# This module is from [WeNet](https://github.com/wenet-e2e/wenet). # ## Citations # ```bibtex # @inproceedings{yao2021wenet, # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, # booktitle={Proc. Interspeech}, # year={2021}, # address={Brno, Czech Republic }, # organization={IEEE} # } # @article{zhang2022wenet, # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, # journal={arXiv preprint arXiv:2203.15455}, # year={2022} # } # from __future__ import print_function import argparse import os import copy import sys import torch import yaml import numpy as np from wenet.utils.checkpoint import load_checkpoint from wenet.utils.init_model import init_model try: import onnx import onnxruntime from onnxruntime.quantization import quantize_dynamic, QuantType except ImportError: print("Please install onnx and onnxruntime!") sys.exit(1) def get_args(): parser = argparse.ArgumentParser(description="export your script model") parser.add_argument("--config", required=True, help="config file") parser.add_argument("--checkpoint", required=True, help="checkpoint model") parser.add_argument("--output_dir", required=True, help="output directory") parser.add_argument( "--chunk_size", required=True, type=int, help="decoding chunk size" ) parser.add_argument( "--num_decoding_left_chunks", required=True, type=int, help="cache chunks" ) parser.add_argument( "--reverse_weight", default=0.5, type=float, help="reverse_weight in attention_rescoing", ) args = parser.parse_args() return args def to_numpy(tensor): if tensor.requires_grad: return tensor.detach().cpu().numpy() else: return tensor.cpu().numpy() def print_input_output_info(onnx_model, name, prefix="\t\t"): input_names = [node.name for node in onnx_model.graph.input] input_shapes = [ [d.dim_value for d in node.type.tensor_type.shape.dim] for node in onnx_model.graph.input ] output_names = [node.name for node in onnx_model.graph.output] output_shapes = [ [d.dim_value for d in node.type.tensor_type.shape.dim] for node in onnx_model.graph.output ] print("{}{} inputs : {}".format(prefix, name, input_names)) print("{}{} input shapes : {}".format(prefix, name, input_shapes)) print("{}{} outputs: {}".format(prefix, name, output_names)) print("{}{} output shapes : {}".format(prefix, name, output_shapes)) def export_encoder(asr_model, args): print("Stage-1: export encoder") encoder = asr_model.encoder encoder.forward = encoder.forward_chunk encoder_outpath = os.path.join(args["output_dir"], "encoder.onnx") print("\tStage-1.1: prepare inputs for encoder") chunk = torch.randn((args["batch"], args["decoding_window"], args["feature_size"])) offset = 0 # NOTE(xcsong): The uncertainty of `next_cache_start` only appears # in the first few chunks, this is caused by dynamic att_cache shape, i,e # (0, 0, 0, 0) for 1st chunk and (elayers, head, ?, d_k*2) for subsequent # chunks. One way to ease the ONNX export is to keep `next_cache_start` # as a fixed value. To do this, for the **first** chunk, if # left_chunks > 0, we feed real cache & real mask to the model, otherwise # fake cache & fake mask. In this way, we get: # 1. 16/-1 mode: next_cache_start == 0 for all chunks # 2. 16/4 mode: next_cache_start == chunk_size for all chunks # 3. 16/0 mode: next_cache_start == chunk_size for all chunks # 4. -1/-1 mode: next_cache_start == 0 for all chunks # NO MORE DYNAMIC CHANGES!! # # NOTE(Mddct): We retain the current design for the convenience of supporting some # inference frameworks without dynamic shapes. If you're interested in all-in-one # model that supports different chunks please see: # https://github.com/wenet-e2e/wenet/pull/1174 if args["left_chunks"] > 0: # 16/4 required_cache_size = args["chunk_size"] * args["left_chunks"] offset = required_cache_size # Real cache att_cache = torch.zeros( ( args["num_blocks"], args["head"], required_cache_size, args["output_size"] // args["head"] * 2, ) ) # Real mask att_mask = torch.ones( (args["batch"], 1, required_cache_size + args["chunk_size"]), dtype=torch.bool, ) att_mask[:, :, :required_cache_size] = 0 elif args["left_chunks"] <= 0: # 16/-1, -1/-1, 16/0 required_cache_size = -1 if args["left_chunks"] < 0 else 0 # Fake cache att_cache = torch.zeros( ( args["num_blocks"], args["head"], 0, args["output_size"] // args["head"] * 2, ) ) # Fake mask att_mask = torch.ones((0, 0, 0), dtype=torch.bool) cnn_cache = torch.zeros( ( args["num_blocks"], args["batch"], args["output_size"], args["cnn_module_kernel"] - 1, ) ) inputs = (chunk, offset, required_cache_size, att_cache, cnn_cache, att_mask) print( "\t\tchunk.size(): {}\n".format(chunk.size()), "\t\toffset: {}\n".format(offset), "\t\trequired_cache: {}\n".format(required_cache_size), "\t\tatt_cache.size(): {}\n".format(att_cache.size()), "\t\tcnn_cache.size(): {}\n".format(cnn_cache.size()), "\t\tatt_mask.size(): {}\n".format(att_mask.size()), ) print("\tStage-1.2: torch.onnx.export") dynamic_axes = { "chunk": {1: "T"}, "att_cache": {2: "T_CACHE"}, "att_mask": {2: "T_ADD_T_CACHE"}, "output": {1: "T"}, "r_att_cache": {2: "T_CACHE"}, } # NOTE(xcsong): We keep dynamic axes even if in 16/4 mode, this is # to avoid padding the last chunk (which usually contains less # frames than required). For users who want static axes, just pop # out specific axis. # if args['chunk_size'] > 0: # 16/4, 16/-1, 16/0 # dynamic_axes.pop('chunk') # dynamic_axes.pop('output') # if args['left_chunks'] >= 0: # 16/4, 16/0 # # NOTE(xsong): since we feed real cache & real mask into the # # model when left_chunks > 0, the shape of cache will never # # be changed. # dynamic_axes.pop('att_cache') # dynamic_axes.pop('r_att_cache') torch.onnx.export( encoder, inputs, encoder_outpath, opset_version=13, export_params=True, do_constant_folding=True, input_names=[ "chunk", "offset", "required_cache_size", "att_cache", "cnn_cache", "att_mask", ], output_names=["output", "r_att_cache", "r_cnn_cache"], dynamic_axes=dynamic_axes, verbose=False, ) onnx_encoder = onnx.load(encoder_outpath) for k, v in args.items(): meta = onnx_encoder.metadata_props.add() meta.key, meta.value = str(k), str(v) onnx.checker.check_model(onnx_encoder) onnx.helper.printable_graph(onnx_encoder.graph) # NOTE(xcsong): to add those metadatas we need to reopen # the file and resave it. onnx.save(onnx_encoder, encoder_outpath) print_input_output_info(onnx_encoder, "onnx_encoder") # Dynamic quantization model_fp32 = encoder_outpath model_quant = os.path.join(args["output_dir"], "encoder.quant.onnx") quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) print("\t\tExport onnx_encoder, done! see {}".format(encoder_outpath)) print("\tStage-1.3: check onnx_encoder and torch_encoder") torch_output = [] torch_chunk = copy.deepcopy(chunk) torch_offset = copy.deepcopy(offset) torch_required_cache_size = copy.deepcopy(required_cache_size) torch_att_cache = copy.deepcopy(att_cache) torch_cnn_cache = copy.deepcopy(cnn_cache) torch_att_mask = copy.deepcopy(att_mask) for i in range(10): print( "\t\ttorch chunk-{}: {}, offset: {}, att_cache: {}," " cnn_cache: {}, att_mask: {}".format( i, list(torch_chunk.size()), torch_offset, list(torch_att_cache.size()), list(torch_cnn_cache.size()), list(torch_att_mask.size()), ) ) # NOTE(xsong): att_mask of the first few batches need changes if # we use 16/4 mode. if args["left_chunks"] > 0: # 16/4 torch_att_mask[:, :, -(args["chunk_size"] * (i + 1)) :] = 1 out, torch_att_cache, torch_cnn_cache = encoder( torch_chunk, torch_offset, torch_required_cache_size, torch_att_cache, torch_cnn_cache, torch_att_mask, ) torch_output.append(out) torch_offset += out.size(1) torch_output = torch.cat(torch_output, dim=1) onnx_output = [] onnx_chunk = to_numpy(chunk) onnx_offset = np.array((offset)).astype(np.int64) onnx_required_cache_size = np.array((required_cache_size)).astype(np.int64) onnx_att_cache = to_numpy(att_cache) onnx_cnn_cache = to_numpy(cnn_cache) onnx_att_mask = to_numpy(att_mask) ort_session = onnxruntime.InferenceSession(encoder_outpath) input_names = [node.name for node in onnx_encoder.graph.input] for i in range(10): print( "\t\tonnx chunk-{}: {}, offset: {}, att_cache: {}," " cnn_cache: {}, att_mask: {}".format( i, onnx_chunk.shape, onnx_offset, onnx_att_cache.shape, onnx_cnn_cache.shape, onnx_att_mask.shape, ) ) # NOTE(xsong): att_mask of the first few batches need changes if # we use 16/4 mode. if args["left_chunks"] > 0: # 16/4 onnx_att_mask[:, :, -(args["chunk_size"] * (i + 1)) :] = 1 ort_inputs = { "chunk": onnx_chunk, "offset": onnx_offset, "required_cache_size": onnx_required_cache_size, "att_cache": onnx_att_cache, "cnn_cache": onnx_cnn_cache, "att_mask": onnx_att_mask, } # NOTE(xcsong): If we use 16/-1, -1/-1 or 16/0 mode, `next_cache_start` # will be hardcoded to 0 or chunk_size by ONNX, thus # required_cache_size and att_mask are no more needed and they will # be removed by ONNX automatically. for k in list(ort_inputs): if k not in input_names: ort_inputs.pop(k) ort_outs = ort_session.run(None, ort_inputs) onnx_att_cache, onnx_cnn_cache = ort_outs[1], ort_outs[2] onnx_output.append(ort_outs[0]) onnx_offset += ort_outs[0].shape[1] onnx_output = np.concatenate(onnx_output, axis=1) np.testing.assert_allclose( to_numpy(torch_output), onnx_output, rtol=1e-03, atol=1e-05 ) meta = ort_session.get_modelmeta() print("\t\tcustom_metadata_map={}".format(meta.custom_metadata_map)) print("\t\tCheck onnx_encoder, pass!") def export_ctc(asr_model, args): print("Stage-2: export ctc") ctc = asr_model.ctc ctc.forward = ctc.log_softmax ctc_outpath = os.path.join(args["output_dir"], "ctc.onnx") print("\tStage-2.1: prepare inputs for ctc") hidden = torch.randn( ( args["batch"], args["chunk_size"] if args["chunk_size"] > 0 else 16, args["output_size"], ) ) print("\tStage-2.2: torch.onnx.export") dynamic_axes = {"hidden": {1: "T"}, "probs": {1: "T"}} torch.onnx.export( ctc, hidden, ctc_outpath, opset_version=13, export_params=True, do_constant_folding=True, input_names=["hidden"], output_names=["probs"], dynamic_axes=dynamic_axes, verbose=False, ) onnx_ctc = onnx.load(ctc_outpath) for k, v in args.items(): meta = onnx_ctc.metadata_props.add() meta.key, meta.value = str(k), str(v) onnx.checker.check_model(onnx_ctc) onnx.helper.printable_graph(onnx_ctc.graph) onnx.save(onnx_ctc, ctc_outpath) print_input_output_info(onnx_ctc, "onnx_ctc") # Dynamic quantization model_fp32 = ctc_outpath model_quant = os.path.join(args["output_dir"], "ctc.quant.onnx") quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) print("\t\tExport onnx_ctc, done! see {}".format(ctc_outpath)) print("\tStage-2.3: check onnx_ctc and torch_ctc") torch_output = ctc(hidden) ort_session = onnxruntime.InferenceSession(ctc_outpath) onnx_output = ort_session.run(None, {"hidden": to_numpy(hidden)}) np.testing.assert_allclose( to_numpy(torch_output), onnx_output[0], rtol=1e-03, atol=1e-05 ) print("\t\tCheck onnx_ctc, pass!") def export_decoder(asr_model, args): print("Stage-3: export decoder") decoder = asr_model # NOTE(lzhin): parameters of encoder will be automatically removed # since they are not used during rescoring. decoder.forward = decoder.forward_attention_decoder decoder_outpath = os.path.join(args["output_dir"], "decoder.onnx") print("\tStage-3.1: prepare inputs for decoder") # hardcode time->200 nbest->10 len->20, they are dynamic axes. encoder_out = torch.randn((1, 200, args["output_size"])) hyps = torch.randint(low=0, high=args["vocab_size"], size=[10, 20]) hyps[:, 0] = args["vocab_size"] - 1 # hyps_lens = torch.randint(low=15, high=21, size=[10]) print("\tStage-3.2: torch.onnx.export") dynamic_axes = { "hyps": {0: "NBEST", 1: "L"}, "hyps_lens": {0: "NBEST"}, "encoder_out": {1: "T"}, "score": {0: "NBEST", 1: "L"}, "r_score": {0: "NBEST", 1: "L"}, } inputs = (hyps, hyps_lens, encoder_out, args["reverse_weight"]) torch.onnx.export( decoder, inputs, decoder_outpath, opset_version=13, export_params=True, do_constant_folding=True, input_names=["hyps", "hyps_lens", "encoder_out", "reverse_weight"], output_names=["score", "r_score"], dynamic_axes=dynamic_axes, verbose=False, ) onnx_decoder = onnx.load(decoder_outpath) for k, v in args.items(): meta = onnx_decoder.metadata_props.add() meta.key, meta.value = str(k), str(v) onnx.checker.check_model(onnx_decoder) onnx.helper.printable_graph(onnx_decoder.graph) onnx.save(onnx_decoder, decoder_outpath) print_input_output_info(onnx_decoder, "onnx_decoder") model_fp32 = decoder_outpath model_quant = os.path.join(args["output_dir"], "decoder.quant.onnx") quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) print("\t\tExport onnx_decoder, done! see {}".format(decoder_outpath)) print("\tStage-3.3: check onnx_decoder and torch_decoder") torch_score, torch_r_score = decoder( hyps, hyps_lens, encoder_out, args["reverse_weight"] ) ort_session = onnxruntime.InferenceSession(decoder_outpath) input_names = [node.name for node in onnx_decoder.graph.input] ort_inputs = { "hyps": to_numpy(hyps), "hyps_lens": to_numpy(hyps_lens), "encoder_out": to_numpy(encoder_out), "reverse_weight": np.array((args["reverse_weight"])), } for k in list(ort_inputs): if k not in input_names: ort_inputs.pop(k) onnx_output = ort_session.run(None, ort_inputs) np.testing.assert_allclose( to_numpy(torch_score), onnx_output[0], rtol=1e-03, atol=1e-05 ) if args["is_bidirectional_decoder"] and args["reverse_weight"] > 0.0: np.testing.assert_allclose( to_numpy(torch_r_score), onnx_output[1], rtol=1e-03, atol=1e-05 ) print("\t\tCheck onnx_decoder, pass!") def main(): torch.manual_seed(777) args = get_args() output_dir = args.output_dir os.system("mkdir -p " + output_dir) os.environ["CUDA_VISIBLE_DEVICES"] = "-1" with open(args.config, "r") as fin: configs = yaml.load(fin, Loader=yaml.FullLoader) model = init_model(configs) load_checkpoint(model, args.checkpoint) model.eval() print(model) arguments = {} arguments["output_dir"] = output_dir arguments["batch"] = 1 arguments["chunk_size"] = args.chunk_size arguments["left_chunks"] = args.num_decoding_left_chunks arguments["reverse_weight"] = args.reverse_weight arguments["output_size"] = configs["encoder_conf"]["output_size"] arguments["num_blocks"] = configs["encoder_conf"]["num_blocks"] arguments["cnn_module_kernel"] = configs["encoder_conf"].get("cnn_module_kernel", 1) arguments["head"] = configs["encoder_conf"]["attention_heads"] arguments["feature_size"] = configs["input_dim"] arguments["vocab_size"] = configs["output_dim"] # NOTE(xcsong): if chunk_size == -1, hardcode to 67 arguments["decoding_window"] = ( (args.chunk_size - 1) * model.encoder.embed.subsampling_rate + model.encoder.embed.right_context + 1 if args.chunk_size > 0 else 67 ) arguments["encoder"] = configs["encoder"] arguments["decoder"] = configs["decoder"] arguments["subsampling_rate"] = model.subsampling_rate() arguments["right_context"] = model.right_context() arguments["sos_symbol"] = model.sos_symbol() arguments["eos_symbol"] = model.eos_symbol() arguments["is_bidirectional_decoder"] = 1 if model.is_bidirectional_decoder() else 0 # NOTE(xcsong): Please note that -1/-1 means non-streaming model! It is # not a [16/4 16/-1 16/0] all-in-one model and it should not be used in # streaming mode (i.e., setting chunk_size=16 in `decoder_main`). If you # want to use 16/-1 or any other streaming mode in `decoder_main`, # please export onnx in the same config. if arguments["left_chunks"] > 0: assert arguments["chunk_size"] > 0 # -1/4 not supported export_encoder(model, arguments) export_ctc(model, arguments) export_decoder(model, arguments) if __name__ == "__main__": main()