import gradio as gr import whisper import numpy as np import openai import os from gtts import gTTS import json import hashlib import random import string import uuid from datetime import date,datetime from huggingface_hub import Repository, upload_file import shutil HF_TOKEN_WRITE = os.environ.get("HF_TOKEN_WRITE") print("HF_TOKEN_WRITE", HF_TOKEN_WRITE) today = date.today() today_ymd = today.strftime("%Y%m%d") def greet(name): return "Hello " + name + "!!" with open('app.css','r') as f: css_file = f.read() markdown=""" # Polish ASR BIGOS workspace """ # TODO move to config WORKING_DATASET_REPO_URL = "https://huggingface.co/datasets/goodmike31/working-db" REPO_NAME = "goodmike31/working-db" REPOSITORY_DIR = "data" LOCAL_DIR = "data_local" os.makedirs(LOCAL_DIR,exist_ok=True) def dump_json(thing,file): with open(file,'w+',encoding="utf8") as f: json.dump(thing,f) def get_unique_name(): return ''.join([random.choice(string.ascii_letters + string.digits) for n in range(32)]) def save_recording_and_meta(project_name, recording, transcript, language): #, name, age, gender): # TODO save user data in the next version speaker_metadata={} speaker_metadata['gender'] = "test" #gender if gender!=GENDER[0] else '' speaker_metadata['age'] = "test" #age if age !='' else '' speaker_metadata['accent'] = "test" #accent if accent!='' else '' lang_id = language.lower() # TODO get ISO-693-1 codes transcript =transcript.strip() SAVE_ROOT_DIR = os.path.join(LOCAL_DIR, project_name, today_ymd) SAVE_DIR_AUDIO = os.path.join(SAVE_ROOT_DIR, "audio") SAVE_DIR_META = os.path.join(SAVE_ROOT_DIR, "meta") os.makedirs(SAVE_DIR_AUDIO, exist_ok=True) os.makedirs(SAVE_DIR_META, exist_ok=True) # Write audio to file #audio_name = get_unique_name() uuid_name = str(uuid.uuid4()) audio_fn = uuid_name + ".wav" audio_output_fp = os.path.join(SAVE_DIR_AUDIO, audio_fn) print (f"Saving {recording} as {audio_output_fp}") shutil.copy2(recording, audio_output_fp) # Write metadata.json to file meta_fn = uuid_name + 'metadata.jsonl' json_file_path = os.path.join(SAVE_DIR_META, meta_fn) now = datetime.now() timestamp_str = now.strftime("%d/%m/%Y %H:%M:%S") metadata= {'id':uuid_name,'audio_file': audio_fn, 'language_name':language,'language_id':lang_id, 'transcript':transcript,'age': speaker_metadata['age'], 'gender': speaker_metadata['gender'],'accent': speaker_metadata['accent'], "date":today_ymd, "timestamp": timestamp_str } dump_json(metadata, json_file_path) # Simply upload the audio file and metadata using the hub's upload_file # Upload the audio repo_audio_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "audio", audio_fn) _ = upload_file(path_or_fileobj = audio_output_fp, path_in_repo = repo_audio_path, repo_id = REPO_NAME, repo_type = 'dataset', token = HF_TOKEN_WRITE ) # Upload the metadata repo_json_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "meta", meta_fn) _ = upload_file(path_or_fileobj = json_file_path, path_in_repo = repo_json_path, repo_id = REPO_NAME, repo_type = 'dataset', token = HF_TOKEN_WRITE ) output = print(f"Recording {audio_fn} and meta file {meta_fn} successfully saved to repo!") return def whisper_model_change(radio_whisper_model): whisper_model = whisper.load_model(radio_whisper_model) return(whisper_model) def prompt_gpt(input_text, api_key, temperature): #, role, template_prompt, template_answer): #TODO add option to specify instruction openai.api_key = api_key #TODO add specific message for specific role system_role_message="You are a helpful assistant" messages = [ {"role": "system", "content": system_role_message}] if input_text: messages.append( {"role": "user", "content": input_text}, ) chat_completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=temperature ) reply = chat_completion.choices[0].message.content #TODO save chat completion for future reuse return reply def process_pipeline(audio): asr_out = transcribe(audio) gpt_out = prompt_gpt(asr_out) tts_out = synthesize_speech(gpt_out) return(tts_out) def transcribe(audio, language, whisper_model, whisper_model_type): if not whisper_model: whisper_model=init_whisper_model(whisper_model_type) print(f"Transcribing {audio} for language {language} and model {whisper_model_type}") audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio) options = whisper.DecodingOptions(language=language, without_timestamps=True, fp16=False) result = whisper.decode(whisper_model, mel, options) result_text = result.text return result_text def init_whisper_model(whisper_model_type): print("Initializing whisper model") print(whisper_model_type) whisper_model = whisper.load_model(whisper_model_type) return whisper_model def synthesize_speech(text, language): audioobj = gTTS(text = text, lang = language, slow = False) audioobj.save("Temp.mp3") return("Temp.mp3") block = gr.Blocks(css=css_file) with block: #state variables language = gr.State("en") temperature = gr.State(0) whisper_model_type = gr.State("base") whisper_model = gr.State() api_key = gr.State() project_name = gr.State("voicebot") # TODO add list of projects to organize saved data # state handling functions def change_language(choice): if choice == "Polish": language="pl" print("Switching to Polish") print("language") print(language) elif choice == "English": language="en" print("Switching to English") print("language") print(language) return(language) def change_whisper_model(choice): whisper_model_type = choice print("Switching Whisper model") print(whisper_model_type) whisper_model = init_whisper_model(whisper_model_type) return [whisper_model_type, whisper_model] gr.Markdown(markdown) with gr.Tabs(): with gr.Row(): with gr.TabItem('Voicebot playground'): with gr.Accordion(label="Settings"): gr.HTML("
Open AI API Key:
") # API key textbox (password-style) api_key = gr.Textbox(label="", elem_id="pw") slider_temp = gr.Slider(minimum=0, maximum= 2, step=0.2, label="ChatGPT temperature") radio_lang = gr.Radio(["Polish", "English"], label="Language", info="If none selected, English is used") #radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money") #radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service") radio_whisper_model = gr.Radio(["tiny", "base", "small", "medium", "large"], label="Whisper ASR model (local)", info="Larger models are more accurate, but slower. Default - base") with gr.Box(): with gr.Row(): mic_recording = gr.Audio(source="microphone", type="filepath", label='Record your voice') button_transcribe = gr.Button("Transcribe speech") button_save_audio_and_trans = gr.Button("Save recording and meta") out_asr = gr.Textbox(placeholder="ASR output", lines=2, max_lines=5, show_label=False) button_prompt_gpt = gr.Button("Prompt ChatGPT") out_gpt = gr.Textbox(placeholder="ChatGPT output", lines=4, max_lines=10, show_label=False) button_synth_speech = gr.Button("Synthesize speech") synth_recording = gr.Audio() # Events actions button_save_audio_and_trans.click(save_recording_and_meta, inputs=[project_name, mic_recording, out_asr, language], outputs=[]) button_transcribe.click(transcribe, inputs=[mic_recording, language, whisper_model,whisper_model_type], outputs=out_asr) button_prompt_gpt.click(prompt_gpt, inputs=[out_asr, api_key, slider_temp], outputs=out_gpt) button_synth_speech.click(synthesize_speech, inputs=[out_gpt, language], outputs=synth_recording) radio_lang.change(fn=change_language, inputs=radio_lang, outputs=language) radio_whisper_model.change(fn=change_whisper_model, inputs=radio_whisper_model, outputs=[whisper_model_type, whisper_model]) block.launch()