# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import numpy as np import torch.nn as nn from utils.util import convert_pad_shape class BaseModule(torch.nn.Module): def __init__(self): super(BaseModule, self).__init__() @property def nparams(self): """ Returns number of trainable parameters of the module. """ num_params = 0 for name, param in self.named_parameters(): if param.requires_grad: num_params += np.prod(param.detach().cpu().numpy().shape) return num_params def relocate_input(self, x: list): """ Relocates provided tensors to the same device set for the module. """ device = next(self.parameters()).device for i in range(len(x)): if isinstance(x[i], torch.Tensor) and x[i].device != device: x[i] = x[i].to(device) return x class LayerNorm(BaseModule): def __init__(self, channels, eps=1e-4): super(LayerNorm, self).__init__() self.channels = channels self.eps = eps self.gamma = torch.nn.Parameter(torch.ones(channels)) self.beta = torch.nn.Parameter(torch.zeros(channels)) def forward(self, x): n_dims = len(x.shape) mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) shape = [1, -1] + [1] * (n_dims - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class ConvReluNorm(BaseModule): def __init__( self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout, eps=1e-5, ): super(ConvReluNorm, self).__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.eps = eps self.conv_layers = torch.nn.ModuleList() self.conv_layers.append( torch.nn.Conv1d( in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 ) ) self.relu_drop = torch.nn.Sequential( torch.nn.ReLU(), torch.nn.Dropout(p_dropout) ) for _ in range(n_layers - 1): self.conv_layers.append( torch.nn.Conv1d( hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2, ) ) self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.instance_norm(x, x_mask) x = self.relu_drop(x) x = self.proj(x) return x * x_mask def instance_norm(self, x, mask, return_mean_std=False): mean, std = self.calc_mean_std(x, mask) x = (x - mean) / std if return_mean_std: return x, mean, std else: return x def calc_mean_std(self, x, mask=None): x = x * mask B, C = x.shape[:2] mn = x.view(B, C, -1).mean(-1) sd = (x.view(B, C, -1).var(-1) + self.eps).sqrt() mn = mn.view(B, C, *((len(x.shape) - 2) * [1])) sd = sd.view(B, C, *((len(x.shape) - 2) * [1])) return mn, sd class MultiHeadAttention(BaseModule): def __init__( self, channels, out_channels, n_heads, window_size=None, heads_share=True, p_dropout=0.0, proximal_bias=False, proximal_init=False, ): super(MultiHeadAttention, self).__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.window_size = window_size self.heads_share = heads_share self.proximal_bias = proximal_bias self.p_dropout = p_dropout self.attn = None self.k_channels = channels // n_heads self.conv_q = torch.nn.Conv1d(channels, channels, 1) self.conv_k = torch.nn.Conv1d(channels, channels, 1) self.conv_v = torch.nn.Conv1d(channels, channels, 1) if window_size is not None: n_heads_rel = 1 if heads_share else n_heads rel_stddev = self.k_channels**-0.5 self.emb_rel_k = torch.nn.Parameter( torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev ) self.emb_rel_v = torch.nn.Parameter( torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev ) self.conv_o = torch.nn.Conv1d(channels, out_channels, 1) self.drop = torch.nn.Dropout(p_dropout) torch.nn.init.xavier_uniform_(self.conv_q.weight) torch.nn.init.xavier_uniform_(self.conv_k.weight) if proximal_init: self.conv_k.weight.data.copy_(self.conv_q.weight.data) self.conv_k.bias.data.copy_(self.conv_q.bias.data) torch.nn.init.xavier_uniform_(self.conv_v.weight) def forward(self, x, c, attn_mask=None): q = self.conv_q(x) k = self.conv_k(c) v = self.conv_v(c) x, self.attn = self.attention(q, k, v, mask=attn_mask) x = self.conv_o(x) return x def attention(self, query, key, value, mask=None): b, d, t_s, t_t = (*key.size(), query.size(2)) query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) if self.window_size is not None: assert ( t_s == t_t ), "Relative attention is only available for self-attention." key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) rel_logits = self._relative_position_to_absolute_position(rel_logits) scores_local = rel_logits / math.sqrt(self.k_channels) scores = scores + scores_local if self.proximal_bias: assert t_s == t_t, "Proximal bias is only available for self-attention." scores = scores + self._attention_bias_proximal(t_s).to( device=scores.device, dtype=scores.dtype ) if mask is not None: scores = scores.masked_fill(mask == 0, -1e4) p_attn = torch.nn.functional.softmax(scores, dim=-1) p_attn = self.drop(p_attn) output = torch.matmul(p_attn, value) if self.window_size is not None: relative_weights = self._absolute_position_to_relative_position(p_attn) value_relative_embeddings = self._get_relative_embeddings( self.emb_rel_v, t_s ) output = output + self._matmul_with_relative_values( relative_weights, value_relative_embeddings ) output = output.transpose(2, 3).contiguous().view(b, d, t_t) return output, p_attn def _matmul_with_relative_values(self, x, y): ret = torch.matmul(x, y.unsqueeze(0)) return ret def _matmul_with_relative_keys(self, x, y): ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) return ret def _get_relative_embeddings(self, relative_embeddings, length): pad_length = max(length - (self.window_size + 1), 0) slice_start_position = max((self.window_size + 1) - length, 0) slice_end_position = slice_start_position + 2 * length - 1 if pad_length > 0: padded_relative_embeddings = torch.nn.functional.pad( relative_embeddings, convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), ) else: padded_relative_embeddings = relative_embeddings used_relative_embeddings = padded_relative_embeddings[ :, slice_start_position:slice_end_position ] return used_relative_embeddings def _relative_position_to_absolute_position(self, x): batch, heads, length, _ = x.size() x = torch.nn.functional.pad( x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]) ) x_flat = x.view([batch, heads, length * 2 * length]) x_flat = torch.nn.functional.pad( x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) ) x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[ :, :, :length, length - 1 : ] return x_final def _absolute_position_to_relative_position(self, x): batch, heads, length, _ = x.size() x = torch.nn.functional.pad( x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) ) x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) x_flat = torch.nn.functional.pad( x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]) ) x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] return x_final def _attention_bias_proximal(self, length): r = torch.arange(length, dtype=torch.float32) diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) class FFN(BaseModule): def __init__( self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0 ): super(FFN, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.conv_1 = torch.nn.Conv1d( in_channels, filter_channels, kernel_size, padding=kernel_size // 2 ) self.conv_2 = torch.nn.Conv1d( filter_channels, out_channels, kernel_size, padding=kernel_size // 2 ) self.drop = torch.nn.Dropout(p_dropout) def forward(self, x, x_mask): x = self.conv_1(x * x_mask) x = torch.relu(x) x = self.drop(x) x = self.conv_2(x * x_mask) return x * x_mask class Encoder(BaseModule): def __init__( self, hidden_channels, filter_channels, n_heads=2, n_layers=6, kernel_size=3, p_dropout=0.1, window_size=4, **kwargs ): super(Encoder, self).__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.drop = torch.nn.Dropout(p_dropout) self.attn_layers = torch.nn.ModuleList() self.norm_layers_1 = torch.nn.ModuleList() self.ffn_layers = torch.nn.ModuleList() self.norm_layers_2 = torch.nn.ModuleList() for _ in range(self.n_layers): self.attn_layers.append( MultiHeadAttention( hidden_channels, hidden_channels, n_heads, window_size=window_size, p_dropout=p_dropout, ) ) self.norm_layers_1.append(LayerNorm(hidden_channels)) self.ffn_layers.append( FFN( hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, ) ) self.norm_layers_2.append(LayerNorm(hidden_channels)) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) for i in range(self.n_layers): x = x * x_mask y = self.attn_layers[i](x, x, attn_mask) y = self.drop(y) x = self.norm_layers_1[i](x + y) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = self.norm_layers_2[i](x + y) x = x * x_mask return x class Conformer(BaseModule): def __init__(self, cfg): super().__init__() self.cfg = cfg self.n_heads = self.cfg.n_heads self.n_layers = self.cfg.n_layers self.hidden_channels = self.cfg.input_dim self.filter_channels = self.cfg.filter_channels self.output_dim = self.cfg.output_dim self.dropout = self.cfg.dropout self.conformer_encoder = Encoder( self.hidden_channels, self.filter_channels, n_heads=self.n_heads, n_layers=self.n_layers, kernel_size=3, p_dropout=self.dropout, window_size=4, ) self.projection = nn.Conv1d(self.hidden_channels, self.output_dim, 1) def forward(self, x, x_mask): """ Args: x: (N, seq_len, input_dim) Returns: output: (N, seq_len, output_dim) """ # (N, seq_len, d_model) x = x.transpose(1, 2) x_mask = x_mask.transpose(1, 2) output = self.conformer_encoder(x, x_mask) # (N, seq_len, output_dim) output = self.projection(output) output = output.transpose(1, 2) return output