import torch import CLIP.clip as clip from PIL import Image import numpy as np import cv2 import matplotlib.pyplot as plt from captum.attr import visualization import os from CLIP.clip.simple_tokenizer import SimpleTokenizer as _Tokenizer _tokenizer = _Tokenizer() #@title Control context expansion (number of attention layers to consider) #@title Number of layers for image Transformer start_layer = 11#@param {type:"number"} #@title Number of layers for text Transformer start_layer_text = 11#@param {type:"number"} def interpret(image, texts, model, device): batch_size = texts.shape[0] images = image.repeat(batch_size, 1, 1, 1) logits_per_image, logits_per_text = model(images, texts) probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy() index = [i for i in range(batch_size)] one_hot = np.zeros((logits_per_image.shape[0], logits_per_image.shape[1]), dtype=np.float32) one_hot[torch.arange(logits_per_image.shape[0]), index] = 1 one_hot = torch.from_numpy(one_hot).requires_grad_(True) one_hot = torch.sum(one_hot.to(device) * logits_per_image) model.zero_grad() image_attn_blocks = list(dict(model.visual.transformer.resblocks.named_children()).values()) num_tokens = image_attn_blocks[0].attn_probs.shape[-1] R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device) R = R.unsqueeze(0).expand(batch_size, num_tokens, num_tokens) for i, blk in enumerate(image_attn_blocks): if i < start_layer: continue grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach() cam = blk.attn_probs.detach() cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1]) grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1]) cam = cam.clamp(min=0).mean(dim=1) R = R + torch.bmm(cam, R) image_relevance = R[:, 0, 1:] text_attn_blocks = list(dict(model.transformer.resblocks.named_children()).values()) num_tokens = text_attn_blocks[0].attn_probs.shape[-1] R_text = torch.eye(num_tokens, num_tokens, dtype=text_attn_blocks[0].attn_probs.dtype).to(device) R_text = R_text.unsqueeze(0).expand(batch_size, num_tokens, num_tokens) for i, blk in enumerate(text_attn_blocks): if i < start_layer_text: continue grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach() cam = blk.attn_probs.detach() cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1]) grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1]) cam = cam.clamp(min=0).mean(dim=1) R_text = R_text + torch.bmm(cam, R_text) text_relevance = R_text return text_relevance, image_relevance def show_image_relevance(image_relevance, image, orig_image, device, show=True): # create heatmap from mask on image def show_cam_on_image(img, mask): heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 cam = heatmap + np.float32(img) cam = cam / np.max(cam) return cam # plt.axis('off') # f, axarr = plt.subplots(1,2) # axarr[0].imshow(orig_image) if show: fig, axs = plt.subplots(1, 2) axs[0].imshow(orig_image); axs[0].axis('off'); image_relevance = image_relevance.reshape(1, 1, 7, 7) image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bilinear') image_relevance = image_relevance.reshape(224, 224).to(device).data.cpu().numpy() image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min()) image = image[0].permute(1, 2, 0).data.cpu().numpy() image = (image - image.min()) / (image.max() - image.min()) vis = show_cam_on_image(image, image_relevance) vis = np.uint8(255 * vis) vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR) if show: # axar[1].imshow(vis) axs[1].imshow(vis); axs[1].axis('off'); # plt.imshow(vis) return image_relevance def show_heatmap_on_text(text, text_encoding, R_text, show=True): CLS_idx = text_encoding.argmax(dim=-1) R_text = R_text[CLS_idx, 1:CLS_idx] text_scores = R_text / R_text.sum() text_scores = text_scores.flatten() # print(text_scores) text_tokens=_tokenizer.encode(text) text_tokens_decoded=[_tokenizer.decode([a]) for a in text_tokens] vis_data_records = [visualization.VisualizationDataRecord(text_scores,0,0,0,0,0,text_tokens_decoded,1)] if show: visualization.visualize_text(vis_data_records) return text_scores, text_tokens_decoded def show_img_heatmap(image_relevance, image, orig_image, device, show=True): return show_image_relevance(image_relevance, image, orig_image, device, show=show) def show_txt_heatmap(text, text_encoding, R_text, show=True): return show_heatmap_on_text(text, text_encoding, R_text, show=show) def load_dataset(): dataset_path = os.path.join('..', '..', 'dummy-data', '71226_segments' + '.pt') device = "cuda" if torch.cuda.is_available() else "cpu" data = torch.load(dataset_path, map_location=device) return data class color: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m'