import sys import gradio as gr # sys.path.append("../") sys.path.append("CLIP_explainability/Transformer-MM-Explainability/") import torch import CLIP.clip as clip import spacy from PIL import Image, ImageFont, ImageDraw, ImageOps import os os.system('python -m spacy download en_core_web_sm') from clip_grounding.utils.image import pad_to_square from clip_grounding.datasets.png import ( overlay_relevance_map_on_image, ) from CLIP_explainability.utils import interpret, show_img_heatmap, show_heatmap_on_text clip.clip._MODELS = { "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", } device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device, jit=False) # nlp = spacy.load("en_core_web_sm") import en_core_web_sm nlp = en_core_web_sm.load() # Gradio Section: def run_demo(image, text): orig_image = pad_to_square(image) img = preprocess(orig_image).unsqueeze(0).to(device) text_input = clip.tokenize([text]).to(device) R_text, R_image = interpret(model=model, image=img, texts=text_input, device=device) image_relevance = show_img_heatmap(R_image[0], img, orig_image=orig_image, device=device, show=False) overlapped = overlay_relevance_map_on_image(image, image_relevance) text_scores, text_tokens_decoded = show_heatmap_on_text(text, text_input, R_text[0], show=False) highlighted_text = [] for i, token in enumerate(text_tokens_decoded): highlighted_text.append((str(token), float(text_scores[i]))) return overlapped, highlighted_text # Default demo: input_img = gr.inputs.Image(type='pil', label="Original Image") input_txt = "text" inputs = [input_img, input_txt] outputs = [gr.inputs.Image(type='pil', label="Output Image"), "highlight"] description = """A demonstration based on the Generic Attention-model Explainability method for Interpreting Bi-Modal Transformers by Chefer et al. (2021): https://github.com/hila-chefer/Transformer-MM-Explainability.

This demo shows attributions scores on both the image and the text input when presenting CLIP with a pair. Attributions are computed as Gradient-weighted Attention Rollout (Chefer et al., 2021), and can be thought of as an estimate of the effective attention CLIP pays to its input when computing a multimodal representation.""" iface = gr.Interface(fn=run_demo, inputs=inputs, outputs=outputs, title="CLIP Grounding Explainability", description=description, examples=[["example_images/London.png", "London Eye"], ["example_images/London.png", "Big Ben"], ["example_images/harrypotter.png", "Harry"], ["example_images/harrypotter.png", "Hermione"], ["example_images/harrypotter.png", "Ron"], ["example_images/Amsterdam.png", "Amsterdam canal"], ["example_images/Amsterdam.png", "Old buildings"], ["example_images/Amsterdam.png", "Pink flowers"], ["example_images/dogs_on_bed.png", "Two dogs"], ["example_images/dogs_on_bed.png", "Book"], ["example_images/dogs_on_bed.png", "Cat"]]) # NER demo: def add_label_to_img(img, label, add_entity_label=True): img = ImageOps.expand(img, border=45, fill=(255,255,255)) draw = ImageDraw.Draw(img) font = ImageFont.truetype("arial.ttf", 24) if add_entity_label: draw.text((5,5), f"Entity: {str(label)}" , align="center", fill=(0, 0, 0), font=font) else: draw.text((5,5), str(label), align="center", fill=(0, 0, 0), font=font) return img def NER_demo(image, text): # Apply NER to extract named entities, and run the explainability method # for each named entity. highlighed_entities = [] for ent in nlp(text).ents: ent_text = ent.text ent_label = ent.label_ highlighed_entities.append((ent_text, ent_label)) # As the default image, we run the default demo on the input image and text: overlapped, highlighted_text = run_demo(image, text) # Then, we run the demo for each of the named entities: gallery_images = [add_label_to_img(overlapped, "Full explanation", add_entity_label=False)] for ent_text, ent_label in highlighed_entities: overlapped_ent, highlighted_text_ent = run_demo(image, ent_text) overlapped_ent_labelled = add_label_to_img(overlapped_ent, f"{str(ent_text)} ({str(ent_label)})") gallery_images.append(overlapped_ent_labelled) return highlighed_entities, gallery_images input_img_NER = gr.inputs.Image(type='pil', label="Original Image") input_txt_NER = "text" inputs_NER = [input_img_NER, input_txt_NER] outputs_NER = ["highlight", gr.Gallery(type='pil', label="NER Entity explanations")] description_NER = """Automatically generated CLIP grounding explanations for named entities, retrieved from the spacy NER model.""" iface_NER = gr.Interface(fn=NER_demo, inputs=inputs_NER, outputs=outputs_NER, title="Named Entity Grounding explainability using CLIP", description=description_NER, examples=[["example_images/London.png", "In this image we see Big Ben and the London Eye, on both sides of the river Thames."]], cache_examples=False) demo_tabs = gr.TabbedInterface([iface, iface_NER], ["Default", "NER"]) with demo_tabs: gr.Markdown("Text markdown.") demo_tabs.launch(show_error=True)