Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import numpy as np | |
from tqdm import tqdm | |
from einops import repeat | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers import DDPMScheduler, UNet2DConditionModel | |
def _init_layer(layer): | |
"""Initialize a Linear or Convolutional layer. """ | |
nn.init.xavier_uniform_(layer.weight) | |
if hasattr(layer, 'bias'): | |
if layer.bias is not None: | |
layer.bias.data.fill_(0.) | |
class ClapText_Onset_2_Audio_Diffusion(nn.Module): | |
def __init__( | |
self, | |
scheduler_name, | |
unet_model_config_path=None, | |
snr_gamma=None, | |
uncondition=False, | |
): | |
super().__init__() | |
assert unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" | |
self.scheduler_name = scheduler_name | |
self.unet_model_config_path = unet_model_config_path | |
self.snr_gamma = snr_gamma | |
self.uncondition = uncondition | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview | |
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
unet_config = UNet2DConditionModel.load_config(unet_model_config_path) | |
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet") | |
def compute_snr(self, timesteps): | |
""" | |
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
""" | |
alphas_cumprod = self.noise_scheduler.alphas_cumprod | |
sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# Expand the tensors. | |
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
# Compute SNR. | |
snr = (alpha / sigma) ** 2 | |
return snr | |
def encode_channel(self, input): | |
# input [batch, 32, 256] -> [batch, 2, 256, 16] | |
return input.reshape(input.shape[0], 2, 16, 256).transpose(2, 3) | |
def encode_text(self, input_dict): | |
device = self.device | |
encoder_hidden_states = input_dict["event_info"].repeat_interleave(2, -1).unsqueeze(1) | |
boolean_encoder_mask = (torch.ones(len(encoder_hidden_states), 1) == 1).to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def forward(self, input_dict, validation_mode=False): | |
device = self.device | |
latents = input_dict["latent"] | |
num_train_timesteps = self.noise_scheduler.num_train_timesteps | |
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) | |
# [batch, 1, 1024], [batch, 1] | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text(input_dict) | |
if self.uncondition: | |
mask_indices = [k for k in range(len(latents)) if random.random() < 0.1] | |
if len(mask_indices) > 0: | |
encoder_hidden_states[mask_indices] = 0 | |
bsz = latents.shape[0] | |
if validation_mode: | |
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) | |
else: | |
# Sample a random timestep for each instance | |
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) | |
timesteps = timesteps.long() | |
noise = torch.randn_like(latents) | |
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) | |
onset_emb = self.encode_channel(input_dict["onset"]) | |
# [batch, channel:8, 256, 16] + [batch, onset:2, 256, 16] | |
onset_noisy_latents = torch.cat((onset_emb, noisy_latents), dim=1) | |
# Get the target for loss depending on the prediction type | |
if self.noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif self.noise_scheduler.config.prediction_type == "v_prediction": | |
target = self.noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") | |
model_pred = self.unet( | |
onset_noisy_latents, timesteps, encoder_hidden_states, | |
#encoder_attention_mask=boolean_encoder_mask | |
).sample | |
if self.snr_gamma is None: | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py | |
snr = self.compute_snr(timesteps) | |
mse_loss_weights = ( | |
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
return loss | |
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): | |
shape = (batch_size, num_channels_latents, 256, 16) | |
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * inference_scheduler.init_noise_sigma | |
return latents | |
def encode_text_classifier_free(self, input_dict, num_samples_per_prompt): | |
device = self.device | |
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict) | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# get unconditional embeddings for classifier free guidance | |
negative_prompt_embeds = torch.zeros(prompt_embeds.shape).to(device) | |
uncond_attention_mask = (torch.ones(attention_mask.shape) == 1).to(device) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
boolean_prompt_mask = (prompt_mask == 1).to(device) | |
return prompt_embeds, boolean_prompt_mask | |
def inference(self, input_dict, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True): | |
prompt = input_dict["onset"] | |
device = self.device | |
classifier_free_guidance = guidance_scale > 1.0 | |
batch_size = len(prompt) * num_samples_per_prompt | |
if classifier_free_guidance: | |
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(input_dict, num_samples_per_prompt) | |
else: | |
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict) | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) | |
inference_scheduler.set_timesteps(num_steps, device=device) | |
timesteps = inference_scheduler.timesteps | |
num_channels_latents = self.unet.config.in_channels - 2 | |
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) | |
onset_emb = self.encode_channel(input_dict["onset"]).repeat_interleave(num_samples_per_prompt, 0) | |
onset_latents = torch.cat((onset_emb, latents), dim=1) | |
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order | |
progress_bar = tqdm(range(num_steps), disable=disable_progress) | |
for i, t in tqdm(enumerate(timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([onset_latents] * 2) if classifier_free_guidance else onset_latents | |
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.unet( | |
latent_model_input, t, encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=boolean_prompt_mask | |
).sample | |
# perform guidance | |
if classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample | |
onset_latents = torch.cat((onset_emb, latents), dim=1) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): | |
progress_bar.update(1) | |
return latents | |
############################## | |
### Demo utils | |
############################## | |
from sklearn.metrics.pairwise import cosine_similarity | |
import laion_clap | |
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict | |
from llm_preprocess import get_event | |
class PicoDiffusion(ClapText_Onset_2_Audio_Diffusion): | |
def __init__(self, | |
scheduler_name, | |
unet_model_config_path=None, | |
snr_gamma=None, | |
uncondition=False, | |
freeze_text_encoder_ckpt=None, | |
diffusion_pt=None, | |
): | |
super().__init__(scheduler_name, unet_model_config_path, snr_gamma, uncondition) | |
self.freeze_text_encoder = laion_clap.CLAP_Module(enable_fusion=False) | |
#load pretrain params | |
ckpt = clap_load_state_dict(freeze_text_encoder_ckpt, skip_params=True) | |
del_parameter_key = ["text_branch.embeddings.position_ids"] | |
ckpt = {f"freeze_text_encoder.model.{k}":v for k, v in ckpt.items() if k not in del_parameter_key} | |
diffusion_ckpt = torch.load(diffusion_pt, map_location=self.device) | |
del diffusion_ckpt["class_emb.weight"] | |
ckpt.update(diffusion_ckpt) | |
self.load_state_dict(ckpt) | |
self.event_list = get_event() | |
self.events_emb = self.freeze_text_encoder.get_text_embedding(self.event_list, use_tensor=False) | |
def demo_inference(self, timestampCaption, scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True): | |
#"timestampCaption": "event1__onset1-offset1_onset2-offset2--event2__onset1-offset1" | |
#"timestampCaption": "event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1." | |
device = self.device | |
timestamp_matrix = np.zeros((32, 256)) | |
events = [] | |
timestampCaption = timestampCaption.rstrip('.') | |
for event_timestamp in timestampCaption.split(' and '): | |
# event_timestamp : event1__onset1-offset1_onset2-offset2 | |
(event, instance) = event_timestamp.split(' at ') | |
# instance : onset1-offset1_onset2-offset2 | |
event_emb = self.freeze_text_encoder.get_text_embedding([event, ""], use_tensor=False)[0] | |
event_id = np.argmax(cosine_similarity(event_emb.reshape(1, -1), self.events_emb)) | |
events.append(self.event_list[event_id]) | |
for start_end in instance.split('_'): | |
(start, end) = start_end.split('-') | |
start, end = int(float(start)*250/10), int(float(end)*250/10) | |
if end > 250: break | |
timestamp_matrix[event_id, start: end] = 1 | |
#event_info = self.clap_scorer.get_text_embedding([" and ".join(events), ""], use_tensor=False)[0] | |
event_info = self.freeze_text_encoder.get_text_embedding([" and ".join(events), ""], use_tensor=True)[0].unsqueeze(0) | |
timestamp_matrix = torch.tensor(timestamp_matrix, dtype=torch.float32).unsqueeze(0).to(device) | |
latents = self.inference({"onset":timestamp_matrix, "event_info":event_info.to(device)}, scheduler, num_steps, guidance_scale, num_samples_per_prompt, disable_progress) | |
return latents | |