# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This code is modified from https://github.com/jaywalnut310/vits/blob/main/models.py import math import torch from torch import nn from torch.nn import functional as F from utils.util import * from modules.flow.modules import * from modules.base.base_module import * from modules import monotonic_align from modules.transformer.attentions import Encoder from modules.duration_predictor.standard_duration_predictor import DurationPredictor from modules.duration_predictor.stochastic_duration_predictor import ( StochasticDurationPredictor, ) from models.vocoders.gan.generator.hifigan import HiFiGAN_vits as Generator class TextEncoder(nn.Module): def __init__( self, n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, ): super().__init__() self.n_vocab = n_vocab self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.emb = nn.Embedding(n_vocab, hidden_channels) nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) self.encoder = Encoder( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout ) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths): x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] x = torch.transpose(x, 1, -1) # [b, h, t] x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.encoder(x * x_mask, x_mask) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) return x, m, logs, x_mask class ResidualCouplingBlock(nn.Module): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0, ): super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.flows = nn.ModuleList() for i in range(n_flows): self.flows.append( ResidualCouplingLayer( channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True, ) ) self.flows.append(Flip()) def forward(self, x, x_mask, g=None, reverse=False): if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x = flow(x, x_mask, g=g, reverse=reverse) return x class PosteriorEncoder(nn.Module): def __init__( self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, ) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g=None): x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs, x_mask class SynthesizerTrn(nn.Module): """ Synthesizer for Training """ def __init__( self, n_vocab, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, gin_channels=0, use_sdp=True, **kwargs, ): super().__init__() self.n_vocab = n_vocab self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.n_speakers = n_speakers self.gin_channels = gin_channels self.use_sdp = use_sdp self.enc_p = TextEncoder( n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, ) self.dec = Generator( inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, ) self.enc_q = PosteriorEncoder( spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels, ) self.flow = ResidualCouplingBlock( inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels ) if use_sdp: self.dp = StochasticDurationPredictor( hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels ) else: self.dp = DurationPredictor( hidden_channels, 256, 3, 0.5, gin_channels=gin_channels ) if n_speakers >= 1: self.emb_g = nn.Embedding(n_speakers, gin_channels) def forward(self, data): x = data["phone_seq"] x_lengths = data["phone_len"] y = data["linear"] y_lengths = data["target_len"] x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) # print('self.n_speakers: ', self.n_speakers) if self.n_speakers > 0: g = self.emb_g(data["spk_id"].squeeze(-1)).unsqueeze(-1) # [b, h, 1] # print('g.shape: ', g.shape) else: g = None # print('g is None') z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) z_p = self.flow(z, y_mask, g=g) with torch.no_grad(): # negative cross-entropy s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] neg_cent1 = torch.sum( -0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True ) # [b, 1, t_s] neg_cent2 = torch.matmul( -0.5 * (z_p**2).transpose(1, 2), s_p_sq_r ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] neg_cent3 = torch.matmul( z_p.transpose(1, 2), (m_p * s_p_sq_r) ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] neg_cent4 = torch.sum( -0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True ) # [b, 1, t_s] neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) attn = ( monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)) .unsqueeze(1) .detach() ) w = attn.sum(2) if self.use_sdp: l_length = self.dp(x, x_mask, w, g=g) l_length = l_length / torch.sum(x_mask) else: logw_ = torch.log(w + 1e-6) * x_mask logw = self.dp(x, x_mask, g=g) l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # expand prior m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size) o = self.dec(z_slice, g=g) outputs = { "y_hat": o, "l_length": l_length, "attn": attn, "ids_slice": ids_slice, "x_mask": x_mask, "z_mask": y_mask, "z": z, "z_p": z_p, "m_p": m_p, "logs_p": logs_p, "m_q": m_q, "logs_q": logs_q, } return outputs def infer( self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1.0, max_len=None, ): x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) if self.n_speakers > 0: sid = sid.squeeze(-1) g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] else: g = None print('g.shape: ', g.shape) if self.use_sdp: logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) else: logw = self.dp(x, x_mask, g=g) w = torch.exp(logw) * x_mask * length_scale w_ceil = torch.ceil(w) y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(x_mask.dtype) attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) attn = generate_path(w_ceil, attn_mask) m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose( 1, 2 ) # [b, t', t], [b, t, d] -> [b, d, t'] logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose( 1, 2 ) # [b, t', t], [b, t, d] -> [b, d, t'] z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale z = self.flow(z_p, y_mask, g=g, reverse=True) o = self.dec((z * y_mask)[:, :, :max_len], g=g) outputs = { "y_hat": o, "attn": attn, "mask": y_mask, "z": z, "z_p": z_p, "m_p": m_p, "logs_p": logs_p, } return outputs def voice_conversion(self, y, y_lengths, sid_src, sid_tgt): assert self.n_speakers > 0, "n_speakers have to be larger than 0." g_src = self.emb_g(sid_src).unsqueeze(-1) g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) z_p = self.flow(z, y_mask, g=g_src) z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) o_hat = self.dec(z_hat * y_mask, g=g_tgt) return o_hat, y_mask, (z, z_p, z_hat)