHEdERKBWrVp4+fKl1BHzXKlSpbB//354eXnB29sbEyZMQJcuXXDu3Dk0a9ZMlu/HgIxL5kxMTLKs6jt69Gi8e/cOixcvlihZ3jE1NUVsbCyKFy8OY2NjPHr0SLaLCVGGmTNnYt68eWjZsiW8vLyyLF4gpyuC/s1sWjkumle4cGFs27YN9evX19p+7NgxdOrUCU+fPpUmmA6VKVMG3bp1y3Kp/tSpU7Fhwwbx6hElyvyeRWrssaZnSlwuNzAwEE2bNoWHhweSk5PRtWtX3L59G4ULF8amTZukjqczSmoODCjrPGuu/1cSOTY7/pwPz/OHPdYyF1fl2GPtxYsXWVZ+BYAKFSrIrh+oHItl/8aDBw9QtmzZLNvVajVSU1MlSKR7devWxaFDh+Dl5YWOHTti2LBhOHr0KA4dOgQ/Pz+p4+WpzAvpqFQqrFixAsHBwahZsyYA4MKFC4iLi5NND9gKFSpgwoQJaNCgAQRBwJYtW2Bra5vtWLkc84eU1tN5xYoVsLa2xokTJ3DixAmtfSqVSlaFNTkWy/6NpKSkbPvoFS1aVLZtZx49epTtc1X37t3x66+/SpCIssMZa3o2fvx42NraYuLEifjzzz/RvXt3uLi4iMvlyqnxd2ZpaWnYvHkzwsPDkZiYiCpVqqBbt26wsLCQOppOfKw58KJFizBixAjZNQfWUNp5/jc2bdqE1q1bw8rKSuooenPmzBn4+vrK4kuDw4cPY9y4cfjpp5+0fqcnT56Mn376CY0bN5Y4Yd6rUaMGatSogQULFmhtHzp0KEJCQnD+/HmJkunWlStXYGJiAi8vLwAZM/RWr14NDw8PTJs2TXa9iQCgatWqGDFiBLp376717e/06dNx6NAhnDp1SuqIee7FixdITk5GiRIloFar8csvv4i9tyZPngwHBwepI+aZBg0a5GicSqXC0aNHdZxG986ePYuRI0ciKioKL168gI2NTbazzFUqlewKTBpK7OmsRPfu3YNKpRIXFrp48SI2btwIDw8PDBw4UOJ0uuHn54dChQph3bp14kI77969Q69evfDixQscPnxY4oR5r0WLFujYsSP69OmjtX316tXYvHkzDh48KFEy6eWnGWssrEns3Llzsl0uV8mU1hyYPs/W1hahoaH54olfX+R0zJ6enli2bBnq1Kmjtf3UqVMYOHCg2ExWTk6cOIGWLVvCyclJq5h479497Nu3D1999ZXECXWjWrVqGD9+PDp06IDo6Gh4eHigffv2CAkJQcuWLTFv3jypI+a5nTt3olevXpgwYQKmT5+OgIAA3Lp1C+vWrcOePXtkWTgmZTAyMhJXd1aSMmXKYMGCBWjZsqVWY/8FCxbg/Pnz2Lhxo9QRdSo9PR3Xrl2Ds7OzrIrkH/rqq68wcOBA9OjRA48fP0b58uXh6emJ27dvY+jQofD395c6Yp77559/0LRpU6SkpKBSpUoAgLCwMJibm+PgwYOoWLGixAnzRuZ2JA8fPoS/vz86deokzjQ+f/48tm7dioCAAHz77bdSxZQcC2ukKB/rU6RSqWBubo6yZcvC1dVVz6l0y97eHiEhIShXrpzW9sjISFSvXh2vXr2SJpgOKfE8/xv56YlfX+R0zBYWFggJCYGnp6fW9vDwcNSoUQPv3r2TKJluPXz4EIsXL0ZERASAjFWovv/+e5QoUULiZLpjZ2eHK1euoEyZMpg9ezaOHj2KgwcP4syZM+jcuTPu3bsndUSdOHXqFKZPn46wsDBxxrG/vz+aNGkidTSdiYqKwurVqxEVFYX58+ejaNGi2L9/P5ycnGTz4UzpMq/urCRK6+k8fPhweHl5oV+/fkhPT0fdunVx7tw5WFpaYs+ePVn6ccmFg4MDzp8/D3d3dyxYsAB//vknzpw5g+DgYHz77beIjo6WOqJOJCUl4Y8//tB6byK3K2RyuvK6SqWSZTuSnMpPnzXYY00PlN4Au23btll6EwH/169IpVKhTp06+Pvvv2XzrVKPHj2wdOnSLM2Bg4KC0K1bN4lS6ZYSzzMpR7Vq1TBy5EisX79e7O0RHx+PMWPGoHr16hKn050SJUpg5syZUsfQK0EQoFarAWRcAvy///0PAFC6dGlZzzb+6quvcOjQIalj6M2JEyfQvHlz1K5dGydPnsTMmTNRtGhRhIWFYeXKldi2bZvUEfUqKioKAwYMkMWloJk5Ozvj1KlTWL58OaKiorBt2zaULFkS69evh6ura5ZZyHKhtJ7O27ZtQ/fu3QEAu3fvxt27dxEREYH169dj0qRJOHPmjMQJdSM1NVU8n4cPHxY/R1aoUAGPHj2SMppOWVpaYsCAAVLH0CnN+xAyHDkrhdJ/0rZt2xz9adeundRRdeLQoUOoVq0aDh06hISEBCQkJODQoUOoUaMG9uzZg5MnT+L58+cYPXq01FHz1MqVK+Hp6Yn+/fujf//+8PLywu+//w4jIyOMHDlS/CMXSj3PpAyrVq0SP6SULVsWZcuWhZOTEx48eICVK1dKHU9nXr58id9++w39+vVDv379EBgYKNueRBq+vr6YMWMG1q9fL14OCwAxMTHZNkwmwzR+/HjMmDEDhw4d0uqb17BhQ9n2D/yUxMTELE3f5WD79u1o2rQpLCwscPXqVaSkpAAAEhIS8NNPP0mcTnfatWuHI0eOAMjoizllyhSUK1cOPXv2RN++fSVOl/eePXuGYsWKAQD27duHjh07onz58ujbty+uXbsmcTrdqVixIpYtW4ZTp07h0KFDaNasGYCM2eaFChWSOJ3u3Lp1C0OGDIGfnx/8/PwwZMgQcfaaknl5ecl2Vv3HLF++PN+8N+OloKRznp6eCAoKwpdffqm1/cyZMxg4cCCuX7+Ow4cPo2/fvoiLi5MoZd5SWqNgQJnn+d/IT1OV9UVuxywIAg4dOqR16UGjRo1ke4nRyZMn0apVK9jZ2cHX1xcAcPnyZbx69Qq7d+9G3bp1JU6oG+Hh4ejWrRvi4uIwcuRIcQW2oUOH4vnz57LsTeTg4PDR5u6aS/l79+6dpXGyIbO2tsa1a9fg6uqq9Vx19+5dVKhQAcnJyVJHzFMfLkLyoQcPHuC3336T3SVFPj4+GDFiBHr27Kl1nq9evYrmzZvj8ePHUkfUC7n3dHZ2dsbvv/8OPz8/uLq6YunSpWjZsiWuX7+OOnXq4OXLl1JH1Injx4+jXbt2eP36NXr16oVVq1YBACZOnIiIiAjs2LFD4oR5b/v27ejcuTN8fX3F/q/nz59HSEgINm/ejA4dOkicUDqG/r77c69TmeXHBVh4KWg+5eXlhX379qF06dJSR/nPoqKisl3m3NbWVrz2v1y5crK6xObYsWNSR9A7JZ5n+jS5FZxUKhWaNGmCunXrwszMTHbH96HBgwfjm2++wdKlS2FsbAwgoyH0999/j8GDB8t2FoC3t3e2x/brr7+K/x8Aea306+/vj5kzZ6J58+bipc0XL17EgQMHMHjwYMTExOC7775DWlqabC6/sbe3x6NHj7L0/rx69SpKliwpUSrdGT58OIoXL/7RVW3fv3+v50T6cevWrWy/BLCzs5Nlv9uPqVWrlliEkKM+ffqgU6dOKF68OFQqFRo1agQAuHDhAipUqCBxOt2pX78+nj17htevX2u1WRk4cCAsLS3F+3JapX3s2LHiQjuZTZ06FWPHjlV0Yc3QzZ07N0fjVCoVC2uUc3fv3kVqaqrUMfJE1apVMWbMGKxbtw5FihQBADx9+hRjx45FtWrVAAC3b9+WRRHxY16/fo2jR4+iQoUKsn2B53n+NGdnZ5iYmEgdQ6/kNCFarVZj5syZWLZsGeLj4xEZGQk3NzdMmTIFLi4u6Nevn9QR89ydO3ewbds2rWKSsbExRo4ciXXr1kmYTBrm5uZa9wcNGoQaNWoY7DfDmZ0+fRozZszIsrLY8uXLERwcjO3bt8Pb2xsLFiyQTWGtc+fOGDduHLZu3QqVSgW1Wo0zZ85g9OjR6Nmzp9Tx8pyzszNmz56NTp06Zbs/NDQUVatW1XMq3StWrBju3LkDFxcXre2nT5+Wxe9uZkru6Txt2jR4enri3r176Nixo1hAMjY2xvjx4yVOp1vGxsZZehd/+Hhv3ry5bFZpf/ToUbbP0d27d8evv/4qQSLKKzExMVJH+G8Eypesra2FqKgoqWPkiZs3bwru7u6CqampUKZMGaFMmTKCqampUKFCBeHWrVuCIAjCX3/9Jaxbt07ipHmnY8eOwsKFCwVBEISkpCShXLlygomJiVCgQAFh27ZtEqfTDSWeZ0EQBFdXV+HZs2dZtr98+VJwdXWVIBHpQkBAgODm5iZs2LBBsLCwEJ+fN2/eLNSsWVPidLrx5ZdfCn/99VeW7X/99ZdQo0YN/QfKZ+T0Om1lZSXcvn07y/bbt28LVlZWgiAIwp07dwRLS0t9R9OZlJQUoX///kKBAgUElUolmJiYCEZGRkL37t2FtLQ0qePluQ4dOghjx4796P7Q0FBBpVLpMZF+/PTTT4KHh4dw/vx5wcbGRjh16pSwYcMGoUiRIsKCBQukjpenVCpVjv4YGRlJHVUynp6eQlxcnNQx9E5Or1fNmzcXVq1alWX7qlWrhCZNmkiQKP+Q03k2RJyxRjpXoUIF3LhxA8HBwYiMjAQAuLu7o3HjxuJSwm3btpUwYd47efIkJk2aBAD466+/IAgCXr16hbVr12LGjBmynKasxPMMZMwuza4nTUpKCh48eCBBIt3at28fduzYgYIFC6Jv375aMzBfvnyJDh06yKZvYGbr1q1DUFAQ/Pz8tGb1VKpUSbYNc3/44QcMGzYMd+7cQc2aNQFk9DFZvHgxZs2ahfDwcHGst7e3VDEpDxQsWBC7d+/GiBEjtLbv3r0bBQsWBAC8ffsWNjY2UsTTCVNTU/z+++/w9/fHtWvXkJiYCB8fH5QrV07qaDoxffp0JCUlfXS/h4eH4c8WyMb48eOhVqvh5+eHpKQk8VL+0aNHY+jQoVLHy1NcRfDz5HRFkFK1bt0a48aNw+XLl7Xem2zduhUBAQFaMzflNjNTae7fv49du3YhLi4uS7uCOXPmSJTq47h4QT5l6M0HNVJTU2FhYYHQ0FB4enpKHUdvLCwsEBkZidKlS6Nnz54oUaIEZs2ahbi4OHh4eCAxMVHqiHlKiedZ88Ldtm1brF27FnZ2duK+9PR0HDlyBIcOHcKtW7ekipjnNm7ciJ49e6JZs2ZISEjApUuXsGLFCnTr1g0AEB8fjxIlSsiu+TWQ8TsdEREBZ2dnrefnGzduoHr16rL7nQYgFsQ/RqVSQRAEqFQqWZ7zz5HL6zQA/P777/juu+/QokULscdaSEgI9u3bh2XLlokrwl68eBF//vmnxGl1Iz09HdeuXYOzs3OWy6qUSE49mYCMHnJ37txBYmIiPDw8YG1tLXWkfEFOPZ1zQk7P2/+GnI77c+9NNJT43kRO5/nIkSNo3bo13NzcEBERAU9PT9y9exeCIKBKlSr58kt8zlgjnTIxMYGTk5PinthKly6Nc+fOoWDBgjhw4AA2b94MIGNGz4d9euRAiedZM/tOpVKhV69eWvtMTEzg4uKCwMBACZLpzq+//oo5c+aIDUO3bNmCvn37Ijk5WZY9xjLz8PDAqVOn4OzsrLV927Zt8PHxkSiVbslx9gplb8CAAfDw8MCiRYvEVeTc3d1x4sQJcaXnUaNGSRkxzw0fPhxeXl7o168f0tPTUa9ePZw9exaWlpbYs2cP6tevL3VEScmpJxOQMUPRw8ND6hj5DmdwkaHhzMyPW758ORwdHaWOkScmTJiA0aNHIyAgADY2Nti+fTuKFi2Kbt26oVmzZlLHyxYLa6RzkyZNwsSJE7F+/XrxkhK5Gz58OLp16wZra2s4OzuLb9BPnjwJLy8vacPpiNLOs+aF3dXVFSEhIShcuLDEiXTv9u3baNWqlXi/U6dOKFKkCFq3bo3U1FS0a9dOwnS65e/vj169euHBgwdQq9XYsWMHbt26hXXr1mHPnj1Sx9OJD4uIJE+pqakYNGgQpkyZgk2bNkkdR2+2bduG7t27A8i45DU6OhoRERFYv349Jk2ahDNnzkicUFqGfEFL+/btczxWU0gmkjO5rmJ+//59lChRIsez2AzJggULcjxW84V3165ddRVH727evCm+JylQoADevXsHa2trTJ8+HW3atMF3330nccKsWFjLp+RUcV60aBHu3LmDEiVKwNnZGVZWVlr7r1y5IlEy3fn+++9RvXp13Lt3T6vHmJubG2bMmCFxOt1Q4nkGsp/V8+rVK9jb2+s/jI7Z2toiPj4erq6u4rYGDRpgz549+N///of79+9LmE632rRpg927d2P69OmwsrKCv78/qlSpgt27d6Nx48ZSx9M5W1tbWc1eyQtyWenXxMQE27dvx5QpU6SOolfPnj1DsWLFAGT0juzUqRPKly+Pvn37Yv78+RKno/8ic2sGQRDw119/wc7ODr6+vgCAy5cv49WrV/+qAEdkyAy5UP4pHh4esn1vMnfu3ByNU6lUYmFNTqysrMS+asWLF0dUVBQqVqwIIOP1Oz9iYU0PlF5xlmPD+pzw9fUV38RptGzZUqI0uqfU8zx79my4uLjgm2++AQB07NgR27dvR/HixbFv3z5UqlRJ4oR5p3r16ti/f7/YLFajXr162L17N/73v/9JlEw/vvrqKxw6dEjqGJKQ65vy7Li5uSEkJASFChXS2v7q1StUqVIF0dHRAIB//vlHing60bZtW/z9999ZFi+QM0dHR9y4cQPFixfHgQMHsHTpUgBAUlISjI2NJU5H/8Xq1avF2+PGjUOnTp2wbNky8bymp6fj+++/h62trVQRifTqzZs3UkfQCTm/N1F6O46aNWvi9OnT+OKLL9CiRQuMGjUK165dw44dO7J8DskvWFjTA6VXnKdOnSp1BL0YOXIkfvzxR1hZWWHkyJGfHJsfVzL5r5Rynj+0bNky/PHHHwCAQ4cO4fDhwzhw4AC2bNmCMWPGIDg4WOKEeWfEiBE4e/Zstvvq16+P3bt3Y926dXpOpX+JiYlZenzwA5p8KG2lXwAoV64cpk+fjjNnzqBq1apZZhzL8b1Jnz590KlTJxQvXhwqlQqNGjUCAFy4cEFrtWMybKtWrcLp06e1iqXGxsYYOXIkvvzyS/z6668SpiN9k9MVQUpdpZ2UYc6cOeLCYAEBAUhMTMSff/6JcuXK5dvP0Sys6YHSK85KcfXqVbEB7NWrVz86Tq59DpTq8ePH4mpae/bsQadOndCkSRO4uLigRo0aEqfLW/Xq1UO9evU+ur9BgwZo0KCBHhPpT0xMDIYMGYLjx48jOTlZ3K6UVTG7d+8u++KhZqVfADh48GC2K/26uLhIkEz3Vq5cCXt7e1y+fBmXL1/W2ifXL/2mTZsGT09P3Lt3Dx07dhRXvzQ2Nsb48eMlTic9ubxXSUtLQ0REBNzd3bW2R0REsAm6gVPyFUGZV2m/desWFi5cqLVK+/v373HixAmJU+rexIkTFdHXGcjoJ7dr1y7ExcWJl0hq5NdC03+R+fJeKysrLFu2TMI0OaMS5DyHkvKF9PR0zJ07F1u2bMn2yeDFixcSJaO8pNTzXKJECWzbtg1ffvkl3N3dMWPGDHTs2BG3bt1CtWrV8Pr1a6kj5rlGjRqhe/fuaN++veyLLRq1a9eGIAgYNmwYHB0ds3zo/FTBkQyDphemSqXKcnlJ5pV+5X7JM2nz8vLCvn37xC9QlMLGxgZhYWEG37to5MiRWLduHSZOnIjq1asDyJiVOGvWLPTo0UOWH0g/lJyc/NEV6Tdu3Ig2bdpkmaVqCDL3e/0UlUolXsIvFz4+PujTp0+WVdrnz5+Pfv36IT4+HiVKlJD9l35KceTIEbRu3Rpubm6IiIiAp6cn7t69C0EQUKVKFVnOTAwJCYFarc4ySeHChQswNjbO0m4pXxBI7+7duycsXrxYGDdunDBixAitP3I0ZcoUoXjx4sJvv/0mmJubCz/++KPQr18/oVChQsL8+fOljkd5RKnnefDgwYKzs7PQqFEjoVChQsKbN28EQRCETZs2CT4+PhKn040ffvhBKFasmGBhYSF8/fXXwt9//y28f/9e6lg6ZWVlJUREREgdQ+8OHz4stGzZUnBzcxPc3NyEli1bCocOHZI6lk65uLgIT58+lToG5RPW1tZCVFSU1DHyTFJSkvD27Vvx/t27d4W5c+cKBw8elDCV7qSnpwuzZ88WSpQoIahUKkGlUgklSpQQZs+eLaSlpUkdT2fS09OF6dOnCyVKlBCMjY3Fx/DkyZOFFStWSJyO/isrKyshOjpaa9vRo0cFa2trYenSpcLjx48FIyMjidLpTnBwsODv7y8cOXJEEARBOHHihNCsWTOhQYMGwqpVqyROpzvVqlUT/P39BUH4v9ekN2/eCK1btxaWLFkicTrdqFatmrB169Ys27dv3y5Ur15dgkSfx8Kanh0+fFiwtLQUPD09hQIFCgiVK1cW7O3tBTs7O6FBgwZSx9MJNzc3Yc+ePYIgZDwZ3LlzRxAEQZg/f77QpUsXKaPpTGJiojB58mShVq1aQpkyZQRXV1etP3KkxPMsCILw/v174ddffxV++OEH4cqVK+L2OXPmCL///ruEyXQrPT1dOHjwoNCrVy/B1tZWcHBwEAYMGCAcP35c6mg6Ub9+fdkXlD60ePFioUCBAkLnzp2F+fPni7/LJiYmwqJFi6SOp1cvX76UOoLOKe1Lv5ySW2GtcePGwtKlSwVByHhcOzo6CqVKlRLMzc1l+wFNIyEhQUhISMh23+nTp4Xk5GQ9J9KdgIAAwc3NTdiwYYNgYWEhPoY3b94s1KxZU+J09F8VL15cOHfuXJbtx48fF6ytrYVJkybJrrC2fv16oUCBAkKVKlUEa2trYfXq1YK9vb3Qv39/oW/fvoKpqWm2hRg5yPy5yt7eXvjnn38EQRCE0NBQwdnZWcJkumNlZZXta290dLRgbW0tQaLPY2FNz5RYcba0tBRiY2MFQRCEYsWKCZcvXxYEQRCioqIEW1tbKaPpTOfOnYXixYsLY8eOFebOnSvMmzdP648cKfE8U4Z3794JW7ZsESpVqiS7N3Iad+7cERo1aiSsWbNGuHTpkhAWFqb1R45KliwpLFy4MMv2RYsWCSVKlJAgkX7MmjVL2Lx5s3j/66+/Fme5hIaGSphMd5T4pV9Oya2wVqhQIfFD2e+//y54e3sL6enpwpYtW4QKFSpInE46NjY2sjrPZcqUEQ4fPiwIgvZj+ObNm4K9vb2U0XRGSV8OtGnTRvw8+aFjx44JVlZWsns/VrlyZfEKmMOHDwsWFhbCnDlzxP2//fabULt2bani6ZSjo6Nw48YNQRAE4YsvvhB27twpCEJGYc3KykrKaDpTsGBB4ezZs1m2nzlzJt8+h3HxAj27efMmNm3aBAAoUKAA3r17B2tra0yfPh1t2rTBd999J3HCvFeqVCk8evQITk5OKFOmDIKDg1GlShWEhISIzYLlZv/+/di7dy9q164tdRS9UeJ51li/fj2WL1+O6OhonDt3Ds7Ozpg3bx5cXV3Rpk0bqePp1OPHj7F582Zs2LAB4eHhYg8buXn69CmioqLQp08fcZumF5dcFy949eoVmjVrlmV7kyZNMG7cOAkS6YeSVvrVmDBhAkaPHo2AgADY2Nhg+/btKFq0KLp165btY4AMV1JSEmxsbAAAwcHBaN++PYyMjFCzZk3ExsZKnE46gsxaTj948ABly5bNsl2tVosLbcnJ53pQyY0SV2m/ffs2WrVqBQDw8/NDWloa/Pz8xP0tW7bEzz//LFU8napZsyZOnz6NL774Ai1atMCoUaNw7do17NixAzVr1pQ6nk40adIEEyZMwM6dO8XFpF69eoWJEyeicePGEqfLnpHUAZTGyspKbOpevHhxREVFifuePXsmVSydateuHY4cOQIAGDp0KKZMmYJy5cqhZ8+e6Nu3r8TpdMPBwUExq9RoKPE8A8DSpUsxcuRING/eHK9evRILLPb29pg3b5604XTk9evXWL16NRo3bozSpUtj6dKlaN26NW7fvo3z589LHU8n+vbtCx8fH5w7dw7R0dGIiYnR+luOWrdujb/++ivL9p07d8q6gf/HVvodO3YsQkJCJE6nGzdv3kTPnj0BZP3Sb/bs2RKno7xUtmxZ/P3337h37x4OHjyIJk2aAACePHmimMVolMDDwwOnTp3Ksn3btm3w8fGRIJFuab4cuHbtGszNzbF9+3bcu3cP9erVQ8eOHaWOl+fq1auHCRMmfHR/gwYNsHr1aj0m0j0TExOthdHMzMxgbW2tdf/du3dSRNO5OXPmiE38AwIC4Ofnhz///BMuLi5YuXKlxOl047fffsO9e/fg7OyMBg0aoEGDBnB1dcXjx48RGBgodbxsccaanimx4jxr1izx9jfffAMnJyecO3cO5cqVE795kJsff/wR/v7+WLt2LSwtLaWOoxdKPM8AsHDhQvz+++9o27at1v8DX19fjB49WsJkuuPo6AgHBwd88803+Pnnn/Pnyjx5LDY2Frt27cp2BoCcLFiwQLzt4eGBmTNn4vjx46hVqxYA4Pz58zhz5gxGjRolVUSdc3BwwL1791C6dGkcOHAAM2bMAJAxo0WOMxOB7L/0q1ixIgD5fumnVP7+/ujatStGjBgBPz8/8Xc7ODhYlgUXpfL390evXr3w4MEDqNVq7NixA7du3cK6deuwZ88eqePlOSVeEQQoa5X2smXLIiIiAu7u7gAyZmVqZt8CQFRUFEqVKiVVPJ3KvDqzlZUVli1bJmEa/ShZsiTCw8Pxxx9/ICwsDBYWFujTpw+6dOkCExMTqeNli4U1PZszZw4SExMBZFScExMT8eeff6JcuXKKWPIbAGrVqiW+kZMTHx8fqFQq8f6dO3fg6OgIFxeXLE8AV65c0Xc8vZPref5QTExMth9GzMzM8PbtWwkS6d6uXbvg5+cHI6NPT3o+c+YMfH19ZXEpcMOGDREWFib7wtrcuXO17js4OODGjRu4ceOGuM3e3h6rVq3C5MmT9R1PL9q3b4+uXbuiXLlyeP78OZo3bw4AuHr1qmzPvxK/9Mup5cuXw9HRUeoYeebrr79GnTp18OjRI1SqVEnc7ufnh3bt2kmYjPJSmzZtsHv3bkyfPh1WVlbw9/dHlSpVsHv37nx7GdV/odQvBypWrIgJEybg+++/R8uWLdG9e3e0aNEi3xYe/ouJEyfCwcFBvP9hIfHSpUvo1KmTvmPpRUhICNRqtThrTePChQswNjaW7RfcVlZWGDhwoNQxckwlyK2pAOULu3btyvHY1q1b6zCJ/gQEBOR47NSpU3WYRH+UeJ4/5OHhgZ9//hlt2rSBjY0NwsLC4ObmhoULF2L16tWKKKJ+jK2tLUJDQ7W+aTNUQUFBmDFjBvr27QsvL68sb1rl+vhWotTUVMyfPx/37t1D7969xcL53LlzYWNjg/79+0ucMO9FR0cjMTER3t7eePv2LUaNGoWzZ8+KX/o5OztLHTFPZJ6R+Tk//PCDDpNQfiOn16u0tDT89NNP6Nu3r2xn8Hyobdu2aNmyJQYMGIDRo0dj586d6N27N3bs2AEHBwccPnxY6og6o1arcfjwYWzcuBF//fUXjI2N8fXXX6Nbt26oV6+e1PEoD1SvXh1jx47F119/rbV9x44dmD17Ni5cuCBRMt2KiorCvHnzcPPmTQAZn7mGDRuGMmXKSJwseyys6ZlSKs6fm8miIdem30rB8wysWLEC06ZNQ2BgIPr164cVK1YgKioKP//8M1asWIHOnTtLHVEymQuNhu5Tj3U5P76J5MTV1VXr/tOnT5GUlAR7e3sAGY2RLS0tUbRoUdn2TkxOTsbChQtx7NgxPHnyBGq1Wmu/Ur8MktPrFQBYW1vjn3/+gYuLi9RR9EIpXw58TnJyMnbv3o2ZM2fi2rVrfG8iE9bW1ggPD8/y/BQTEwNvb2+8efNGomS6c/DgQbRu3RqVK1cWFwM8c+YMwsLC8u3MW14KqmeDBw/G2LFjsxTWHjx4IKuK84dv1JTG398fDRo0QK1atWBubi51HJ1R+nkGgP79+8PCwgKTJ09GUlISunbtihIlSmD+/PmKLqrJDR/r/+fevXuYOnUqVq1aJXUUnVHySr9yFhMTI97euHEjlixZgpUrV4o9e27duoUBAwZg0KBBUkXUuX79+iE4OBhff/01qlevrtXCQq7S0tJw/PhxREVFoWvXrrCxscHDhw9ha2srNj+X2wdTPz8/nDhxQjGFNSX2oPqQ3Fdpv3jxIqpWrQpjY2MAGYsL/frrr7hz5w6KFy+OH374QVyER27MzMwQHx+fpbD26NEjFCggz3LO+PHjMWLECK3+1Zrt48aNy5eFNc5Y0zMlVpxzysvLC/v27RNXYzNkjRs3xrlz55CWloZq1aqhXr16qF+/PmrXrg0LCwup40lKTuf5Q0lJSUhMTETRokWljpIvyG0GQE7I+fGtERYWhipVqsj2m/ClS5fC398fw4cPx8yZM/HPP//Azc0Na9aswdq1a3Hs2DGpI+YJBweHHBdVXrx4oeM0+lemTJlsV0i8fPkyvv76a60inJzY2dlh37594gwAuYuNjUWzZs0QFxeHlJQUREZGws3NDcOGDUNKSopsCzDLli1DQEAAunXrhqpVq8LKykprv9zaFyjliqAPvX79Gtu3b8fGjRtx/PhxuLm5oVu3bujWrVu+vVwut4yNjfHo0SMULVoUu3fvRtu2bdG9e3fUqFEDV69exZo1a7BlyxZZ9ors0qULHj16hJ07d8LOzg5Axgzrtm3bomjRotiyZYvECfOeubk5rl27hnLlymltj4yMhLe3N5KTkyVK9nHyLHHmY0qsOOfU3bt3kZqaKnWMPHHo0CGkpaXhwoULOHnyJE6cOIEFCxYgJSUF1apVw+nTp6WOKBk5nWcgo6n9jh07YG9vD0tLS3EV2NevX6Nt27Y4evSoxAlJn+Tw+P5c70S5XiKnoZSVfufNmyd1BEk9evQIaWlpWbanp6cjPj5egkT6UbJkSa2V9ORu2LBh8PX1RVhYGAoVKiRub9euHQYMGCBhMt36/vvvASDbhdHk2L5AKVcEfUhJq7Rnngv0yy+/YOzYsfj555/Fba6urvjll19kWVj77bffULduXTg7O4tfBoWGhsLR0RHr16+XOJ1uFClSBKGhoVkKa6Ghofl2AoOyKzkSaNKkCSZMmJCl4jxx4sR8OaWRcq9AgQKoXbs2ihQpgoIFC8LGxgZ///03IiIipI5Geej48ePiSlSZJScn49SpUxIkyj+UcImRHLVt2xYqlQqfmtAu53OrlJV+e/Xq9a//m1mzZuHbb78Ve5IZMj8/PwwaNAgrVqxAlSpVAGTMVvvuu+/QqFEjidPpTmBgIMaNG4dly5Ypou/UqVOncPbsWZiammptd3FxwYMHDyRKpXtKa19w48YN8fc4Mx8fH61VreVGiau0Axmzlj78cqhDhw749ddfpQmkYyVLlkR4eDj++OMPhIWFwcLCAn369EGXLl1kuQIsAAwYMAADBw5EdHQ0vvzySwAZj+PZs2dj5MiREqfLHgtreqbEirMSBQUF4fjx4zhx4gRSUlLw1VdfoX79+pg8eTK8vb2ljkd5IDw8XLx948YNPH78WLyfnp6OAwcOoGTJklJEyzfYacAwFS9eHEuWLPloL7HQ0FBUrVpVz6n0x9XVFaGhoVmKDgcOHMAXX3whUar84aeffkKnTp1kUVhbtWoVevXqBV9fX/GDSVpaGpo2bYoVK1ZInE53fH19kZycDDc3N1haWmb5UCa3y37VanW2s7Pu37+vqJl7cqfUK4JyOimjefPmslj1VvN+28LCItvicXazkOXCysoKAwcOlDqG3kyZMgU2NjYIDAzEhAkTAAAlSpTAtGnT8u2q3fJ9psmnlFhxVqJvv/0WRYoUwahRo/D999+LzXFJPipXrgyVSgWVSoWGDRtm2W9hYYGFCxdKkEw/lNgMWimqVq2Ky5cvf7Sw9rnZbIZu5MiRGDx4MJKTkyEIAi5evIhNmzaJK/0qmZzOe5EiRbBv3z5ERkaKM8krVKiA8uXLS5xMt7p06YIHDx7gp59+gqOjo6xnnwIZV4rMmzcPQUFBADKevxITEzF16lS0aNFC4nS6M3369E/u9/f311MS/eAVQZ8ml+duPz8/8VjOnDmDatWqifuuXr0KJycnqaLpXFRUFObNm4ebN28CADw8PDBs2DDZ9dLTUKlUGDFiBEaMGCF+nsjvX4Zw8QLKN+TU6Pzvv//GyZMncfz4cdy8eRM+Pj6oX78+6tevjzp16oh9uJRILuc5NjYWgiDAzc0NFy9eRJEiRcR9pqamKFq0qLhykdwotRl0Tsjh8X3q1Cm8ffsWzZo1y3b/27dvcenSJdSrV0/PyfTnjz/+wLRp0xAVFQUg41vSgIAA9OvXT+Jk0pLD41vpLC0tce7cOVSqVEnqKHpx//59NG3aFIIg4Pbt2/D19cXt27dRuHBhnDx5Mt/26vmvPrycPTU1FTExMShQoADKlCmDK1euSJRMNx48eIC6devi+fPnWa4IOnTokKwXFMoJOTx3x8bGat23trbW6pu4bt06AJDlyqAHDx5E69atUblyZXHhmTNnziAsLAy7d+9m8TifYGFNAkqrOOeUHJ70s5OQkIBTp05h69at2LRpE4yMjPLlSib6ItfzrCRt27aFjY0NVq5ciUKFConn8/jx4xgwYABu374tdUTJ8PEtL1zpV5ucHt/p6elYs2YNjhw5gidPnmS5rEiuC89UqVIFS5YsQc2aNaWOojdpaWnYvHkzwsPDkZiYiCpVqqBbt26KW6X99evX6N27N9q1a4cePXpIHSfPvX37VuuKIG9vb14R9P/J6blbiXx8fNC0aVOtBZUAYPz48QgODpZNodzHxyfHs6jz4zHzUlA9+1jFuWLFioqvOC9fvhyOjo5Sx8gzz58/x4kTJ3D8+HEcP34c169fh4ODA7766iupo0lKbudZ48aNG4iLi8uykIHclrQHlNsMOifk+vjetGkTWrduDSsrK6mj6BxX+lWGYcOGYc2aNWjZsiU8PT1lf0mkxqxZszBq1CjMnDkTXl5eWYoOtra2EiXTnQIFCqB79+5Sx5Ccra0tAgIC0KpVK1kW1pTWg4qAli1bYsWKFShevLjUUXTq5s2b2LJlS5btffv2ldUK323btpU6wn/CwpqejR8/HiNGjMi24jxu3DjZFNYWLFiQ47GaBoRdu3bVVRy98/Lyws2bN+Hg4IC6detiwIABqFevnuwWLlD6eQaA6OhotGvXDteuXdPqPaX5kCa3Je0B5TSD5uP7/wwaNAg1atRQxLfdXOlXGTZv3owtW7bIus9WdjSXeDds2FCrmCgIAlQqlSxes3bt2pXjsXL88utTEhISkJCQIHUMneAVQR8n1y8OTp48iXfv3kkdQ+eKFCmC0NBQlCtXTmt7aGiorGbUT5069V//N/npi18W1vRMKRXnuXPn5micSqXKtyt7/Bfffvst6tWrB09PT6mj6JTSzzOQMevB1dUVR44cgaurKy5evIjnz59j1KhR+O2336SOpxNKaQbNx/f/UULXCK70+3lfffWVbC6fMzU1RdmyZaWOoXfHjh2TOoLO5XTWg1wKidn58IshQRDw6NEjrF+/Hs2bN5cole7wiqBPU8JruJwNGDAAAwcORHR0NL788ksAGY/v2bNnY+TIkRKnk1Z++uKXPdb0rHTp0pgzZw46duyotX3Lli0YPXo04uLiJEpGUrC1tZXF8tdKVrhwYRw9ehTe3t6ws7PDxYsX4e7ujqNHj2LUqFG4evWq1BHznFKbQSuZEvqzGBkZid/qZ/fWSLPSb9++ffUdTSdev36d47FyvDwwMDAQ0dHRWLRokWxnc3xMcnIywsPDs+0tp7QZXHLl6uqqdd/IyAhFihRBw4YNMWHCBFnNLgeU04MqOzlZpV0u0tLSsHHjRjRt2hSOjo7w9PTE/v37Zb84hSAImDdvHgIDA/Hw4UMAGYsqjRkzBj/88IPiXsMyy0/vT1lY07Pp06dj7ty5GD9+fLYV5ylTpkickPQpPz0ZUO44ODjgypUrcHV1RZkyZbBixQo0aNAAUVFR8PLyQlJSktQRdYLNoOUtNTUVFhYWCA0NhaenJ06fPo1q1arBzMxM6mg6o7SVfjMXEj9HjrN62rVrh2PHjqFgwYKoWLFill5jO3bskCiZbh04cAA9e/bEs2fPsuyT8wwukjdzc3Ncu3Yty6VykZGR8Pb2lu2iYUpcpd3S0hI3b96Es7Oz1FEk8ebNGwCQXXE8t/LTZ2leCqpnU6ZMgY2NDQIDAzFhwgQAGRXnadOmyfpSovv372PXrl3ZNnefM2eORKkorynxPHt6eiIsLAyurq6oUaMGfvnlF5iamiIoKChfPMnrihKbQSvp8W1iYgInJyfxQ3adOnUkTqR7mjfpH87gkavMlwTevXsX48ePR+/evVGrVi0AwLlz57B27Vr8/PPPUkXUKXt7e7Rr107qGHo3dOhQdOzYEf7+/rJcaOVDH+uVqVKpYG5ujrJly6Ju3bqyKpoDwLp161CtWjV88cUXWtuTk5OxZcsW9OzZU6JkuqGUHlQfGjZsGHx9fREWFoZChQqJ29u1a4cBAwZImEx3qlevjtDQUMUW1lhQy784Y01CSqk4HzlyBK1bt4abmxsiIiLg6emJu3fvQhAEVKlSRdErrOWnKvt/pdTzfPDgQbx9+xbt27fHnTt38L///Q+RkZEoVKgQ/vzzTzRs2FDqiHlC6c2glfj4XrlyJXbs2IH169ejYMGCUsfROyWt9Ovn54f+/fujS5cuWts3btyIoKAgHD9+XJpglOdsbW1x9epVxTR0d3V1xdOnT5GUlAQHBwcAwMuXL2FpaQlra2s8efIEbm5uOHbsmKwuJzMyMoKVlRXWrFmDDh06iNvj4+NRokQJ2c1MVOoVQYUKFcLZs2fh7u6u9Zni7t278PDwkOVVE1u2bMGECRMwYsQIVK1aNUvTerksFOfj45PjWeVyvtT5c/LTZ2kW1kjnqlevjubNmyMgIEB88BctWhTdunVDs2bN8N1330kdUTL56cngv+J5/j8vXryAg4ODrHoeGBkZ5WicXC8lUuLj28fHB3fu3EFqaiqcnZ2zvHmV6xs5Ja70a2lpibCwsGwvo6pcubIsP5wpVd++fVG7dm3069dP6ih6sWnTJgQFBWHFihViMfHOnTsYNGgQBg4ciNq1a6Nz584oVqwYtm3bJnHavGNkZITffvsNkydPxtixYzFt2jQA8i2sKbUHlYODA86cOQMPDw+tzxSnT59Ghw4dEB8fL3XEPJfd+1HNa7Wc3oMGBATkeGxuVtOUi/z0WZqFNT1QesXZxsYGoaGhKFOmDBwcHHD69GlUrFgRYWFhaNOmDe7evSt1RMnIafECnmeSMyU+vj/3pk6ub+RatWoFY2NjrFixItuVfr/66iupI+Y5d3d3tGnTBr/88ovW9rFjx2Lnzp24deuWRMl0a9u2bdiyZUu2MxPl+H4MAJKSktCxY0cUKVIEXl5eWXrLya0tSZkyZbB9+3ZUrlxZa/vVq1fRoUMHREdH4+zZs+jQoQMePXokTUgdMDIywuPHj8UvCmrXro3169fj9evXsiysZaaUK4IA4JtvvoGdnR2CgoJgY2OD8PBwFClSBG3atIGTkxNWr14tdcQ8Fxsb+8n9Sr1EFMj4IqF169ZZvgg1NOnp6Thz5gy8vb1hb2//ybH5aQEL9ljTg5wu+y1XVlZW4hvW4sWLIyoqChUrVgSAbJvnKomc6tpKOs/t27fP8Vi5NsBWGiU9vjXkWjj7nHPnzuHo0aMoXLgwjIyMYGRkhDp16uDnn3/GDz/8IMuVfufOnYsOHTpg//79qFGjBgDg4sWLuH37NrZv3y5xOt1YsGABJk2ahN69e2Pnzp3o06cPoqKiEBISgsGDB0sdT2c2bdqE4OBgmJub4/jx41pf/KpUKtkV1h49eoS0tLQs29PS0vD48WMAGTObNMUYudCc15o1a+LChQto3bo1vvzyS1k2s/+QEgpqGoGBgWjatCk8PDyQnJyMrl27iqu0b9q0Sep4OqHkwtnnDBo0CDVq1DD4CRvGxsZo0qQJbt68+dnC2j///KOfUDnAwpoe5ObDiVwqzkDGi/rp06fxxRdfoEWLFhg1ahSuXbuGHTt2oGbNmlLHk9T+/ftRsmRJqWPkCSWdZzs7O6kjSEqJzaCV9PjOzvfff4/p06ejcOHCUkfRufT0dPGDWeHChfHw4UO4u7vD2dlZtjO3WrRogcjISCxduhQREREAMmbuffvtt/niW2BdWLJkCYKCgtClSxesWbMGY8eOhZubG/z9/fHixQup4+nMpEmTEBAQgPHjx+f4En9D1qBBAwwaNAgrVqyAj48PgIzZat99953YA/XatWtwdXWVMmaey/zFrZOTE86ePYtu3bqhcePGEqbKW0q/IggASpUqhbCwMK1V2vv16yfrVdrXrl2LwoULo2XLlgAyZlYHBQXBw8MDmzZtUnThTU4TNjw9PREdHW1Qz828FDSfktMlgtHR0UhMTIS3tzfevn2LUaNG4ezZsyhXrhzmzJkjmyfAkSNH5nis3FYQBJRznnPrzJkz8PX1hZmZmdRR/jMlNoNW+uNbTq9Jn/PVV19h1KhRaNu2Lbp27YqXL19i8uTJCAoKwuXLl/PVt6OUe5aWlrh58yacnZ1RtGhRHDp0CJUqVcLt27dRs2ZNPH/+XOqIOlGwYEGEhIQoZvGCx48fo0ePHjhy5Ih42WtaWhr8/Pywfv16ODo64tixY0hNTUWTJk0kTpt3AgICMGbMGFhaWmptnzp1Kk6ePKm1KrChYg8qZXJ3d8fSpUvRsGFDnDt3Dn5+fpg3bx727NmDAgUKKPpKkfzUb+y/OnDgACZMmIAff/wx20UqbG1tJUr2cSys5VNy+sVQigYNGmjdv3LlCtLS0uDu7g4gowm0sbExqlatKssVBOnT5FSYUGozaCVT0muSUlb6DQ8Ph6enJ4yMjBAeHv7JsXJZZS0zNzc3bN++HT4+PvD19cWAAQMwaNAgBAcHo3PnzrKdtTZixAgUKVIEEydOlDqKXkVERCAyMhJAxgdzzXszuVPS6sY5IYcrgpS+SrulpSUiIiLg5OSEcePG4dGjR1i3bh2uX7+O+vXr4+nTp1JHlIyc3qtlnlGdeWZqfl6kgpeCks6FhIRArVaLfVs0Lly4AGNjY/j6+kqULG9l/vZvzpw5sLGxwdq1a7Vm9PTp00eWja8B5Zzn3JLTdxiTJ0/G9u3btWY8lC1bFr/99pvYDPqXX35Bhw4dJEyZt/j4Vo6mTZuKt8uWLYuIiAhZrvRbuXJlPH78GEWLFkXlypW1VkDNLL++gf2vGjZsiF27dsHHxwd9+vTBiBEjsG3bNly6dOlf9dE0NOnp6fjll19w8OBBeHt7Z1m8QI4z6gGgQoUKYjFNTr/HHxMdHY327dsjPDxcMasb54QcelDltHe3XJ+7ra2t8fz5czg5OSE4OFi8Ysjc3Bzv3r2TOB3lFUOcVcvCGunc4MGDMXbs2CwfSB88eIDZs2fjwoULEiXTncDAQAQHB4tFNSBjSewZM2agSZMmGDVqlITpdEOJ51mplNgMWumPbzmdy9woWLCg1BHyXExMDIoUKSLeVpqgoCCo1WoAGb/fhQoVwtmzZ9G6dWsMGjRI4nS6c+3aNbHX2IeXNcu14LRu3Tr8+uuvuH37NgCgfPnyGDNmDHr06CFxMt0ZNmwYXFxccPjw4WxXN1YqOXzJqXneUqrGjRujf//+8PHxQWRkJFq0aAEAuH79OlxcXKQNR3mmXr16Ukf411hYI527ceMGqlSpkmW7j48Pbty4IUEi3Xv9+nW2U5GfPn0q2w+oSjzPSqXEZtBKfHxfuXIFJiYm8PLyAgDs3LkTq1evhoeHB6ZNmwZTU1OJE+YdJa70q+kLmJqaioCAAEyZMkVWv7Ofo1nxVaNz587o3LlzlnFyW7jDEGcB/Bdz5szBlClTMGTIENSuXRsAcPr0aXz77bd49uwZRowYIXFC3VDi6sakDIsXL8bkyZNx7949bN++HYUKFQIAXL58GV26dJE4Xd5LT0/HmTNn4O3t/dkVMp2dnbPMQjZkp06dwvLlyxEdHY2tW7eiZMmSWL9+PVxdXVGnTh2p42XBwhrpnJmZGeLj47NMu3706BEKFJDnQ7Bdu3bo06cPAgMDUb16dQAZl4yNGTNGtpeYKPE8K9XKlSvRo0cPVK1aNUsz6JUrVwLImKofGBgoZcw8pcTH96BBgzB+/Hh4eXkhOjoanTt3Rrt27bB161YkJSVh3rx5UkfMM0pe6dfExATbt2/HlClTpI6SL23YsAGjR4+WTWFNaRYuXIilS5eiZ8+e4rbWrVujYsWK+H/t3XlcjXn/P/DXKUppRVm7VUIlJdsMRklkG0WGoSiDZriHaOQew9gNxgy63bPYsw2NJWZsY0klMbaSXaUhe7aQLNW5fn/4OV9nyjCmcz51Xa/n4zGPB59z3PeL6+Kc8z6fz/s9efJk2RbWlDjdWImUOKXdysoK3333XbH1vzPMojwxNDSEn58fzp49+9rCmpyGK23cuBEDBgxAcHAwUlJS8PTpUwDA/fv3MWPGDGzfvl1wwuI4vECP/k7F2c3NDTt27JDFRL1+/frh+vXr+OWXXzQfXnJzc9GjRw/Y2tpi3bp1ghOWvvz8fERGRmLZsmUoKCgAAFSoUAGDBw/GN998U66bpr6KEq/z3yGn4QUvKKkZtBLvb0tLS6SkpKBevXr4+uuvsXfvXuzcuRPJycno27cvLl++LDqiUHKa9BsaGoomTZrItsjwT8ipGbQSVapUCadOnYKTk5PWekZGBho3bownT54ISqZbnG5cMrn9fVbKlPbXDdh5mRyH7TRv3hxff/01fH19RUfRG09PT0RERCAkJETr721qaiq6dOmiaT1TlrCwpmeVKlXC2bNnFXXc4urVq/Dy8sKdO3c0x8aOHz+O6tWrY/fu3eX6H/rXefToES5cuAAAqFevniwLai8o+Tq/Cbm9mXvhzw2R5UqJ97eFhQWOHTuG+vXro2PHjnj//fcxcuRIZGdno2HDhopvEiynYvn06dMxZ84c+Pr6ljjWPjw8XFAy8eT6b7dSuLm5ISgoqNgU1OnTp+Pnn3/GyZMnBSXTLaVMN/675Pb3WSlT2g0MDF45YAeA5jG5Dmz47bff8MUXX2DatGklvkZbWFgISqY7pqamOHPmDOzt7bX+3mZlZcHV1bVMfinCwpqeKbHiDDwvMP30009IS0uDiYkJ3N3d0a9fP1mdAyflXufCwkIkJCTgwoULCAoKgrm5Oa5duwYLCwuYmZmJjqcTSmwGrbT7u3379rCzs0OHDh0wePBgnDlzBk5OTkhMTERoaCguXrwoOqJQcvqA9ldf9qlUKmRlZekxTdkip+usRBs3bsSHH36IDh06aHqsJScnIy4uDuvWrUPPnj0FJ9QfOU43BpR7Igh4/qX9xo0b0aRJE6311NRUzZT2AwcOoFevXrh+/bqYkKXg0qVLb/zcF/1D5eTlfqAv//2VczHR0dERixYtQocOHbReh1euXIlZs2aVyf7G8mwMU4ZNnz4dkZGRiqo4A0DlypXx8ccfi46hNz4+Pn/5xmXv3r16TKM/SrvOwPMX+86dOyM7OxtPnz5Fx44dYW5ujq+//hpPnz7FggULREcsdUptBq20+zsqKgrBwcHYvHkzxo8frzlKtWHDBrRu3VpwOipNSpwKSsrQq1cvHDp0CPPmzcPmzZsBAC4uLjh8+LBm97FSyHG6MaDcHlSAcqa0v2mxTK77hZQ2dAYAwsLCMHLkSCxbtgwqlQrXrl3DwYMHERkZWWZ7wrKwpmcvRgL7+/srpuIMABcuXEBUVBTOnj0LAHB1dcXIkSM125bl5s/fHBUUFOD48eM4deoUQkNDxYTSA6VdZ+D5SPvmzZsjLS1NM5kIeD7AIiwsTGAy3VFqM2il3d/u7u4lHpP65ptvZNUImbQp5Xg3KUezZs2wevVq0TFIh9zc3JCVlaWoVjuAMqe0Dxw4EN9//32xzSkXL17EgAEDkJSUJCiZ7nh7e4uOoHdjx46FWq2Gr68v8vPz4eXlBWNjY0RGRmLEiBGi45WIhTU9U2LFeefOnfD390eTJk20tuE3atQIW7ZsQceOHQUnLH3z5s0rcX3y5MnIy8vTcxr9UOJ1Bp6Pgj5w4ACMjIy01u3t7XH16lVBqXTr+vXrJe5Yat26dbk+avBXlHp/l6RSpUqiI5AOLF26FPPmzdMc765fvz5GjRqFIUOGCE4mVv/+/WV7mkApioqKsHnzZs2XIo0aNYK/vz+/IJARpZ4IUuKU9rS0NLi7u2P16tVo1aoVAGDFihUIDw+Xde/ApKQkLFy4EFlZWVi/fj1q166NVatWwcHBAe+9957oeKVOpVJh/PjxGDNmDDIzM5GXlwdXV9cy3WKHPdZI5zw9PdGpUyfMmjVLa33s2LHYtWsXUlJSBCXTv8zMTLRs2RJ3794VHaXUKfU6W1tbIzk5Ga6urlo9APbv349evXrh5s2boiOWOiU2g1bK/f13+u/I8d+xv0NOwwsmTpyIuXPnYsSIEZoPKgcPHsR3332HiIgITJ06VXDC0qH0yXJKlJmZiW7duuHKlSuaydXnz5+HnZ0dtm3bJtsdx0qjxB5UL1PSlPaCggKMGzcO8+fPx+jRo5GZmYkdO3Zg7ty5sj0psnHjRgwYMADBwcFYtWoVzpw5A0dHR3z33XfYvn07tm/fLjqiTr2YQl/WeyOysCaA0irOlSpVwsmTJ1G/fn2t9fT0dLi7u5fJqR66smrVKnz++ee4du2a6CilTqnX+cMPP4SlpSUWLVoEc3NznDhxAjY2NggICMC//vUvREdHi45Y6pTYDFop9/eKFSve+LlyPtb+JuTU1N7Gxgbz589Hv379tNbXrl2LESNG4Pbt24KSla6XJ8u9roAs9w/iStG1a1dIkoSffvpJ02Pszp076N+/PwwMDLBt2zbBCak0JCYm/uXjSjhKp7Rj/JMmTcK0adNQoUIFJCYmar4UkiNPT09EREQgJCRE671HamoqunTpoumnJyeFhYWYMmUK5s+frzntZWZmhhEjRmDSpEllcnAYj4Lq2csV55SUFDx9+hQAcP/+fcyYMUOWFWcbGxscP3682AfS48ePw9bWVlAq3QoMDNT6uSRJuH79Oo4ePVpmGy7+U0q8zgAwZ84cdOrUSTP6OSgoCBkZGahWrRrWrl0rOp5OKLEZtFLub6UXy154k0m/5b0Z9MsKCgrQvHnzYuvNmjUrsTF2efXykIbU1FRERkZizJgxWrv05syZg9mzZ4uKSKUsMTERv//+u1bj/qpVq2LWrFmaL4ao/FNC4exVlDalvaCgAGPHjsX333+PL774Avv370dgYCCWLl2q6WUuN+fPn4eXl1exdUtLS+Tm5uo/kB6MGDECsbGxmD17ttZr9OTJk3Hnzh38+OOPghMWx8Kank2fPh0LFixASEgIYmJiNOtt2rTB9OnTBSbTnbCwMHz88cfIysrS9GVKTk7G119/jc8++0xwOt2wtLTU+rmBgQEaNmyIqVOnws/PT1Aq3VLidQaAOnXqIC0tDTExMThx4gTy8vIwePBgBAcHw8TERHQ8nVFaM2gl3t/Lly/HwIEDi60XFhZiwoQJmDlzpv5D6YESJ/0OGDAAP/74I+bOnau1vmjRIgQHBwtKVfpenizXu3dvzJ8/X+uDmLu7O+zs7DBhwgT06NFDQEIqbcbGxiUWwfPy8or1RqXyTWknggBlTmlv3rw58vPzkZCQgHfffReSJGH27NkIDAzEoEGD8MMPP4iOWOpq1KiBzMxM2Nvba63v379fFrvmS7JmzRrExMSgS5cumrUXr9H9+vUrk4U1SKRXJiYm0h9//CFJkiSZmZlJFy5ckCRJki5cuCAZGxsLTKY7arVamjt3rlS7dm1JpVJJKpVKql27thQVFSWp1WrR8aiU8DorS2FhobRhwwZp2rRp0rRp06TY2FipsLBQdCydUeL9bW5uLn3wwQfS3bt3NWvnzp2TmjZtKtWtW1dcMB0LCAiQ+vfvLz19+lTrdTo+Pl5ycnISnK70REREaP4bMWKEZG5uLjVq1EgaPHiwNHjwYMnNzU2ysLCQhg8fLjqqTlSqVEk6c+ZMsfUzZ85IlSpVEpCIdGHAgAFSo0aNpN9//11Sq9WSWq2WDh48KLm5uUmhoaGi41Ep2bBhg2RiYiINGTJEMjY21vy7/b///U/q0qWL4HS6Y29vL61YsaLY+vLlyyV7e3sBiXRv0KBBUl5eXrH1lJQUqVGjRgIS6d6MGTMkV1dX6ffff5fMzc2lpKQkafXq1ZKNjY00f/580fF0wsbG5pWv0dWqVROQ6PXYY03PHB0dsWjRInTo0EHrjPTKlSsxa9YsnDlzRnREnXrxraG5ubngJPpx7NgxrSlUcj0m92dyv86//vrrGz/X399fh0nEUHozaLnf3y9cuHAB/fv3x+XLlxEdHY309HT85z//QY8ePfDDDz8U25krF1WrVsWBAwfQsGFDrdfpixcvwtXVFfn5+aIjlgofH583ep5KpcLevXt1nEb/mjZtCjc3NyxZskSzc+nZs2cYMmQITp06JZuBJEqXm5uL0NBQbNmyRdOTp6CgAAEBAYiOjoaVlZXYgFQqlNiDCnje//XUqVNwcnLSWs/IyEDjxo1l0//1TT19+hTGxsaiY5Q6SZIwY8YMzJw5U/MexNjYWDMJV46mTp2Kc+fOITo6WnNNnz59isGDB6N+/fqYNGmS4ITFsbCmZzNnzsTq1auxbNkydOzYEdu3b8elS5cQERGBCRMmYMSIEaIjUinIyclB3759kZCQoHnTlpubCx8fH8TExMDGxkZsQPpHXp4+9VfkOomKzaCVQ61WY9SoUfj+++9haGiIFStWFGtwLzdKnPSrRIcPH0b37t0hSZJmAuiJEyegUqmwZcsWtGzZUnBCKk2ZmZmaLzpdXFyKFSKofDM1NcWZM2dgb2+v9e92VlaWpgeuHClxSvvLunXrhiVLlqBmzZqio+jFs2fPkJmZiby8PLi6ump6vspRz549ERcXB2NjY3h4eAAA0tLS8OzZM/j6+mo9NzY2VkTEYthjTc/Gjh0LtVoNX19f5Ofnw8vLS1NxllNRzdPT842n0sjxW+ERI0bg4cOHOH36NFxcXAAAZ86cQWhoKMLDw2XT1F6p11mtVouOIJRSmkEr9f5+2bZt2xATE4NWrVohPT0dS5cuhbe3N2rVqiU6ms74+fkhKioKixYtAvC8QJ6Xl4dJkybJtjFydHQ0+vbtK+u+kH/WsmVLZGVl4aeffsK5c+cAPJ/yHBQUhMqVKwtOR6WlpB6Y8fHxUKlUqFSpEpycnBAQEKD1ekbljxJ7UAHAlClT8OGHH2Lfvn0lTmmXu3379uHx48eiY+iNkZERzM3NYW5uLuuiGgBYWVmhV69eWmt2dnaC0rwZ7lgTRO4V5ylTprzxc8viVs5/ytLSEnv27EGLFi201g8fPgw/Pz/ZTHBR+nVWqipVqmDr1q2aJv4vJCcno3v37rh7966gZKVL6ff3J598ghUrVuCrr77CZ599hps3b2LQoEE4dOgQfvzxR/Tp00d0RJ24cuUKOnXqBEmSkJGRgebNm2sm/e7bt09WU2BfqF69Oh4/fozevXtj8ODBxf5uE5VXPj4+SElJQVFRkaZ1QXp6OgwNDeHs7Izz589DpVJh//79cHV1FZyW3paSTwQdO3YM8+bN09qROXr0aEW0n3l5d6KcFRYWYsqUKZg/fz7y8vIAAGZmZhgxYgQmTZqkOeZOYrGwJtDly5cBlP3qq76sXbsW/v7+svim2NzcHElJSWjSpInWempqKry9vfHgwQMxwcoAOV1nAJg/f36J6y9/G+7l5QVDQ0M9J9OdkJAQpKSkYOnSpZrjUocOHUJYWBiaNWuG5cuXiw0okJzubzc3N/z000+aLfgvfP/99/j88881b+7kqLCwUGvSb9OmTWU96bewsBBbtmzB8uXLsWPHDjg6OuKjjz5CaGgoatSoITqezmRkZCA+Ph45OTnFdiJPnDhRUCoqTVFRUUhKSkJ0dDQsLCwAAPfv38eQIUPw3nvvISwsDEFBQXj8+DF27twpOC29LSX2oKLn71N27Ngh+8/Sw4YNQ2xsLKZOnYpWrVoBAA4ePIjJkyejR48eZXNC5j/0+PFjSJIEU1NTAM8ntm/atAmurq7w8/MTnK5kLKzpGSvOr2ZhYYHjx4/L4luHgIAA5ObmYu3atZojU1evXkVwcDCsra2xadMmwQnFkdN1BgAHBwfcunUL+fn5sLa2BgDcu3cPpqamMDMzQ05ODhwdHREfHy+bF342g341Od3ff9UE+Pz585rdH8nJyWjevLksGwYr0c2bN7F69WqsWLEC586dQ+fOnTF48GB07979jftLlgeLFy/GsGHDUK1aNdSoUUPr2LdKpZLt8W6lqV27Nnbv3l1sN9rp06fh5+eHq1evIiUlBX5+frh9+7aglFRa5H4iqCRFRUXYvHmz1rA0f39/WX2hq3SWlpaIiYlBly5dtNa3b9+Ofv364f79+4KS6Y6fnx8CAwMxdOhQ5ObmomHDhjAyMsLt27cxd+5cDBs2THTEYthjTc9GjBiB2NhYzJ49u1jF+c6dO7KsOL8pOdV4v/vuO/j7+8Pe3l5TTLl8+TLc3NywevVqwenEktN1BoAZM2Zg0aJFWLJkiWYaZmZmJj755BN8/PHHaNOmDfr27YuIiAhs2LBBcNrSYWVlhV9++YXNoEsgp/v7rwplL4pqANClS5dyX0xU+qTfl1WvXh3vvfce0tPTkZ6ejpMnTyI0NBTW1taIjo5Gu3btREcsFdOnT8dXX32Fzz//XHQU0qH79+8jJyenWGHt1q1bmtMDVlZWePbsmYh4VMqU1IMKKHlK+8yZM2U/pT0pKQkLFy5EVlYW1q9fj9q1a2PVqlVwcHDAe++9JzpeqTM2Ni7WPxB4/uX+i6nWcpOSkoJ58+YBADZs2IAaNWogNTUVGzduxMSJE1lYI2DNmjXFKs7u7u6ws7NDv379FF1YkxM7OzukpKRgz549mqbILi4u6NChg+BkVNq+/PJLbNy4UevNi5OTE7799lv06tULWVlZmD17drEGnOUZm0HTy+RQTOzRo8cbPU+uk36B5zvVVq1ahejoaGRlZaFHjx7YunUrOnTogEePHmHq1KkIDQ3FpUuXREctFffu3UPv3r1FxyAdCwgIwKBBgzBnzhxN39sjR44gMjJS8/f+8OHDaNCggcCU9E8p9URQeHg4HB0dcfDgwWJT2sPDw2U5pX3jxo0YMGAAgoODkZKSgqdPnwJ4XkSfMWMGtm/fLjhh6Rs+fDimTZuG6OhozZeeT58+xVdffYXhw4cLTqcb+fn5MDc3BwDs2rULgYGBMDAwwLvvvltm34ewsKZnSqw4K5VKpULHjh3RsWNH0VFIh65fv47CwsJi64WFhbhx4wYAoFatWnj48KG+o+lMamrqXzaD/uGHHzB69Gg2g6ZyQ+mTfrt3746dO3eiQYMGCAsLQ0hIiFZhvHLlyhg9ejS++eYbgSlLV+/evbFr1y4MHTpUdBTSoYULFyIiIgJ9+/bVvFZXqFABoaGhmt0Qzs7OWLJkiciY9A8p9USQUqa0v2z69OlYsGABQkJCEBMTo1lv06YNpk+fLjCZ7qSmpiIuLg516tTR9L1NS0vDs2fP4Ovri8DAQM1zY2NjRcUsVU5OTti8eTN69uyJnTt3IiIiAgCQk5Oj6ZdZ1rCwpmdKrDgrxaua2JckPDxch0lIn3x8fPDJJ59gyZIlmglMqampGDZsGNq3bw8AOHnyJBwcHETGLFUvdqO9rhl0REQEm0ETlQO2trZITEzUfCAtiY2NDf744w89ptItJycnTJgwAb///jsaN25cbEcLX6flwczMDIsXL8a8efOQlZUFAHB0dNQ6JvjnQVNU/ij1RJCxsXGJX9zm5eXJdsPG+fPn4eXlVWzd0tISubm5+g+kB1ZWVsVOvsilb/OrTJw4UfNZwtfXV/P+ZNeuXWV24i2HF+hZz549ERcXB2Nj4xIrzi+TS8X5TZX3kclvWjhRqVSaN3dKVN6v85/duHEDAwYMQFxcnOaDWWFhIXx9fbFq1SpUr14d8fHxKCgoKLNTbP4uNoN+Nbnd329Cbr9nJU76VaK/es1W+us0UXnz4ssBFxcXrfWzZ8/Cy8sLt27dEpRMt5Q4pd3R0RGLFi1Chw4dtN5/rFy5ErNmzcKZM2dER6RScuPGDVy/fh0eHh6a4UmHDx+GhYUFnJ2dBacrjjvW9ExpFeeioiIkJyfD3d39tZMC69atW657IMjpm/y/S0nX+c9q1KiB3bt349y5c0hPTwfwvLH7y83dfXx8RMXTCaU1g1by/f0mXp6mKAfz5s1T3KRfAIiLi0NcXBxycnKKHY1dtmyZoFS6o+TXbCK5UeqJoPnz5yM0NBStWrUqNqU9KipKbDgdCQsLw8iRI7Fs2TKoVCpcu3YNBw8eRGRkJCZMmCA6nk48fvwYkiTB1NQUAHDp0iVs2rQJrq6usvnSviQ1atRAjRo1tNZeFJDLIu5YI52rVKkSzp49K6ujcFQcr/P/NXGXW6Hhz4KDg3Hw4MESm0G3bt0aq1atQkxMDL799lscPXpUcNrSwfv71eS2Y23t2rVvNOm3Ro0aspn0O2XKFEydOhXNmzdHzZo1i/0btmnTJkHJiIheT+kngpQ0pV2SJMyYMQMzZ85Efn4+gOdHYiMjIzFt2jTB6XTDz88PgYGBGDp0KHJzc9GwYUMYGRnh9u3bmDt3bpmckPk2AgMDsXz5clhYWGj1jStJWfx7zB1reqbEirObmxuysrIU9YG0V69eaNmyJT7//HOt9dmzZ+PIkSNYv369oGS6o8Tr/MLKlSvxzTffICMjAwDQoEEDjBkzBgMGDBCcTDeU2Axayff368hpMAegzEm/CxYswPLly2X7b9arXLlyBb/++iuys7OL7bCdO3euoFRE9Hcp7UTQC0qc0q5SqTB+/HiMGTMGmZmZyMvLg6urq1bfRLlJSUnRvL/esGEDatSogdTUVGzcuBETJ06UTWHN0tJS88WepaWl4DR/H3es6ZlSKs4v++233/DFF19g2rRpaNasGSpXrqz1eFmd7PFP2NjYYO/evWjcuLHW+smTJ9GhQwfcvHlTUDLdUeJ1Bp5/+JowYQKGDx+umcC0f/9+fP/995g+fbpmio0c5eXlvbIZtNwo7f7evn07YmNjUaVKFQwaNEirl8W9e/fQq1cv7N27V2BC3TE1NcW+ffvQvHlzrfUjR47A29sb+fn5uHjxItzc3JCXlycoZemqWrUqDh8+rFVMlLu4uDj4+/vD0dER586dg5ubGy5evAhJktC0aVPZ3t9EJB8+Pj5/OaX9/PnzUKlUnNJezpmamuLcuXP417/+hT59+qBRo0aYNGkSLl++jIYNG2p27pFYLKzpWbVq1ZCYmIhGjRphyZIl+N///qdVcX6xjVdOXjQbBLSPyEmSBJVKhaKiIhGxdMrExATHjx/X6rMFAOfOnYOnpyceP34sKJnuKPE6A88bYE+ZMgUhISFa6ytWrMDkyZPZx0cmlHR/r1mzBiEhIejcuTPu37+Po0ePYsmSJQgODgYA3Lx5E7Vq1ZLV7/ll3bp1w40bN4pN+g0LC0ONGjWwdetWbNmyBePGjcPJkycFpy0dn3/+OczMzGTbn6YkLVu2RJcuXTBlyhTNcWZbW1sEBwejc+fOsvyik0iulHgiCACioqKQlJT02intjx8/ls2U9p49e5bYcuXlXXpBQUHFPoOVZ+7u7hgyZAh69uwJNzc3/Pbbb2jVqhWOHTumec9C4vEoqJ7l5+fD3NwcwPNxsYGBgTAwMMC7776LS5cuCU6nG/Hx8aIj6F3jxo3x888/Y+LEiVrrMTExsv3GSInXGQCuX7+O1q1bF1tv3bo1rl+/LiAR6YKS7u9vvvkGc+fORXh4OABg3bp1GDRoEJ48eYLBgwcLTqd7S5cuxYABA9CsWbNik36XLl0KADAzM8OcOXNExvzHXj5CpFarsWjRIuzZswfu7u7FBnDI8Vjk2bNnsXbtWgDPj7I/fvwYZmZmmDp1KgICAlhYIypHAgICtE4EtWzZUvYngoDnr9e7d+/W2jVvaWmJyZMnw8/PDyNHjsTEiRNlVVy0tLTE5s2bYWVlhWbNmgF4flQyNzcXfn5++Pnnn/H1118jLi5Oc5KkvJs4cSKCgoIQEREBX19ftGrVCsDzWsKLLwDl5ubNm4iMjNQMVfrzXrCy+OUuC2t65uTkhM2bN6Nnz57YuXOn5phYTk6O7I4SveDt7S06gt5NmDABgYGBuHDhAtq3bw/g+bGTtWvXyrK/GqDM6ww8/zu9bt06jBs3Tmv9559/Rv369QWlotKmpPs7IyMD3bt31/y8T58+sLGxgb+/PwoKCtCzZ0+B6XRPKZN+U1NTtX7epEkTAMCpU6e01uU6jKVy5cqavmo1a9bEhQsX0KhRIwDA7du3RUYjor9JKT2o/kxpU9qB56/RQUFB+O677zSnCdRqNUaOHAlzc3PExMRg6NCh+Pzzz7F//37BaUvHBx98gPfeew/Xr1/XDOcAAF9fX9m+Jxs4cCCys7MxYcKEEocqlUkS6dX69eulihUrSgYGBlLHjh016zNmzJA6d+4sMJlu7du3TwoODpZatWolXblyRZIkSVq5cqWUlJQkOJnubN26VWrdurVkamoqVa1aVfLx8ZESEhJEx9IpJV7nDRs2SIaGhlKnTp2kqVOnSlOnTpU6deokVahQQYqNjRUdj0qRUu7vmjVrSgcPHiy2npCQIJmZmUnjx4+XDAwMBCTTP7VaLanVatExyozLly9LRUVFomOUioCAAGnRokWSJEnS6NGjJScnJ2n69OlS06ZNJV9fX8HpiOjvMDExkS5duiRJkiT17t1bmjx5siRJkpSdnS2ZmJiIjKZTQUFBkoODgxQbGytdvnxZunz5shQbGys5OjpK/fv3lyRJktauXSs1a9ZMcNLSU61aNen8+fPF1s+fPy9VrVpVkiRJOnHihGRpaannZFSazMzMpNTUVNEx/haD15feqDR98MEHyM7OxtGjR/Hbb79p1n19fTXftMjNxo0b0alTJ5iYmCAlJQVPnz4F8PxblhkzZghOpzvdunVDcnIyHj16hNu3b2Pv3r3Fdr2sXbsWjx49EpSwdCn1Ovfq1QuHDh1CtWrVsHnzZmzevBnVqlXD4cOHZfstkhIp6f5u2bIlduzYUWzd29sbW7ZsQVRUlP5D6dnKlSvRuHFjmJiYwMTEBO7u7li1apXoWMK5urri4sWLomOUirlz5+Kdd94BAEyZMgW+vr74+eefYW9vrznyS0Tlw4sTQZcvX8bOnTs1Rx/lfCIIeD6l3dfXF3379kXdunVRt25d9O3bF76+vliwYAEA+U1pLywsxLlz54qtnzt3TnM8sFKlSuVjh9NfCAwM1Ow6DAwM/Mv/5MjOzq7Y8c+yjsMLSOc8PT0RERGBkJAQTYNgR0dHpKamokuXLopuuGhhYYHjx4/D0dFRdJR/jNeZ5ExJ93diYiIOHDiAL774osTH4+PjsXLlSkRHR+s5mX4oedLv67x87xMRlRUbNmxAUFAQioqK4Ovri127dgEAZs6ciX379pX4ZZGcKGlKe3h4ONauXYtx48ahRYsWAJ5P7Z4xYwaCgoLw3//+F0uWLMHy5cvL9VHQjz76CPPnz4e5uTk++uijv3yuHN+P7dq1C3PmzMHChQthb28vOs4bYWFNDwIDA7F8+XJYWFi8tqocGxurp1T6Y2pqijNnzsDe3l7rTXlWVhZcXV3x5MkT0RGFkdOHFCVf56KiImzevFkz1bdRo0bw9/eHoaGh4GRUWpR8fysNJ/2+mpxes16Wl5cHtVqttSbnXS5EcnTjxg1ND6oXvbcOHz4MCwsLODs7C05HpaWoqAizZs3Cd999h5s3bwIAqlevjhEjRuDzzz+HoaEhsrOzYWBggDp16ghOS3+HtbW11k7DR48eobCwEKampsWGKt29e1ff8V6Lwwv0wNLSUnOTWFpaCk6jfzVq1EBmZmaxavP+/ftl9+ZcyZR6nTMzM9GtWzdcuXJF09x85syZsLOzw7Zt21CvXj3BCak0KPH+3r59OwwNDdGpUyet9Z07d0KtVqNLly6CkukWJ/0qwx9//IHhw4cjISFBqzAuSRJUKlWZnDhGRK9Wo0YN1KhRQ2utZcuWgtKQLhQWFmLNmjUYMmQIxo8frzkq+ecvQv71r3+JiEf/UHlvNcLCmh68vD1Tjls1XycsLAwjR47EsmXLoFKpcO3aNRw8eBCRkZGYMGGC6HhUSpR6ncPDw+Ho6IiDBw+iSpUqAIA7d+6gf//+CA8Px7Zt2wQnpNKgxPt77NixmDVrVrF1SZIwduxY2RbWOOlXGfr37w9JkrBs2TJUr1693PfjIVIapZ8IUqIKFSpg6NChmhMiStlZfPPmTURGRiIuLg45OTnFeo/J5Yug0NBQzY9DQkLQrl07eHt7l5tNCiyskc6NHTsWarUavr6+yM/Ph5eXF4yNjREZGYkRI0aIjkelRKnXOTExEb///rumqAYAVatWxaxZszT9maj8U+L9nZGRAVdX12Lrzs7OyMzMFJBIP6ZMmYIPP/wQ+/bt0/wdTk5ORlxcHNatWyc4nVhyKj6lpaXh2LFjmp3GRFS+KP1EkFK1bNkSqampqFu3rugoejNw4EBkZ2djwoQJqFmzpqxei1/F2NgYs2bNQlhYGGrVqgVvb29Noa2sfsnJHmt6ppSKc0mePXuGzMxM5OXlwdXVVdaNNd+UHPvVKO06V6lSBVu3bi12dCw5ORndu3cvkz0A6O0p6f6uUaMG1qxZg/bt22ut79mzB0FBQcjJyRGUTPeOHTuGefPmab4Vd3FxwejRo+Hp6Sk4mVhyes3y8fHB+PHj0aFDB9FRiIjoDa1btw5ffPEFIiIi0KxZM1SuXFnrcXd3d0HJdMfc3BxJSUlo0qSJ6Ch6d/XqVezbtw+JiYlITExEeno6atasiStXroiOVgx3rOmZEivOLxgZGcHc3Bzm5uay/jBaVFSE5ORkuLu7w8rK6i+fW7du3WLNGMs7pVznF95//318/PHHWLp0qaaXx6FDhzB06FD4+/sLTkelTUn3d0BAAEaNGoVNmzZptuFnZmZi9OjRsr+3mzVrhtWrV4uOoRcFBQUwMTHB8ePH4ebm9pfPPXPmDGrVqqWnZLq1ZMkSDB06FFevXoWbm1ux12I5fjgjIirv+vbtC+B5K5YXVCqVrPtj2tnZFduMoxTW1taoWrUqrK2tYWVlhQoVKsDGxkZ0rBJxx5qeKbHiXFhYiClTpmD+/PnIy8sDAJiZmWHEiBGYNGmS7ApLAFCpUiWcPXsWDg4OoqPojRKvMwDk5uYiNDQUW7Zs0fweCwoKEBAQgOjo6NcWV6l8UOL9ff/+fXTu3BlHjx7VTNa6cuUK2rZti9jYWFnf20qb9Ovo6IhNmzbBw8NDdBS9+f333xEUFISLFy9q1uT+4YxIrpR8IkhpLl269JePy/GI6K5duzBnzhwsXLiw2BAtuRo3bhwSEhKQmpoKFxcXzVFQLy8vWFtbi45XIu5Y0zMlVpxHjBiB2NhYzJ49G61atQIAHDx4EJMnT8adO3fw448/Ck5Y+tzc3JCVlaWowpoSrzMAWFlZ4ZdffkFmZqbWsTEnJyfByag0KfH+trS0xIEDB7B7926kpaXBxMQE7u7u8PLyEh1Np5Q46Xf8+PEYN24cVq1apdUvUs4GDRoET09PrF27lsMLiMo5JZ8IUho5Fs5KYm1trXUfP3r0CPXq1YOpqWmxL3Pl2HZm1qxZsLGxwaRJkxAYGIgGDRqIjvRa3LGmZ0qsOFtaWiImJqbYBLnt27ejX79+uH//vqBkuvPbb7/hiy++wLRp00o8/y/HKTZKvM4A8Nlnn5W4rlKpUKlSJTg5OSEgIEAxH1blSqn39wtPnjyBsbGxIj6sdO3aFZIk4aeffio26dfAwECWk349PT2RmZmJgoIC1K1bt9hrVkpKiqBkulO5cmWkpaXxSxAiGVDiiSClO3PmDLKzs/Hs2TOtdbm0qlixYsUbP/flaZpykZaWhsTERCQkJCApKQlGRkaaXWvt2rUrk4U27ljTA6VXnI2NjUssIjo4OMDIyEj/gfSga9euAJ7/4/7ytZfzERMlXmcASE1NRUpKCoqKijS7W9LT02FoaAhnZ2f88MMPGD16NPbv31/ihEUqH5R4f6vVanz11VdYsGABbt68ifT0dDg6OmLChAmwt7fH4MGDRUfUCSVO+u3Ro4foCHrXvn17FtaIZEKJJ4KUKisrCz179sTJkyc1x/eB/5taLZfPWC8Xy0JCQjQTMeW4a74kHh4e8PDw0PTSS0tLw7x58/Dpp59CrVaXyevMwpoeREVFiY4g1PDhwzFt2jRER0fD2NgYAPD06VN89dVXGD58uOB0uhEfHy86gt4p8ToD0OxGi46O1uxEvH//PoYMGYL33nsPYWFhCAoKQkREBHbu3Ck4Lb0tJd7f06dPx4oVKzB79myEhYVp1t3c3BAVFSXbwpqxsTEePnxYbD0vL0+2RdRJkyaJjqB33bt3R0REBE6ePInGjRsX+6JTLrseiJQgKioKY8eOVdSJIKUaOXIkHBwcEBcXBwcHBxw+fBh37tzB6NGj8e2334qOpxPGxsaYNWsWwsLCUKtWLc3OLW9vb9SvX190PJ2QJAmpqalISEhAQkIC9u/fjwcPHsDd3R3e3t6i45WIR0H1TIkV5549eyIuLg7GxsaaxshpaWl49uwZfH19tZ4bGxsrIiKVAqVe59q1a2P37t3FdqOdPn0afn5+uHr1KlJSUuDn54fbt28LSkn/lBLvbycnJyxcuBC+vr4wNzdHWloaHB0dce7cObRq1Qr37t0THVEnQkJCkJKSUmzSb1hYGJo1a4bly5eLDagjubm52LBhAy5cuIAxY8agSpUqSElJQfXq1VG7dm3R8UqdgYHBKx+T685yIjkp6URQYWGhYk4EKVW1atWwd+9euLu7w9LSEocPH0bDhg2xd+9ejB49GqmpqaIj6szVq1exb98+JCYmIjExEenp6ahZsyauXLkiOlqps7a2Rl5eHjw8PDSFxLZt25bpwVncsaZnSqw4W1lZoVevXlprdnZ2gtLoT1JSEhYuXIisrCysX78etWvXxqpVq+Dg4ID33ntPdLxSp9TrfP/+feTk5BQrrN26dQsPHjwA8PzP5s89IKh8UeL9ffXq1RKPyanVahQUFAhIpB/z589HaGgoWrVqVWzSr1x3oJ84cQIdOnSApaUlLl68iLCwMFSpUgWxsbHIzs7GypUrRUcsdWq1WnQEIvoH5PrvMf21oqIimJubA3heZLt27RoaNmyIunXr4vz584LT6Za1tTWqVq0Ka2trWFlZoUKFCrCxsREdSydWr16Ntm3blqu+5Cys6dnixYsBaFec58yZg08++US2Fefo6GjREfRu48aNGDBgAIKDg5GSkoKnT58CeF6EmTFjBrZv3y44YelT4nUGnh8FHTRoEObMmYMWLVoAAI4cOYLIyEhN36LDhw+XySab9OaUeH+7uroiKSmp2ASuDRs2wNPTU1Aq3VPipN/PPvsMAwcOxOzZszUfWIDn/UKDgoIEJiMiKpnSe1AplZubG9LS0uDg4IB33nkHs2fPhpGRERYtWgRHR0fR8XRi3LhxSEhIQGpqKlxcXODt7Y2xY8fCy8sL1tbWouPpRLdu3URH+NtYWBNESRXnx48fQ5IkmJqaAgAuXbqETZs2wdXVFX5+foLT6cb06dOxYMEChISEICYmRrPepk0bTJ8+XWAy3VHidQaAhQsXIiIiAn379kVhYSEAoEKFCggNDcW8efMAAM7OzliyZInImPQPKfH+njhxIkJDQ3H16lWo1WrExsbi/PnzWLlyJbZu3So6ns6UNOk3Pj5e1pN+jxw5goULFxZbr127Nm7cuCEgkX4cOXIE8fHxyMnJKbaDbe7cuYJSEdHfpcQTQUr15Zdf4tGjRwCAqVOn4v3330fbtm1RtWpV/Pzzz4LT6casWbNgY2ODSZMmITAwkF/Wl1HssaZnJVWc27VrJ+uKs5+fHwIDAzF06FDk5uaiYcOGMDIywu3btzF37lwMGzZMdMRSZ2pqijNnzsDe3l6rN1FWVhZcXV3x5MkT0RFLnRKv88vy8vKQlZUFAHB0dISZmZngRFSalHp/JyUlYerUqUhLS0NeXh6aNm2KiRMnyraYCAA+Pj5/Oen3/PnzUKlUspr0a2tri507d8LT01PrNWv37t0YNGgQLl++LDpiqZsxYwa+/PJLNGzYENWrV9fq1aRSqbB3716B6YjobSipBxX9n7t37xbruScnaWlpSExMREJCApKSkmBkZKSpIbRr146FtrJCIr1SqVSSra2tNHPmTOn8+fOi4+hF1apVpVOnTkmSJEmLFy+W3N3dpaKiImndunWSs7Oz4HS64eDgIO3evVuSJEkyMzOTLly4IEmSJK1YsUJycXERGU1nlHidSTl4fyvHvHnzpMDAQOn+/fuatdzcXOmDDz6QoqKipEePHkkBAQGSn5+fwJSla/DgwVKPHj2kZ8+eSWZmZlJWVpZ06dIlydPTUxo5cqToeDpha2srRUdHi45BRKXo0aNH0s6dO6WxY8dK7777rmRkZCQ1adJEdCyiUnX8+HEpNDRUqlChgmRgYCA6Dv1/PAqqZ6mpqZqK85w5cxRRcc7Pz9f0bNm1axcCAwNhYGCAd999F5cuXRKcTjfCwsIwcuRILFu2DCqVCteuXcPBgwcRGRmJCRMmiI6nE0q8zqQcSry/hwwZgv79+6Ndu3aio+jVN998g927d2s1zLW0tMTkyZPh5+eHkSNHym7X3pw5c/DBBx/A1tYWjx8/hre3N27cuIFWrVrhq6++Eh1PJwwMDNCmTRvRMYioFCixB5WSBAYGvvFz5TKZ/WWSJCE1NRUJCQlISEjA/v378eDBA7i7u8Pb21t0PPr/WFjTMw8PD3h4eCA8PBzA862d8+bNw6effgq1Wi3L8e5OTk7YvHkzevbsiZ07dyIiIgIAkJOTU64mffwdY8eOhVqthq+vL/Lz8+Hl5QVjY2NERkZixIgRouPphBKvMymHEu/vW7duoXPnzrCxsUHfvn0RHByMJk2aiI6lc0qc9GtpaYndu3dj//79OHHihObYb4cOHURH05mIiAh8//33nCxIJAPsQSVvlpaWoiMIVaVKFeTl5cHDwwPe3t4ICwtD27ZtYWVlJToavYQ91vTsdRXnF83O5WTDhg0ICgpCUVERfH19sWvXLgDAzJkzsW/fPuzYsUNwQt159uwZMjMzkZeXB1dXV1n33VLydSb5U+r9fe/ePaxfvx5r1qxBUlISnJ2dERwcjKCgINjb24uOpxPBwcE4ePBgiZN+W7dujVWrViEmJgbffvstjh49KjgtvS21Wo1u3bohPT0drq6uqFixotbjctz1QCRX7EFFf5acnIzmzZvD2NhYdJR/bNu2bWjbtq1sv8iVCxbW9Mza2lqr4tyuXTtFVJxv3LiB69evw8PDAwYGBgCAw4cPw8LCAs7OzoLT6daLps92dnaCk+iekq8zyZ/S7+8rV65g7dq1WLZsGTIyMjRTcOUmLy8PERERWLlyZYmTfitXrozjx48DgKx28CltQubw4cOxZMkS+Pj4FBteAADR0dGCkhHRP/XiRNBPP/0k2xNB9NcsLCxw/PhxODo6io5CCsHCmp6x4qwMhYWFmDJlCubPn4+8vDwAgJmZGUaMGIFJkyYV+2aciKgsKygowLZt27B69Wps27YNVapUwdWrV0XH0iklTfpV4oRMc3NzxMTEoFu3bqKjENE/pMQTQfTXXp5wTaQP7LGmZ0p5AxcYGIjly5fDwsLitQ0n5XjcYsSIEYiNjcXs2bPRqlUrAMDBgwcxefJk3LlzBz/++KPghKVD6deZ5I33NxAfH481a9Zg48aNUKvVCAwMxNatW9G+fXvR0XTOzMwM7u7uomPoxX//+18sW7YMAwcOFB1Fb6pUqYJ69eqJjkFEpYA9qIhINBbWSCcsLS0133grseHkmjVrEBMTgy5dumjW3N3dYWdnh379+smmsKb060zypvT7u3bt2rh79y46d+6MRYsWoXv37rLoVULFKXFC5uTJkzFp0iRER0fD1NRUdBwi+gdWr17NE0FEJBSPghLpgK2tLRITE+Hi4qK1fvbsWXh5eeHWrVuCkhERvZnFixejd+/e/MZfAWbPno1r164pakKmp6cnLly4AEmSYG9vX6xFQ0pKiqBkRET0T/EoKOkbd6wR6cDw4cMxbdo0REdHa3Z4PH36FF999RWGDx8uOB0R0euFhYWJjkB6EhkZiW7duqFevXqKmZDZo0cP0RGIiEhH/jyQhkjXWFgjnbt58yYiIyMRFxeHnJwc/HmTpBwn9aSmpiIuLg516tSBh4cHgOcTip49ewZfX1+tfk1y+cCixOtMyqG0+zstLQ1btmxBlSpV0KdPH1SrVk3z2IMHDzBq1CgsW7ZMYEIqTeHh4YiPj4ePjw+qVq2qiA8kkyZNEh2BiIh0hIfySN94FJR0rkuXLsjOzsbw4cNRs2bNYm/YAwICBCXTnY8++uiNnxsdHa3DJPqjxOtMyqGk+3vXrl3o3r076tevj4cPH+LRo0dYv349fHx8ADwvMtaqVUt2xUQlU/KEzGPHjuHs2bMAgEaNGsHT01NwIiIiIipvWFgjnTM3N0dSUhKaNGkiOgrpEK8zyZmS7u/WrVvDx8cHX331FSRJwjfffINp06Zh/fr16Ny5MwtrMlS3bl3s3LkTzs7OoqPoTU5ODvr27YuEhARNH8Hc3Fz4+PggJiYGNjY2YgMSEZGW7du3IzY2FlWqVMGgQYO0XrPu3buHXr16Ye/evQITkpIZiA5A8mdnZ6e47biPHz9Gfn6+5ueXLl1CVFQUdu3aJTCVbinxOpNyKOn+Pn36NAYNGgTgeY+S//znP1i4cCE++OADbN26VXA60oUXEzJfft2SuxEjRuDhw4c4ffo07t69i7t37+LUqVN48OABwsPDRccjIqKXrFmzBv7+/rhx4wYOHjwIT09P/PTTT5rHnz17hsTERIEJSem4Y410bteuXZgzZw4WLlwIe3t70XH0ws/PD4GBgRg6dChyc3PRsGFDGBkZ4fbt25g7dy6GDRsmOmKpU+J1JuVQ0v1ta2uLHTt2oFmzZlrrMTExGDx4MObMmYNPP/2UO9ZkRIkTMi0tLbFnzx60aNFCa/3w4cPw8/NDbm6umGBERFSMp6cnPvroI80XH+vWrcOgQYPw3//+F4MHD+ZuehKOwwtIJ6ytrbV6ED169Aj16tWDqalpsTfsd+/e1Xc8nUtJScG8efMAABs2bECNGjWQmpqKjRs3YuLEibIprCn9OpO8KfX+btKkCeLj44sV1vr27QtJkhAaGiooGemKEidkqtXqYn+PAaBixYpQq9UCEhER0atkZGSge/fump/36dMHNjY28Pf3R0FBAXr27CkwHRELa6QjUVFRoiMIlZ+fD3NzcwDPd7oEBgbCwMAA7777Li5duiQ4XelR+nUmeVPq/T1s2DDs27evxMf69esHSZKwePFiPaciXSksLIRKpcKgQYNQp04d0XH0pn379hg5ciTWrl2LWrVqAQCuXr2KiIgI+Pr6Ck5HREQvs7CwwM2bN+Hg4KBZ8/HxwdatW/H+++/jypUrAtMR8Sgo6UFISAjatWsHb29v1KtXT3QcvXB3d8eQIUPQs2dPuLm54bfffkOrVq1w7NgxdOvWDTdu3BAdsdQp8TqTcvD+JjkzNzfHyZMnZX/M+WWXL1+Gv78/Tp8+DTs7O82am5sbfv31V0UVGYmIyroePXrAw8MDU6ZMKfZYQkIC3n//fTx+/JhHQUkYDi8gnTM2NsasWbPQoEED2NnZoX///liyZAkyMjJER9OZiRMnIjIyEvb29njnnXfQqlUrAM93r3l6egpOpxtKvM6kHEq8v4cMGYKEhATRMUgP2rdvr7imz3Z2dkhJScG2bdswatQojBo1Ctu3b0dKSgqLakREZUxERAQqVapU4mPt2rXDli1bEBISoudURP+HO9ZIb65evYp9+/YhMTERiYmJSE9PR82aNWW7dffGjRu4fv06PDw8YGDwvIZ9+PBhWFhYaI2HlhulXWdSFiXd3wEBAdi5cydsbGzQt29f9O/fHx4eHqJjkQ4sWLAAU6ZMQXBwMJo1a4bKlStrPe7v7y8oGREREVHZxx5rpDfW1taoWrUqrK2tYWVlhQoVKsDGxkZ0LJ2pUaMGatSoobXWsmVLQWn0R2nXmZRFSff3L7/8gnv37mH9+vVYs2YN5s6dC2dnZwQHByMoKEhRxwbl7t///jcAYO7cucUeU6lUsjxaEx4eDicnJ82EuRe+++47ZGZmKrbHIhFRWbZ9+3YYGhqiU6dOWus7d+6EWq1Gly5dBCUjpeOONdK5cePGISEhAampqXBxcYG3tzfatWsHLy8vWFtbi45XagIDA7F8+XJYWFggMDDwL58bGxurp1T6o5TrTMrE+xu4cuUK1q5di2XLliEjIwOFhYWiIxG9tdq1a+PXX38tNv02JSUF/v7+styFSkRU3rm7u2PWrFno2rWr1vpvv/2Gzz//HGlpaYKSkdJxxxrp3KxZs2BjY4NJkyYhMDAQDRo0EB1JJywtLaFSqTQ/VhqlXGdSJqXf3wUFBTh69CgOHTqEixcvonr16qIjEf0jd+7cKfG12sLCArdv3xaQiIiIXicjIwOurq7F1p2dnZGZmSkgEdFzLKyRzqWmpiIxMREJCQmYM2cOjIyMNLs92rVrJ5sPqNHR0SX+WCmUcp1JmZR6f8fHx2PNmjXYuHEj1Go1AgMDsXXrVrRv3150NCpliYmJ+Pbbb3H27FkAgKurK8aMGYO2bdsKTqYbTk5O+O233zB8+HCt9R07dsDR0VFQKiIi+iuWlpbIysoq1o4iMzOzWH9QIn3iUVDSu7S0NMybNw8//fQT1Gq1LHu3EK8zyZsS7u/atWvj7t276Ny5M4KDg9G9e3cYGxuLjkU6sHr1anz00UcIDAxEmzZtAADJycnYtGkTli9fjqCgIMEJS9+yZcswfPhwjBkzRlMojouLw5w5cxAVFYWwsDDBCYmI6M8++eQTHDx4EJs2bUK9evUAPC+q9erVCy1atMCSJUsEJySlYmGNdE6SJKSmpiIhIQEJCQnYv38/Hjx4AHd3d3h7e2PevHmiI5a6mzdvIjIyEnFxccjJycGf/5rJ8UO4Eq8zKYcS7+/Fixejd+/esLKyEh2FdMzFxQUff/wxIiIitNbnzp2LxYsXa3axyc2PP/6Ir776CteuXQMA2NvbY/LkyQgJCRGcjIiISnL//n107twZR48eRZ06dQA87wHbtm1bxMbG8j0LCcPCGumctbU18vLy4OHhoTk61bZtW1n/w9elSxdkZ2dj+PDhqFmzpqb32gsBAQGCkumOEq8zKQfvb5IzY2NjnD59Gk5OTlrrmZmZcHNzw5MnTwQl049bt27BxMQEZmZmxR5LTk5G8+bNuVuTiKiMkCQJu3fvRlpaGkxMTODu7g4vLy/RsUjhWFgjndu2bRvatm0LCwsL0VH0xtzcHElJSWjSpInoKHqjxOtMyqHU+/vo0aNYt24dsrOz8ezZM63H5DjdWKmcnJwwZswYfPLJJ1rrCxYswJw5c5CRkSEomXgWFhY4fvw4+64REZUxT548gbGxcbENDEQiGIgOQPLXrVs3xX0YtbOzK3b8U+6UeJ1JOZR4f8fExKB169Y4e/YsNm3ahIKCApw+fRp79+5V5ORjORs9ejTCw8MxbNgwrFq1CqtWrcLQoUMxatQoREZGio4nlNJey4mIyjK1Wo1p06ahdu3aMDMzwx9//AEAmDBhApYuXSo4HSkZC2tEOhAVFYWxY8fi4sWLoqMQEb2VGTNmYN68ediyZQuMjIzw3//+F+fOnUOfPn3wr3/9S3Q8KkXDhg1DTEwMTp48iVGjRmHUqFE4deoUfv7552K72IiIiESZPn06li9fjtmzZ8PIyEiz7ubmxsEFJBSPghKVEmtra62tyI8ePUJhYSFMTU1RsWJFrefevXtX3/GIiP6WypUr4/Tp07C3t0fVqlWRkJCAxo0b4+zZs2jfvj2uX78uOiL9A/Pnz8fHH3+MSpUqITs7G3Z2djxOUwJzc3OkpaXxKCgRURng5OSEhQsXwtfXV+vf53PnzqFVq1a4d++e6IikUBVEByCSi6ioKNERiIhKjbW1NR4+fAgAqF27Nk6dOoXGjRsjNzcX+fn5gtPRP/XZZ5+hb9++qFSpEhwcHHD9+nXY2tqKjkVERPRKV69eLTZoB3h+RLSgoEBAIqLnWFgjKiWhoaGaH4eEhKBdu3bw9vZGvXr1BKYiIno7Xl5e2L17Nxo3bozevXtj5MiR2Lt3L3bv3g1fX1/R8egfqlWrFjZu3IiuXbtCkiRcuXLlldM/lXz0l7v4iIjKDldXVyQlJaFu3bpa6xs2bICnp6egVEQsrBHphLGxMWbNmoWwsDDUqlUL3t7emkJb/fr1RccjInqt7777TlNoGT9+PCpWrIgDBw6gV69e+PLLLwWno3/qyy+/xIgRIzB8+HCoVCq0aNGi2HMkSYJKpUJRUZGAhGUDO6YQEZUdEydORGhoKK5evQq1Wo3Y2FicP38eK1euxNatW0XHIwVjjzUiHbp69Sr27duHxMREJCYmIj09HTVr1sSVK1dERyMi+kshISHw8fGBl5cXd97K1MOHD3Hp0iW4u7tjz549qFq1aonP8/Dw0HMy/SgsLERCQgIuXLiAoKAgmJub49q1a7CwsICZmZnoeEREVIKkpCRMnToVaWlpyMvLQ9OmTTFx4kT4+fmJjkYKxh1rRDpkbW2NqlWrwtraGlZWVqhQoQJsbGxExyIiei0jIyPMnDkTgwcPRu3atbnzVobMzc3h5uaG6OhotGnTBsbGxqIj6c2lS5fQuXNnZGdn4+nTp+jYsSPMzc3x9ddf4+nTp1iwYIHoiEREVIK2bdti9+7domMQaeGONSIdGDduHBISEpCamgoXFxfNB1IvLy9YW1uLjkdE9Ma481Y5nj17hpycHKjVaq11OfZY69GjB8zNzbF06VJUrVpVM1kuISEBYWFhyMjIEB2RiIj+ZMiQIejfvz/atWsnOgqRFu5YI9KBWbNmwcbGBpMmTUJgYCAaNGggOhIR0Vvhzlv5y8jIwKBBg3DgwAGtdTn3WEtKSsKBAwdgZGSktW5vb4+rV68KSkVERH/l1q1b6Ny5M2xsbNC3b18EBwejSZMmomMRsbBGpAupqalITExEQkIC5syZAyMjI82utXbt2rHQRkRlXkk7b8eOHcudtzI0cOBAVKhQAVu3bkXNmjUVMQlTrVaXWDC8cuUKzM3NBSQiIqLX+eWXX3Dv3j2sX78ea9aswdy5c+Hs7Izg4GAEBQXB3t5edERSKB4FJdKDtLQ0zJs3Dz/99NMr38wTEZUlBgYGsLGxQUREBHfeylzlypVx7NgxODs7i46iNx9++CEsLS2xaNEimJub48SJE7CxsUFAQAD+9a9/ITo6WnREIiJ6jStXrmDt2rVYtmwZMjIyUFhYKDoSKRR3rBHpgCRJSE1NRUJCAhISErB//348ePAA7u7u8Pb2Fh2PiOi1uPNWOVxdXXH79m3RMfRqzpw56NSpE1xdXfHkyRMEBQUhIyMD1apVw9q1a0XHIyKi1ygoKMDRo0dx6NAhXLx4EdWrVxcdiRSMO9aIdMDa2hp5eXnw8PDQfBBt27YtrKysREcjInor3HkrX3v37sWXX36JGTNmoHHjxqhYsaLW4xYWFoKS6VZhYSFiYmJw4sQJ5OXloWnTpggODoaJiYnoaERE9Arx8fFYs2YNNm7cCLVajcDAQAQHB6N9+/aKaGVAZRMLa0Q6sG3bNrRt21a2H0aISP5et/N23rx5oiNSKTEwMACAYh9I5Dy8gIiIyp/atWvj7t276Ny5M4KDg9G9e3cYGxuLjkXEwhoREREVx523ypGYmPiXj8ulhcGvv/76xs/19/fXYRIiInobixcvRu/evflehMocFtaIiIioGO68Jbl5sTPvdbhLj4iIiP4OFtaIiIiIFC43NxdLly7F2bNnAQCNGjXCoEGDYGlpKTgZERHR816vW7ZsQZUqVdCnTx9Uq1ZN89iDBw8watQoLFu2TGBCUjIW1oiIiIgU7OjRo+jUqRNMTEzQsmVLAMCRI0fw+PFj7Nq1C02bNhWckIiIlGzXrl3o3r076tevj4cPH+LRo0dYv349fHx8AAA3b95ErVq1uNuYhGFhjYiIiEjB2rZtCycnJyxevBgVKlQA8Hxi5pAhQ5CVlYV9+/YJTlj65s+fX+K6SqVCpUqV4OTkBC8vLxgaGuo5GRER/Vnr1q3h4+ODr776CpIk4ZtvvsG0adOwfv16dO7cmYU1Eo6FNSIiIiIFMzExQWpqKpydnbXWz5w5g+bNmyM/P19QMt1xcHDArVu3kJ+fD2trawDAvXv3YGpqCjMzM+Tk5MDR0RHx8fGws7MTnJaISNksLS2RkpKCevXqadbWrFmDjz/+GDExMWjRogULayTUm3VxJSIiIiJZsrCwQHZ2drH1y5cvw9zcXEAi3ZsxYwZatGiBjIwM3LlzB3fu3EF6ejreeecd/Pe//0V2djZq1KiBiIgI0VGJiBTP2NgYubm5WmtBQUFYsmQJPvzwQ2zatElMMKL/jzvWiIiIiBQsPDwcmzZtwrfffovWrVsDAJKTkzFmzBj06tULUVFRYgPqQL169bBx40Y0adJEaz01NRW9evVCVlYWDhw4gF69euH69etiQhIREQDAz88Pfn5+iIyMLPbY2rVrERoaiqKiIu5YI2EqiA5AREREROJ8++23UKlUCAkJQWFhIQCgYsWKGDZsGGbNmiU4nW5cv35d83t9WWFhIW7cuAEAqFWrFh4+fKjvaERE9CfDhg17Zb/Pfv36QZIkLF68WM+piP4Pd6wREREREfLz83HhwgUAz3d0mZqaCk6kO926dcONGzewZMkSeHp6Ani+Wy0sLAw1atTA1q1bsWXLFowbNw4nT54UnJaIiIjKMvZYIyIiIlKw+/fv4+7duzA1NUXjxo3RuHFjmJqa4u7du3jw4IHoeDqxdOlSVKlSBc2aNYOxsTGMjY3RvHlzVKlSBUuXLgUAmJmZYc6cOYKTEhHRC0OGDEFCQoLoGETFcMcaERERkYJ16dIF3bt3x7///W+t9QULFuDXX3/F9u3bBSXTvXPnziE9PR0A0LBhQzRs2FBwIiIiepWAgADs3LkTNjY26Nu3L/r37w8PDw/RsYhYWCMiIiJSsipVqiA5ORkuLi5a6+fOnUObNm1w584dQcn048VbYZVKJTgJERG9zr1797B+/XqsWbMGSUlJcHZ2RnBwMIKCgmBvby86HikUj4ISERERKdjTp09LbORfUFCAx48fC0ikHytXrkTjxo1hYmICExMTuLu7Y9WqVaJjERHRX7C2tsbHH3+MhIQEXLp0CQMHDsSqVavg5OQkOhopGAtrRERERArWsmVLLFq0qNj6ggUL0KxZMwGJdG/u3LkYNmwYunbtinXr1mHdunXo3Lkzhg4dinnz5omOR0REr1FQUICjR4/i0KFDuHjxIqpXry46EikYj4ISERERKVhycjI6dOiAFi1awNfXFwAQFxeHI0eOYNeuXWjbtq3ghKXPwcEBU6ZMQUhIiNb6ihUrMHnyZPzxxx+CkhER0V+Jj4/HmjVrsHHjRqjVagQGBiI4OBjt27fnkX4ShoU1IiIiIoU7fvw4vvnmGxw/flxzLPKLL75A/fr1RUfTiUqVKuHUqVPFjg5lZGSgcePGePLkiaBkRET0KrVr18bdu3fRuXNnBAcHo3v37jA2NhYdi4iFNSIiIiJSFjc3NwQFBWHcuHFa69OnT8fPP/+MkydPCkpGRESvsnjxYvTu3RtWVlaioxBpYWGNiIiISMEMDQ1x/fp12Nraaq3fuXMHtra2KCoqEpRMdzZu3IgPP/wQHTp0QJs2bQA8PxIbFxeHdevWoWfPnoITEhERUXlRQXQAIiIiIhLnVd+xPn36FEZGRnpOox+9evXCoUOHMG/ePGzevBkA4OLigsOHD8PT01NsOCIieqWjR49i3bp1yM7OxrNnz7Qei42NFZSKlI6FNSIiIiIFmj9/PgBApVJhyZIlMDMz0zxWVFSEffv2wdnZWVQ8nWvWrBlWr14tOgYREb2hmJgYhISEoFOnTti1axf8/PyQnp6OmzdvcqcxCcWjoEREREQK5ODgAAC4dOkS6tSpA0NDQ81jRkZGsLe3x9SpU/HOO++IiqhTRUVF2Lx5M86ePQsAaNSoEfz9/bX+HIiIqOxwd3fHJ598gk8//RTm5uZIS0uDg4MDPvnkE9SsWRNTpkwRHZEUioU1IiIiIgXz8fFBbGwsrK2tRUfRm8zMTHTr1g1XrlxBw4YNAQDnz5+HnZ0dtm3bhnr16glOSEREf1a5cmWcPn0a9vb2qFq1KhISEtC4cWOcPXsW7du3x/Xr10VHJIUyEB2AiIiIiMSJj4/XKqoVFRXh+PHjuHfvnsBUuhUeHg5HR0dcvnwZKSkpSElJQXZ2NhwcHBAeHi46HhERlcDa2hoPHz4EANSuXRunTp0CAOTm5iI/P19kNFI4FtaIiIiIFGzUqFFYunQpgOdFNS8vLzRt2hR2dnZISEgQG05HEhMTMXv2bFSpUkWzVrVqVcyaNQuJiYkCkxER0at4eXlh9+7dAIDevXtj5MiRCDhk6CUAABVjSURBVAsLQ79+/eDr6ys4HSkZhxcQERERKdj69evRv39/AMCWLVtw8eJFnDt3DqtWrcL48eORnJwsOGHpMzY21ux6eFleXp5sJ6ESEZV33333HZ48eQIAGD9+PCpWrIgDBw6gV69e+PLLLwWnIyVjjzUiIiIiBatUqRIyMzNRp04dfPzxxzA1NUVUVBT++OMPeHh44MGDB6IjlrqQkBCkpKRg6dKlaNmyJQDg0KFDCAsLQ7NmzbB8+XKxAYmIqJiQkBD4+PjAy8uLvTCpTOFRUCIiIiIFq169Os6cOYOioiL89ttv6NixIwAgPz9fthMy58+fj3r16qFVq1aoVKkSKlWqhNatW8PJyQlRUVGi4xERUQmMjIwwc+ZM1K9fH3Z2dujfvz+WLFmCjIwM0dFI4bhjjYiIiEjBJk+ejKioKNSsWRP5+flIT0+HsbExli1bhsWLF+PgwYOiI+pMZmYmzp49CwBwcXGBk5OT4ERERPQ6V69exb59+5CYmIjExESkp6ejZs2auHLliuhopFDssUZERESkYJMnT4abmxsuX76M3r17w9jYGABgaGiIsWPHCk6nG5999lmxtfj4eKhUKlSqVAlOTk4ICAjQGm5ARERlg7W1NapWrQpra2tYWVmhQoUKsLGxER2LFIw71oiIiIhIUXx8fJCSkoKioiI0bNgQAJCeng5DQ0M4Ozvj/PnzUKlU2L9/P1xdXQWnJSIiABg3bhwSEhKQmpoKFxcXeHt7o127dvDy8oK1tbXoeKRgLKwRERERKdyjR4+QmJiI7OxsPHv2TOux8PBwQal0JyoqCklJSYiOjoaFhQUA4P79+xgyZAjee+89hIWFISgoCI8fP8bOnTsFpyUiIgAwMDCAjY0NIiIiEBgYiAYNGoiORASAhTUiIiIiRUtNTUXXrl2Rn5+PR48eoUqVKrh9+zZMTU1ha2uLrKws0RFLXe3atbF79+5iu9FOnz4NPz8/XL16FSkpKfDz88Pt27cFpSQiopelpaUhMTERCQkJSEpKgpGRkWbXWrt27VhoI2E4FZSIiIhIwSIiItC9e3fcu3cPJiYm+P3333Hp0iU0a9YM3377reh4OnH//n3k5OQUW7916xYePHgAALCysiq2e4+IiMTx8PBAeHg4YmNjcevWLWzfvh1GRkb49NNP4eLiIjoeKRiHFxAREREp2PHjx7Fw4UIYGBjA0NAQT58+haOjI2bPno3Q0FAEBgaKjljqAgICMGjQIMyZMwctWrQAABw5cgSRkZHo0aMHAODw4cPc/UBEVIZIkoTU1FQkJCQgISEB+/fvx4MHD+Du7g5vb2/R8UjBWFgjIiIiUrCKFSvCwOD5IQZbW1tkZ2fDxcUFlpaWuHz5suB0urFw4UJERESgb9++KCwsBABUqFABoaGhmDdvHgDA2dkZS5YsERmTiIheUqVKFeTl5cHDwwPe3t4ICwtD27ZtYWVlJToaKRx7rBEREREpmJ+fHwYOHIigoCCEhYXhxIkTCA8Px6pVq3Dv3j0cOnRIdESdycvL0/SQc3R0hJmZmeBERET0Ktu2bUPbtm01Q2eIygoW1oiIiIgU7OjRo3j48CF8fHyQk5ODkJAQHDhwAPXr18eyZcvg4eEhOiIRERFRmcXCGhEREZHC/Prrr+jSpQsqVqwoOgoRERFRucbCGhEREZHCGBoa4saNG7CxsYGhoSGuX78OW1tb0bGIiIiIyh0D0QGIiIiISL9sbGzw+++/A3g+ZU2lUglORERERFQ+cSooERERkcIMHToUAQEBUKlUUKlUqFGjxiufW1RUpMdkREREROULj4ISERERKdC5c+eQmZkJf39/REdHw8rKqsTnBQQE6DcYERERUTnCwhoRERGRgk2ZMgVjxoyBqanpXz4vOTkZzZs3h7GxsZ6SEREREZV9LKwRERER0WtZWFjg+PHjcHR0FB2FiIiIqMzg8AIiIiIiei1+F0tERERUHAtrREREREREREREb4GFNSIiIiIiIiIiorfAwhoREREREREREdFbYGGNiIiIiF5LpVKJjkBERERU5rCwRkRERESvxeEFRERERMWpJL5LIiIiIiIiIiIi+tsqiA5ARERERPrl6en5xkc7U1JSdJyGiIiIqPxiYY2IiIhIYXr06CE6AhEREZEs8CgoERERERERERHRW+CONSIiIiLC0aNHcfbsWQCAq6srmjVrJjgRERERUdnHwhoRERGRgl25cgX9+vVDcnIyrKysAAC5ublo3bo1YmJiUKdOHbEBiYiIiMowA9EBiIiIiEicIUOGoKCgAGfPnsXdu3dx9+5dnD17Fmq1GkOGDBEdj4iIiKhMY481IiIiIgUzMTHBgQMH4OnpqbV+7NgxtG3bFvn5+YKSEREREZV93LFGREREpGB2dnYoKCgotl5UVIRatWoJSERERERUfrCwRkRERKRg33zzDUaMGIGjR49q1o4ePYqRI0fi22+/FZiMiIiIqOzjUVAiIiIiBbO2tkZ+fj4KCwtRocLzuVYvfly5cmWt5969e1dERCIiIqIyi1NBiYiIiBQsKipKdAQiIiKicos71oiIiIjotWbNmoWhQ4fCyspKdBQiIiKiMoOFNSIiIiJ6LQsLCxw/fhyOjo6ioxARERGVGRxeQERERESvxe9iiYiIiIpjYY2IiIiIiIiIiOgtsLBGRERERERERET0FlhYIyIiIiIiIiIiegssrBEREREREREREb0FFtaIiIiI6LXatm0LExMT0TGIiIiIyhSVxBFPRERERIplaGiI69evw9bWVmv9zp07sLW1RVFRkaBkRERERGUfd6wRERERKdirvmN9+vQpjIyM9JyGiIiIqHypIDoAEREREenf/PnzAQAqlQpLliyBmZmZ5rGioiLs27cPzs7OouIRERERlQs8CkpERESkQA4ODgCAS5cuoU6dOjA0NNQ8ZmRkBHt7e0ydOhXvvPOOqIhEREREZR4La0REREQK5uPjg9jYWFhbW4uOQkRERFTusMcaERERkYL5+PjA2Ni42Prjx48xdepUAYmIiIiIyg/uWCMiIiJSME4FJSIiInp73LFGREREpGCSJEGlUhVbT0tLQ5UqVQQkIiIiIio/OBWUiIiISIGsra2hUqmgUqnQoEEDreJaUVER8vLyMHToUIEJiYiIiMo+HgUlIiIiUqAVK1ZAkiQMGjQIUVFRsLS01Dz2Yipoq1atBCYkIiIiKvtYWCMiIiJSsMTERLRp0wYVKvAgAxEREdHfxR5rRERERApmbm6Os2fPan7+yy+/oEePHhg3bhyePXsmMBkRERFR2cfCGhEREZGCffLJJ0hPTwcAZGVl4cMPP4SpqSnWr1+P//znP4LTEREREZVtLKwRERERKVh6ejqaNGkCAFi/fj28vb2xZs0aLF++HBs3bhQbjoiIiKiMY2GNiIiISMEkSYJarQYA7NmzB127dgUA2NnZ4fbt2yKjEREREZV5LKwRERERKVjz5s0xffp0rFq1ComJiejWrRsA4I8//kD16tUFpyMiIiIq21hYIyIiIlKwqKgopKSkYPjw4Rg/fjycnJwAABs2bEDr1q0FpyMiIiIq21SSJEmiQxARERFR2fLkyRMYGhqiYsWKAIC1a9fC398flStXFpyMiIiIqOxgYY2IiIiIXsvCwgLHjx+Ho6Oj6ChEREREZQaPghIRERHRa/G7WCIiIqLiWFgjIiIiIiIiIiJ6CyysERERERERERERvQUW1oiIiIiIiIiIiN4CC2tERERERERERERvgYU1IiIiInqtunXromLFiqJjEBEREZUpKokjnoiIiIgU79ixYzh79iwAwNXVFU2bNhWciIiIiKjsqyA6ABERERGJk5OTg759+yIhIQFWVlYAgNzcXPj4+CAmJgY2NjZiAxIRERGVYTwKSkRERKRgI0aMwMOHD3H69GncvXsXd+/exalTp/DgwQOEh4eLjkdERERUpvEoKBEREZGCWVpaYs+ePWjRooXW+uHDh+Hn54fc3FwxwYiIiIjKAe5YIyIiIlIwtVpd4lCCihUrQq1WC0hEREREVH6wsEZERESkYO3bt8fIkSNx7do1zdrVq1cREREBX19fgcmIiIiIyj4eBSUiIiJSsMuXL8Pf3x+nT5+GnZ2dZs3NzQ2//vor6tSpIzghERERUdnFwhoRERGRwkmShD179uDcuXMAABcXF3To0EFwKiIiIqKyj4U1IiIiIiIiIiKit1BBdAAiIiIiEuvIkSOIj49HTk5OsYEFc+fOFZSKiIiIqOxjYY2IiIhIwWbMmIEvv/wSDRs2RPXq1aFSqTSPvfxjIiIiIiqOR0GJiIiIFKx69er4+uuvMXDgQNFRiIiIiModA9EBiIiIiEgcAwMDtGnTRnQMIiIionKJhTUiIiIiBYuIiMD3338vOgYRERFRucSjoEREREQKplar0a1bN6Snp8PV1RUVK1bUejw2NlZQMiIiIqKyj8MLiIiIiBQsPDwc8fHx8PHxQdWqVTmwgIiIiOhv4I41IiIiIgUzNzdHTEwMunXrJjoKERERUbnDHmtEREREClalShXUq1dPdAwiIiKicomFNSIiIiIFmzx5MiZNmoT8/HzRUYiIiIjKHR4FJSIiIlIwT09PXLhwAZIkwd7evtjwgpSUFEHJiIiIiMo+Di8gIiIiUrAePXqIjkBERERUbnHHGhERERERERER0VtgjzUiIiIihcvNzcWSJUvwxRdf4O7duwCeHwG9evWq4GREREREZRt3rBEREREp2IkTJ9ChQwdYWlri4sWLOH/+PBwdHfHll18iOzsbK1euFB2RiIiIqMzijjUiIiIiBfvss88wcOBAZGRkoFKlSpr1rl27Yt++fQKTEREREZV9LKwRERERKdiRI0fwySefFFuvXbs2bty4ISARERERUfnBwhoRERGRghkbG+PBgwfF1tPT02FjYyMgEREREVH5wcIaERERkYL5+/tj6tSpKCgoAACoVCpkZ2fj888/R69evQSnIyIiIirbOLyAiIiISMHu37+PDz74AEePHsXDhw9Rq1Yt3LhxA++++y527NiBypUri45IREREVGaxsEZERERESE5ORlpaGvLy8tC0aVN06NBBdCQiIiKiMo+FNSIiIiKFi4uLQ1xcHHJycqBWq7UeW7ZsmaBURERERGVfBdEBiIiIiEicKVOmYOrUqWjevDlq1qwJlUolOhIRERFRucEda0REREQKVrNmTcyePRsDBgwQHYWIiIio3OFUUCIiIiIFe/bsGVq3bi06BhEREVG5xMIaERERkYINGTIEa9asER2DiIiIqFxijzUiIiIiBXvy5AkWLVqEPXv2wN3dHRUrVtR6fO7cuYKSEREREZV97LFGREREpGA+Pj6vfEylUmHv3r16TENERERUvrCwRkRERERERERE9BbYY42IiIiIiIiIiOgtsLBGRERERERERET0FlhYIyIiIiIiIiIiegssrBEREREREREREb0FFtaIiIiIiIiIiIjeAgtrRERERISEhASoVCrk5uaKjkJERERUbrCwRkRERERERERE9BZYWCMiIiIqZzZs2IDGjRvDxMQEVatWRYcOHZCYmIiKFSvixo0bWs8dNWoU2rZtCwC4dOkSunfvDmtra1SuXBmNGjXC9u3bcfHiRfj4+AAArK2toVKpMHDgQACAWq3GzJkz4eDgABMTE3h4eGDDhg2a//0XO9127twJT09PmJiYoH379sjJycGOHTvg4uICCwsLBAUFIT8/Xz9/QERERER6UkF0ACIiIiJ6c9evX0e/fv0we/Zs9OzZEw8fPkRSUhKaNWsGR0dHrFq1CmPGjAEAFBQU4KeffsLs2bMBAJ9++imePXuGffv2oXLlyjhz5gzMzMxgZ2eHjRs3olevXjh//jwsLCxgYmICAJg5cyZWr16NBQsWoH79+ti3bx/69+8PGxsbeHt7a3JNnjwZ3333HUxNTdGnTx/06dMHxsbGWLNmDfLy8tCzZ0/873//w+eff67/PzQiIiIiHWFhjYiIiKgcuX79OgoLCxEYGIi6desCABo3bgwAGDx4MKKjozWFtS1btuDJkyfo06cPACA7Oxu9evXSPN/R0VHzv1ulShUAgK2tLaysrAAAT58+xYwZM7Bnzx60atVK82v279+PhQsXahXWpk+fjjZt2mhyfPHFF7hw4YLm/+ODDz5AfHw8C2tEREQkKzwKSkRERFSOeHh4wNfXF40bN0bv3r2xePFi3Lt3DwAwcOBAZGZm4vfffwcALF++HH369EHlypUBAOHh4ZoC2KRJk3DixIm//P/KzMxEfn4+OnbsCDMzM81/K1euxIULF7Se6+7urvlx9erVYWpqqlW4q169OnJyckrlz4CIiIiorGBhjYiIiKgcMTQ0xO7du7Fjxw64urrif//7Hxo2bIg//vgDtra26N69O6Kjo3Hz5k3s2LEDgwYN0vzaIUOGICsrCwMGDMDJkyfRvHlz/O9//3vl/1deXh4AYNu2bTh+/LjmvzNnzmj1WQOAihUran6sUqm0fv5iTa1Wl8YfAREREVGZwcIaERERUTmjUqnQpk0bTJkyBampqTAyMsKmTZsAPC+e/fzzz1i0aBHq1aunOZ75gp2dHYYOHYrY2FiMHj0aixcvBgAYGRkBAIqKijTPdXV1hbGxMbKzs+Hk5KT1n52dnZ5+t0RERERlF3usEREREZUjhw4dQlxcHPz8/GBra4tDhw7h1q1bcHFxAQB06tQJFhYWmD59OqZOnar1a0eNGoUuXbqgQYMGuHfvHuLj4zW/rm7dulCpVNi6dSu6du0KExMTmJubIzIyEhEREVCr1Xjvvfdw//59JCcnw8LCAqGhoXr//RMRERGVJdyxRkRERFSOWFhYYN++fejatSsaNGiAL7/8EnPmzEGXLl0AAAYGBhg4cCCKiooQEhKi9WuLiorw6aefwsXFBZ07d0aDBg3www8/AABq166NKVOmYOzYsahevTqGDx8OAJg2bRomTJiAmTNnan7dtm3b4ODgoN/fOBEREVEZpJIkSRIdgoiIiIhKz+DBg3Hr1i38+uuvoqMQERERyRqPghIRERHJxP3793Hy5EmsWbOGRTUiIiIiPWBhjYiIiEgmAgICcPjwYQwdOhQdO3YUHYeIiIhI9ngUlIiIiIiIiIiI6C1weAEREREREREREdFbYGGNiIiIiIiIiIjoLbCwRkRERERERERE9BZYWCMiIiIiIiIiInoLLKwRERERERERERG9BRbWiIiIiIiIiIiI3gILa0RERERERERERG+BhTUiIiIiIiIiIqK38P8AhKu2cuBIDdkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot average WER per system sorted by WER\n", "plt.figure(figsize=(15, 8))\n", "sns.boxplot(data=df_per_sample, x='system', y='MER', order=df_per_sample.groupby('system')['MER'].mean().sort_values().index)\n", "# limit y axis to 0-1\n", "plt.ylim(0, 100)\n", "plt.xticks(rotation=90)\n", "plt.title('Average MER per system')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "'ref_words'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[25], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m#generate average WER per specific sample (based on 'id' column) for all systems\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m df_per_sample_all_systems \u001b[38;5;241m=\u001b[39m \u001b[43mdf_per_sample\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupby\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msystem\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mref\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mhyp\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mref_words\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mhyp_words\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mref_wps\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mhyp_wps\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39magg({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWER\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmean\u001b[39m\u001b[38;5;124m'\u001b[39m})\u001b[38;5;241m.\u001b[39mreset_index()\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# sort by WER\u001b[39;00m\n\u001b[1;32m 4\u001b[0m df_per_sample_all_systems\u001b[38;5;241m.\u001b[39msort_values(by\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWER\u001b[39m\u001b[38;5;124m'\u001b[39m, ascending\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m10\u001b[39m)\n", "File \u001b[0;32m~/.pyenv/versions/3.10.11/envs/streamlit/lib/python3.10/site-packages/pandas/core/frame.py:9170\u001b[0m, in \u001b[0;36mDataFrame.groupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, observed, dropna)\u001b[0m\n\u001b[1;32m 9167\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m level \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m by \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 9168\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou have to supply one of \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mby\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m and \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlevel\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 9170\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mDataFrameGroupBy\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 9171\u001b[0m \u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9172\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mby\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9173\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9174\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9175\u001b[0m \u001b[43m \u001b[49m\u001b[43mas_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mas_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9176\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9177\u001b[0m \u001b[43m \u001b[49m\u001b[43mgroup_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup_keys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9178\u001b[0m \u001b[43m \u001b[49m\u001b[43mobserved\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mobserved\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9179\u001b[0m \u001b[43m \u001b[49m\u001b[43mdropna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdropna\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9180\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.pyenv/versions/3.10.11/envs/streamlit/lib/python3.10/site-packages/pandas/core/groupby/groupby.py:1329\u001b[0m, in \u001b[0;36mGroupBy.__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, observed, dropna)\u001b[0m\n\u001b[1;32m 1326\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdropna \u001b[38;5;241m=\u001b[39m dropna\n\u001b[1;32m 1328\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m grouper \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 1329\u001b[0m grouper, exclusions, obj \u001b[38;5;241m=\u001b[39m \u001b[43mget_grouper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1330\u001b[0m \u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1331\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1332\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1333\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1334\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1335\u001b[0m \u001b[43m \u001b[49m\u001b[43mobserved\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mobserved\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mlib\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mno_default\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mobserved\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1336\u001b[0m \u001b[43m \u001b[49m\u001b[43mdropna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdropna\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1337\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1339\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m observed \u001b[38;5;129;01mis\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default:\n\u001b[1;32m 1340\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m(ping\u001b[38;5;241m.\u001b[39m_passed_categorical \u001b[38;5;28;01mfor\u001b[39;00m ping \u001b[38;5;129;01min\u001b[39;00m grouper\u001b[38;5;241m.\u001b[39mgroupings):\n", "File \u001b[0;32m~/.pyenv/versions/3.10.11/envs/streamlit/lib/python3.10/site-packages/pandas/core/groupby/grouper.py:1043\u001b[0m, in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, validate, dropna)\u001b[0m\n\u001b[1;32m 1041\u001b[0m in_axis, level, gpr \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m, gpr, \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1042\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1043\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(gpr)\n\u001b[1;32m 1044\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(gpr, Grouper) \u001b[38;5;129;01mand\u001b[39;00m gpr\u001b[38;5;241m.\u001b[39mkey \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1045\u001b[0m \u001b[38;5;66;03m# Add key to exclusions\u001b[39;00m\n\u001b[1;32m 1046\u001b[0m exclusions\u001b[38;5;241m.\u001b[39madd(gpr\u001b[38;5;241m.\u001b[39mkey)\n", "\u001b[0;31mKeyError\u001b[0m: 'ref_words'" ] } ], "source": [ "#generate average WER per specific sample (based on 'id' column) for all systems\n", "df_per_sample_all_systems = df_per_sample.groupby(['id', 'system', 'ref', 'hyp', 'ref_words', 'hyp_words', 'ref_wps', 'hyp_wps']).agg({'WER': 'mean'}).reset_index()\n", "# sort by WER\n", "df_per_sample_all_systems.sort_values(by='WER', ascending=False).head(10)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idsystemrefhypref_wordshyp_wordsref_wpshyp_wpsWERWER_rank
37444pwr-viu-unk-test-0003-00363.wavwhisper_local_tinywyczyśćwit exhausting się z nas samaspeaksistna odwie...1191.03092819.5876291900.001.0
37577pwr-viu-unk-test-0003-00377.wavwhisper_local_tinycofnijto s然creamuắm on jest nawet determinowi usda z...1110.8771939.6491231100.001.0
12748mozilla-common_voice_15-23-test-1618-00006.wavwhisper_local_tinysumienie go ujęło podstępniesob mean guys adesso tam ogieło tego pod auste...4261.2820518.333333650.001.0
23196polyai-minds14-21-test-0003-00023.wavwhisper_local_tinydzień dobry chciałbym zmienić twój adres zamie...cię na brę w ciągu wyzwój twój adres z samej s...422230.9118544.841511490.481.0
14929mozilla-common_voice_15-23-test-2725-00005.wavwhisper_local_smalleee pod wodę trudnomnn amigo packages sp innen workplace polsko s...4171.1869445.044510425.001.0
14059mozilla-common_voice_15-23-test-2295-00004.wavwhisper_local_tinyjedyny motyw dla malarzai e beni mamy już innym muzeku i nie ten cut c...4141.2987014.545455350.001.0
13369mozilla-common_voice_15-23-test-1907-00001.wavwhisper_local_basew dziecinnym głosie brzmiał zawód i powątpiewaniewy algumas uzi baramente po te minut od rzucaj...7251.2658234.520796342.861.0
37419pwr-viu-unk-test-0003-00361.wavwhisper_local_basecofnijco w niej130.9259262.777778300.001.5
35971pwr-viu-unk-test-0003-00209.wavnemo_stt_pl_fastconformer_hybrid_large_pccofnijco w niej130.8333332.500000300.001.5
34270pwr-viu-unk-test-0003-00029.wavwhisper_local_smallcofnijco w niej130.8620692.586207300.002.0
35590pwr-viu-unk-test-0003-00169.wavmms_1b-allcofnijco w ni131.0000003.000000300.002.0
34384pwr-viu-unk-test-0003-00041.wavwhisper_local_smallzakończto za koniec130.8620692.586207300.001.0
35215pwr-viu-unk-test-0003-00129.wavwhisper_local_basecofnijco w mi130.9090912.727273300.001.5
35595pwr-viu-unk-test-0003-00169.wavwhisper_local_basecofnijco w niej131.0000003.000000300.002.0
35886pwr-viu-unk-test-0003-00199.wavwhisper_local_tinycofnijco w niej130.8928572.678571300.001.0
35220pwr-viu-unk-test-0003-00129.wavwhisper_local_smallcofnijco w niej130.9090912.727273300.001.5
36817pwr-viu-unk-test-0003-00297.wavwhisper_local_tinycofnijco w niej130.9900992.970297300.001.0
35600pwr-viu-unk-test-0003-00169.wavwhisper_local_smallcofnijco w niej131.0000003.000000300.002.0
37311pwr-viu-unk-test-0003-00349.wavwhisper_local_tinycofnijco w nie131.1111113.333333300.001.0
34708pwr-viu-unk-test-0003-00075.wavwhisper_local_tinycofnijco w niej130.9433962.830189300.001.0
\n", "
" ], "text/plain": [ " id \\\n", "37444 pwr-viu-unk-test-0003-00363.wav \n", "37577 pwr-viu-unk-test-0003-00377.wav \n", "12748 mozilla-common_voice_15-23-test-1618-00006.wav \n", "23196 polyai-minds14-21-test-0003-00023.wav \n", "14929 mozilla-common_voice_15-23-test-2725-00005.wav \n", "14059 mozilla-common_voice_15-23-test-2295-00004.wav \n", "13369 mozilla-common_voice_15-23-test-1907-00001.wav \n", "37419 pwr-viu-unk-test-0003-00361.wav \n", "35971 pwr-viu-unk-test-0003-00209.wav \n", "34270 pwr-viu-unk-test-0003-00029.wav \n", "35590 pwr-viu-unk-test-0003-00169.wav \n", "34384 pwr-viu-unk-test-0003-00041.wav \n", "35215 pwr-viu-unk-test-0003-00129.wav \n", "35595 pwr-viu-unk-test-0003-00169.wav \n", "35886 pwr-viu-unk-test-0003-00199.wav \n", "35220 pwr-viu-unk-test-0003-00129.wav \n", "36817 pwr-viu-unk-test-0003-00297.wav \n", "35600 pwr-viu-unk-test-0003-00169.wav \n", "37311 pwr-viu-unk-test-0003-00349.wav \n", "34708 pwr-viu-unk-test-0003-00075.wav \n", "\n", " system \\\n", "37444 whisper_local_tiny \n", "37577 whisper_local_tiny \n", "12748 whisper_local_tiny \n", "23196 whisper_local_tiny \n", "14929 whisper_local_small \n", "14059 whisper_local_tiny \n", "13369 whisper_local_base \n", "37419 whisper_local_base \n", "35971 nemo_stt_pl_fastconformer_hybrid_large_pc \n", "34270 whisper_local_small \n", "35590 mms_1b-all \n", "34384 whisper_local_small \n", "35215 whisper_local_base \n", "35595 whisper_local_base \n", "35886 whisper_local_tiny \n", "35220 whisper_local_small \n", "36817 whisper_local_tiny \n", "35600 whisper_local_small \n", "37311 whisper_local_tiny \n", "34708 whisper_local_tiny \n", "\n", " ref \\\n", "37444 wyczyść \n", "37577 cofnij \n", "12748 sumienie go ujęło podstępnie \n", "23196 dzień dobry chciałbym zmienić twój adres zamie... \n", "14929 eee pod wodę trudno \n", "14059 jedyny motyw dla malarza \n", "13369 w dziecinnym głosie brzmiał zawód i powątpiewanie \n", "37419 cofnij \n", "35971 cofnij \n", "34270 cofnij \n", "35590 cofnij \n", "34384 zakończ \n", "35215 cofnij \n", "35595 cofnij \n", "35886 cofnij \n", "35220 cofnij \n", "36817 cofnij \n", "35600 cofnij \n", "37311 cofnij \n", "34708 cofnij \n", "\n", " hyp ref_words \\\n", "37444 wit exhausting się z nas samaspeaksistna odwie... 1 \n", "37577 to s然creamuắm on jest nawet determinowi usda z... 1 \n", "12748 sob mean guys adesso tam ogieło tego pod auste... 4 \n", "23196 cię na brę w ciągu wyzwój twój adres z samej s... 42 \n", "14929 mnn amigo packages sp innen workplace polsko s... 4 \n", "14059 i e beni mamy już innym muzeku i nie ten cut c... 4 \n", "13369 wy algumas uzi baramente po te minut od rzucaj... 7 \n", "37419 co w niej 1 \n", "35971 co w niej 1 \n", "34270 co w niej 1 \n", "35590 co w ni 1 \n", "34384 to za koniec 1 \n", "35215 co w mi 1 \n", "35595 co w niej 1 \n", "35886 co w niej 1 \n", "35220 co w niej 1 \n", "36817 co w niej 1 \n", "35600 co w niej 1 \n", "37311 co w nie 1 \n", "34708 co w niej 1 \n", "\n", " hyp_words ref_wps hyp_wps WER WER_rank \n", "37444 19 1.030928 19.587629 1900.00 1.0 \n", "37577 11 0.877193 9.649123 1100.00 1.0 \n", "12748 26 1.282051 8.333333 650.00 1.0 \n", "23196 223 0.911854 4.841511 490.48 1.0 \n", "14929 17 1.186944 5.044510 425.00 1.0 \n", "14059 14 1.298701 4.545455 350.00 1.0 \n", "13369 25 1.265823 4.520796 342.86 1.0 \n", "37419 3 0.925926 2.777778 300.00 1.5 \n", "35971 3 0.833333 2.500000 300.00 1.5 \n", "34270 3 0.862069 2.586207 300.00 2.0 \n", "35590 3 1.000000 3.000000 300.00 2.0 \n", "34384 3 0.862069 2.586207 300.00 1.0 \n", "35215 3 0.909091 2.727273 300.00 1.5 \n", "35595 3 1.000000 3.000000 300.00 2.0 \n", "35886 3 0.892857 2.678571 300.00 1.0 \n", "35220 3 0.909091 2.727273 300.00 1.5 \n", "36817 3 0.990099 2.970297 300.00 1.0 \n", "35600 3 1.000000 3.000000 300.00 2.0 \n", "37311 3 1.111111 3.333333 300.00 1.0 \n", "34708 3 0.943396 2.830189 300.00 1.0 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#filter out results where ref_wps < 0.8\n", "df_per_sample_all_systems = df_per_sample_all_systems[df_per_sample_all_systems['ref_wps'] > 0.8]\n", "df_per_sample_all_systems.sort_values(by='WER', ascending=False).head(20)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Weigthted average WER per system based on df_per_dataset\n", "df_weighted_avg_wer_per_system_from_per_dataset = df_per_dataset.groupby(\"system\").apply(lambda x: (x[\"WER\"] * x[\"samples\"]).sum() / x[\"samples\"].sum()).sort_values().round(2)\n", "df_weighted_avg_wer_per_system_from_per_dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
metricsubsetsystemavgmaxmedianminstd
185pwr-maleset-unkwhisper_local_large-v15.92100.000.000.0014.24
41mailabs-corpus_librivox-19google_latest_long10.7666.677.140.0012.47
15fair-mls-20whisper_local_large-v24.9824.004.080.005.05
213pwr-viu-unkgoogle_latest_short0.000.000.000.000.00
197pwr-shortwords-unkmms_1b-all13.68100.0010.000.0019.00
194pwr-shortwords-unkgoogle_latest_short7.79100.000.000.0015.19
166pwr-azon_spont-20whisper_local_large-v117.4338.9815.960.007.63
69mozilla-common_voice_15-23whisper_local_base40.62342.8633.330.0037.21
159pwr-azon_spont-20mms_1b-all24.0954.5524.067.149.49
53mailabs-corpus_librivox-19whisper_local_large-v27.2766.674.170.0010.16
\n", "
" ], "text/plain": [ "metric subset system avg max \\\n", "185 pwr-maleset-unk whisper_local_large-v1 5.92 100.00 \n", "41 mailabs-corpus_librivox-19 google_latest_long 10.76 66.67 \n", "15 fair-mls-20 whisper_local_large-v2 4.98 24.00 \n", "213 pwr-viu-unk google_latest_short 0.00 0.00 \n", "197 pwr-shortwords-unk mms_1b-all 13.68 100.00 \n", "194 pwr-shortwords-unk google_latest_short 7.79 100.00 \n", "166 pwr-azon_spont-20 whisper_local_large-v1 17.43 38.98 \n", "69 mozilla-common_voice_15-23 whisper_local_base 40.62 342.86 \n", "159 pwr-azon_spont-20 mms_1b-all 24.09 54.55 \n", "53 mailabs-corpus_librivox-19 whisper_local_large-v2 7.27 66.67 \n", "\n", "metric median min std \n", "185 0.00 0.00 14.24 \n", "41 7.14 0.00 12.47 \n", "15 4.08 0.00 5.05 \n", "213 0.00 0.00 0.00 \n", "197 10.00 0.00 19.00 \n", "194 0.00 0.00 15.19 \n", "166 15.96 0.00 7.63 \n", "69 33.33 0.00 37.21 \n", "159 24.06 7.14 9.49 \n", "53 4.17 0.00 10.16 " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_per_subset_avg_wer = df_per_sample.groupby(['subset', 'system']).agg({'WER': 'mean'}).reset_index()\n", "df_per_subset_med_wer = df_per_sample.groupby(['subset', 'system']).agg({'WER': 'median'}).reset_index()\n", "df_per_subset_std_wer = df_per_sample.groupby(['subset', 'system']).agg({'WER': 'std'}).reset_index()\n", "# calculate min and max WER for each subset\n", "df_per_subset_min_wer = df_per_sample.groupby(['subset', 'system']).agg({'WER': 'min'}).reset_index()\n", "df_per_subset_max_wer = df_per_sample.groupby(['subset', 'system']).agg({'WER': 'max'}).reset_index()\n", "\n", "# concatenate the two dataframes\n", "df_per_subset_avg_wer['metric'] = 'avg'\n", "df_per_subset_med_wer['metric'] = 'median'\n", "df_per_subset_std_wer['metric'] = 'std'\n", "df_per_subset_min_wer['metric'] = 'min'\n", "df_per_subset_max_wer['metric'] = 'max'\n", "\n", "# round values to 2 decimal places\n", "df_per_subset_avg_wer['WER'] = df_per_subset_avg_wer['WER'].round(2)\n", "df_per_subset_med_wer['WER'] = df_per_subset_med_wer['WER'].round(2)\n", "df_per_subset_std_wer['WER'] = df_per_subset_std_wer['WER'].round(2)\n", "df_per_subset_min_wer['WER'] = df_per_subset_min_wer['WER'].round(2)\n", "df_per_subset_max_wer['WER'] = df_per_subset_max_wer['WER'].round(2)\n", "\n", "df_per_subset = pd.concat([df_per_subset_avg_wer, df_per_subset_std_wer, df_per_subset_med_wer, df_per_subset_min_wer, df_per_subset_max_wer])\n", "# pivot so that average and median values are in separate columns\n", "\n", "df_per_subset = df_per_subset.pivot(index=['subset', 'system'], columns='metric', values='WER').reset_index()\n", "\n", "df_per_subset.sample(10)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datasetWER
0amu-cai/pl-asr-bigos-v2-secret16.300518
\n", "
" ], "text/plain": [ " dataset WER\n", "0 amu-cai/pl-asr-bigos-v2-secret 16.300518" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_per_dataset = df_per_sample.groupby('dataset').agg({'WER': 'mean'}).reset_index()\n", "df_per_dataset.sample(1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
systemWER
0azure_latest16.441846
1google_command_and_search14.622314
2google_default15.321516
3google_latest_long9.135650
4google_latest_short12.197692
5google_v2_long9.194960
6google_v2_short16.875613
7mms_1b-all15.699990
8nemo_stt_pl_fastconformer_hybrid_large_pc14.027657
9wav2vec2_large-xlsr-53-polish22.171245
10wav2vec2_xls-r-1b-polish12.069904
11whisper_cloud_whisper-18.965871
12whisper_local_base35.171550
13whisper_local_large6.920015
14whisper_local_large-v19.228981
15whisper_local_large-v28.212766
16whisper_local_medium10.092580
17whisper_local_small19.163126
18whisper_local_tiny54.107301
\n", "
" ], "text/plain": [ " system WER\n", "0 azure_latest 16.441846\n", "1 google_command_and_search 14.622314\n", "2 google_default 15.321516\n", "3 google_latest_long 9.135650\n", "4 google_latest_short 12.197692\n", "5 google_v2_long 9.194960\n", "6 google_v2_short 16.875613\n", "7 mms_1b-all 15.699990\n", "8 nemo_stt_pl_fastconformer_hybrid_large_pc 14.027657\n", "9 wav2vec2_large-xlsr-53-polish 22.171245\n", "10 wav2vec2_xls-r-1b-polish 12.069904\n", "11 whisper_cloud_whisper-1 8.965871\n", "12 whisper_local_base 35.171550\n", "13 whisper_local_large 6.920015\n", "14 whisper_local_large-v1 9.228981\n", "15 whisper_local_large-v2 8.212766\n", "16 whisper_local_medium 10.092580\n", "17 whisper_local_small 19.163126\n", "18 whisper_local_tiny 54.107301" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_per_system = df_per_sample.groupby(['system']).agg({'WER': 'mean'}).reset_index()\n", "df_per_system.head(50)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def boxplot_performance(data, dim, metric, save_path):\n", " \"\"\"\n", " Plots a box plot showing the distribution of a specified metric per provided dimension e.g. dataset, system, split etc.\n", "\n", " Parameters:\n", " - data: pandas DataFrame containing the ASR evaluation results.\n", " - dimn: The dimension to use for the box plot (e.g., 'dataset', 'system').\n", " - metric: The metric to use for the box plot (e.g., 'SER', 'WER').\n", " - save_path: The path where the plot image will be saved.\n", " \"\"\"\n", " plt.figure(figsize=(10, 6))\n", " sns.boxplot(x=dim, y=metric, data=data)\n", " plt.xticks(rotation=45, ha='right')\n", " plt.title(f'Box Plot of {metric} Per {dim}')\n", " plt.xlabel(dim)\n", " plt.ylabel(metric)\n", " plt.tight_layout()\n", " plt.savefig(save_path)\n", " plt.close()\n", "\n", "def boxplot_wer_per_dataset(eval_results, save_path='./data/eval_plots'):\n", " # Load the data\n", " data = pd.read_csv(eval_results, sep='\\t')\n", " today = pd.Timestamp.now().strftime('%Y%m%d')\n", " os.makedirs(os.path.join(save_path, today), exist_ok=True)\n", "\n", " # Plot and save the figures\n", " boxplot_performance(data, \"dataset\", \"WER\", os.path.join(save_path, \"WER-across-systems.png\"))\n", "\n", "#def wer_per_audio_duration\n", "\n", "def parse_arguments():\n", " parser = argparse.ArgumentParser(description='ASR Evaluation Analysis')\n", " parser.add_argument('--analysis_type', type=str, help=\"WER_PER_AUDIO_DURATION or WER_PER_SYSTEM or WER_PER_DATASET\")\n", " parser.add_argument('--eval_results', type=str, help='Path to the TSV file')\n", " parser.add_argument('--dim', type=str, default='dataset', help='Dimension to plot (default: dataset)')\n", " parser.add_argument('--metric', type=str, default='WER', help='Metric to plot (default: WER)')\n", " parser.add_argument('--save_path', type=str, default='.', help='Path to save the plots')\n", " return parser.parse_args()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def calculate_wer_summary(data, output_csv_path):\n", " # TODO - split system and model into separate columns?\n", "\n", " # Pivot the data to have one row per system/model with columns for each dataset's WER\n", " pivot_data = data.pivot_table(index='system', columns='dataset', values='WER', aggfunc='mean').reset_index()\n", " \n", " # change values in the dataset column, so that they are more human readable\n", " pivot_data.columns = pivot_data.columns.str.replace(\"test-\", \"\")\n", " pivot_data.columns = pivot_data.columns.str.replace(\"valdation-\", \"\")\n", " pivot_data.columns = pivot_data.columns.str.replace(\"train-\", \"\")\n", "\n", " # Calculate average WER and weighted average WER with 2 decimal places precision\n", "\n", " data['weighted_wer'] = data['WER'] * data['samples']\n", " avg_wer = data.groupby('system')['WER'].mean().reset_index(name='avg. WER')\n", " wavg_wer = data.groupby('system')['weighted_wer'].sum() / data.groupby('system')['samples'].sum()\n", " wavg_wer = wavg_wer.reset_index(name='wavg. WER')\n", " # Round the WER values to 2 decimal places\n", " avg_wer['avg. WER'] = avg_wer['avg. WER'].round(2)\n", " wavg_wer['wavg. WER'] = wavg_wer['wavg. WER'].round(2)\n", "\n", " # Merge average and weighted average WER with pivot data\n", " summary_data = pd.merge(pivot_data, avg_wer, on='system')\n", " summary_data = pd.merge(summary_data, wavg_wer, on='system')\n", " \n", " # move columns with avg_wer and wavg_wer to the beginnging (after system and model columns)\n", " cols = summary_data.columns.tolist()\n", " cols = cols[:1] + cols[-2:] + cols[1:-2]\n", " summary_data = summary_data[cols]\n", "\n", " # Rename columns to match the provided CSV format, if necessary\n", " # This step would require specific column name mappings based on your example CSV\n", " \n", " # Save the summarized data to a CSV file\n", " summary_data.to_csv(output_csv_path, index=False)\n", " return summary_data\n" ] } ], "metadata": { "kernelspec": { "display_name": "streamlit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 2 }