# This module is from [WeNet](https://github.com/wenet-e2e/wenet). # ## Citations # ```bibtex # @inproceedings{yao2021wenet, # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, # booktitle={Proc. Interspeech}, # year={2021}, # address={Brno, Czech Republic }, # organization={IEEE} # } # @article{zhang2022wenet, # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, # journal={arXiv preprint arXiv:2203.15455}, # year={2022} # } # """ConvolutionModule definition.""" from typing import Tuple import torch from torch import nn class ConvolutionModule(nn.Module): """ConvolutionModule in Conformer model.""" def __init__( self, channels: int, kernel_size: int = 15, activation: nn.Module = nn.ReLU(), norm: str = "batch_norm", causal: bool = False, bias: bool = True, adaptive_scale: bool = False, init_weights: bool = False, ): """Construct an ConvolutionModule object. Args: channels (int): The number of channels of conv layers. kernel_size (int): Kernel size of conv layers. causal (int): Whether use causal convolution or not """ super().__init__() self.bias = bias self.channels = channels self.kernel_size = kernel_size self.adaptive_scale = adaptive_scale self.ada_scale = torch.nn.Parameter( torch.ones([1, 1, channels]), requires_grad=adaptive_scale ) self.ada_bias = torch.nn.Parameter( torch.zeros([1, 1, channels]), requires_grad=adaptive_scale ) self.pointwise_conv1 = nn.Conv1d( channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, ) # self.lorder is used to distinguish if it's a causal convolution, # if self.lorder > 0: it's a causal convolution, the input will be # padded with self.lorder frames on the left in forward. # else: it's a symmetrical convolution if causal: padding = 0 self.lorder = kernel_size - 1 else: # kernel_size should be an odd number for none causal convolution assert (kernel_size - 1) % 2 == 0 padding = (kernel_size - 1) // 2 self.lorder = 0 self.depthwise_conv = nn.Conv1d( channels, channels, kernel_size, stride=1, padding=padding, groups=channels, bias=bias, ) assert norm in ["batch_norm", "layer_norm"] if norm == "batch_norm": self.use_layer_norm = False self.norm = nn.BatchNorm1d(channels) else: self.use_layer_norm = True self.norm = nn.LayerNorm(channels) self.pointwise_conv2 = nn.Conv1d( channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.activation = activation if init_weights: self.init_weights() def init_weights(self): pw_max = self.channels**-0.5 dw_max = self.kernel_size**-0.5 torch.nn.init.uniform_(self.pointwise_conv1.weight.data, -pw_max, pw_max) if self.bias: torch.nn.init.uniform_(self.pointwise_conv1.bias.data, -pw_max, pw_max) torch.nn.init.uniform_(self.depthwise_conv.weight.data, -dw_max, dw_max) if self.bias: torch.nn.init.uniform_(self.depthwise_conv.bias.data, -dw_max, dw_max) torch.nn.init.uniform_(self.pointwise_conv2.weight.data, -pw_max, pw_max) if self.bias: torch.nn.init.uniform_(self.pointwise_conv2.bias.data, -pw_max, pw_max) def forward( self, x: torch.Tensor, mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), cache: torch.Tensor = torch.zeros((0, 0, 0)), ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute convolution module. Args: x (torch.Tensor): Input tensor (#batch, time, channels). mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), (0, 0, 0) means fake mask. cache (torch.Tensor): left context cache, it is only used in causal convolution (#batch, channels, cache_t), (0, 0, 0) meas fake cache. Returns: torch.Tensor: Output tensor (#batch, time, channels). """ if self.adaptive_scale: x = self.ada_scale * x + self.ada_bias # exchange the temporal dimension and the feature dimension x = x.transpose(1, 2) # (#batch, channels, time) # mask batch padding if mask_pad.size(2) > 0: # time > 0 x.masked_fill_(~mask_pad, 0.0) if self.lorder > 0: if cache.size(2) == 0: # cache_t == 0 x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) else: assert cache.size(0) == x.size(0) # equal batch assert cache.size(1) == x.size(1) # equal channel x = torch.cat((cache, x), dim=2) assert x.size(2) > self.lorder new_cache = x[:, :, -self.lorder :] else: # It's better we just return None if no cache is required, # However, for JIT export, here we just fake one tensor instead of # None. new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) # GLU mechanism x = self.pointwise_conv1(x) # (batch, 2*channel, dim) x = nn.functional.glu(x, dim=1) # (batch, channel, dim) # 1D Depthwise Conv x = self.depthwise_conv(x) if self.use_layer_norm: x = x.transpose(1, 2) x = self.activation(self.norm(x)) if self.use_layer_norm: x = x.transpose(1, 2) x = self.pointwise_conv2(x) # mask batch padding if mask_pad.size(2) > 0: # time > 0 x.masked_fill_(~mask_pad, 0.0) return x.transpose(1, 2), new_cache